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Abstract: The localized method of fundamental solutions belongs to the family of meshless 

collocation methods and now has been successfully tried for many kinds of engineering problems. In 

the method, the whole computational domain is divided into a set of overlapping local subdomains 

where the classical method of fundamental solutions and the moving least square method are applied. 

The method produces sparse and banded stiffness matrix which makes it possible to perform large-

scale simulations on a desktop computer. In this paper, we document the first attempt to apply the 

method for the stress analysis of two-dimensional elastic bi-materials. The multi-domain technique is 

employed to handle the non-homogeneity of the bi-materials. Along the interface of the bi-material, 

the displacement continuity and traction equilibrium conditions are applied. Several representative 

numerical examples are presented and discussed to illustrate the accuracy and efficiency of the present 

approach. 
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1. Introduction 

The multi-layered materials containing single or multiple layers have been widely synthesized, 

designed and utilized in industrial application to improve machining performance [1–4]. The well-

established and widely applied finite element (FEM), finite difference (FDM) and boundary 
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element (BEM) methods offer without doubt many advantages in solving multi-layered problems 

due to their flexibilities in dealing with the geometry, loading type and nonlinearities of the coating 

layers [5–8]. The methods themselves, however, have also many inherent shortcomings especially 

when a re-meshing is required or when the elements become highly distorted [9–15]. 

Over the past two decades, some considerable effort was devoted to developing novel computational 

algorithms that circumvent the non-trivial tasks of FEM and/or BEM mesh generation [16–20]. This led 

to the development of various meshless methods. For an overview of the state of the art, we refer the 

interested readers to Refs. [21–27], as well as the references therein. Among these methods, the method of 

fundamental solutions (MFS) is a popular and robust boundary-type meshless method for the solution of 

certain boundary value problems [11,28]. The advantages of the method have been summarized by many 

researchers, see for example, Refs. [29–31]. In 2001, Berger and Karageorghis [32] demonstrated the use 

of the MFS for solving the layered elastic materials. Berger, Karageorghis and Martin [33] applied an 

enriched MFS approach for fracture mechanics analysis of cracked elastic structures. The use of the MFS 

with dual reciprocity approach for some problems in elasticity was reported by Medeiros et al. [34]. 

Karageorghis and Fairweather [35–37] presented a MFS-based method for axisymmetric elasticity 

problems. Karageorghis, Lesnic and Marin [38] applied the MFS for three-dimensional (3D) inverse 

geometric elasticity problems. Error analysis of the MFS for linear elastostatics has been given by Li 

et al. [39]. Liu and Šarler proposed a non-singular MFS for anisotropic elasticity problems [40–43]. 

Marin proposed a regularized MFS for boundary identification in two-dimensional isotropic linear 

elasticity problems [44,45]. Poullikkas et al. [46] demonstrated the use of the MFS for solving 3D 

elastic problems. Similar to the BEM-based methods, the MFS, however, produces dense and non-

symmetric system matrices which makes the method difficulty for large-scale engineering simulations. 

During the past few years, the localized version of the MFS, named as the localized MFS (LMFS), has 

been proposed to improve the computational efficiency of the classical MFS. The method was firstly 

proposed by Fan et al. [47] in 2019 and was later essentially improved and extended by many other 

others [21,48–52]. Different to the classical MFS, in the LMFS the entire domain should be firstly 

divided into a set of overlapping local subdomains. In each of the subdomain, the classical MFS 

approximation and a moving least square (MLS) technique are applied to construct the local system of 

linear equations. The method will finally produce a sparse and banded matrix system which can be 

solved quickly by using various sparse matrix solvers. 

This paper makes the first attempt to further extend the method for stress analysis in linear elastic 

bi-materials. Different to the previous published work [53] where the elastic biomaterials were 

modelled by using the generalized finite difference method (GFDM), the present method uses the 

fundamental solutions as the basic function, and therefore, the method keeps the merits of high 

accuracy and easy programming as compared to the GFDM. A non-overlapping multi-domain 

technique is employed to handle the non-homogeneity of the bi-materials. Along the interface of the 

bi-material, the displacement continuity and traction equilibrium conditions are applied. The present 

LMFS approach based on the multi-domain technique can be easily implemented into any existing 

MFS/LMFS codes. A brief outline of the rest of the paper is organized as follows. In Section 2, the 

LMFS and its numerical implementation are briefly introduced. The multi-domain LMFS formulation 

for stress analysis of bi-materials is presented in Section 3. Next in Section 4, three benchmark 

examples are studied to validate the performances of the present method. Finally, some conclusions 

and remarks are provided in Section 5. 
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2. Problem statement and the LMFS in linear elasticity 

2.1. Problem statement 

The governing equations for a homogeneous, isotropic and linear elasticity solid    can be 

written as (under plane strain conditions) [4,54,55] 
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subject to the boundary conditions 

 ( ) ( ) ( ),i i uu u Displacements= x x x  (3) 

 ( ) ( ) ( ) ( ) ( ),i ij j i tt n t Tractions= = x x x x x  (4) 

where ( )iu x  and ( )it x , 1,2i = , are the displacement and traction components, 1( )f x  and 2 ( )f x  

are body forces,   denotes the Poisson's ratio of the material, ( )jn x , 1,2j = , stand for the outward 

unit normal vector, iu   and it   represent the prescribed boundary conditions. Here and in the 

following, the classical Einstein’s notation for summation over repeated subscripts is employed. The 

strains ( )ij x  and stresses ( )ij x  are related to the displacements by: 
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where G  is the shear modulus of the material and 
ij  denotes the well-known Kronecker delta. The 

boundary tractions (4) are related to stresses by: 

 ( ) ( ) ( ), .i ij jt n= x x x x   (7) 

2.2. The LMFS formulation for linear elasticity problems 

In the LMFS, a cloud of points is firstly scatted inside the entire computational domain (see Figure 1). 

And the method defines a set of overlapping local subdomains and matches the solutions in each of 

the subdomain by using the classical MFS approximation. For each node ( )(0) (0) (0)

1 2,x x=x  inside the 
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computational domain, named as the central node, the sN  nearest points ( )( ) ( ) ( )

1 2,i i ix x=x  around 

(0)
x   should be found. Then the concept of the local subdomain s   refers to the small area that 

contains (0)
x  and  ( )

1

sN
i

i=
x . Applying the classical MFS formulation to each point inside the local 

subdomain, the following approximations for displacements can be obtained: 
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where sx , ( )n
s  stands for the source points uniformly distributed on a local artificial circle with 

radius sR   and centered at 
(0)

x   (see Figure 1), M is the number of source points, ( )

1{ }n M

j n =
  are 

unknown coefficients, and 

 

Figure 1. Geometry of the computational domain and the schematic diagram of the local subdomain. 
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are fundamental solutions for displacements [5,55,56]. It is noted that the radius sR  of the artificial 

circle is a parameter which should be manually determined by the user. Substituting the coordinates of 

1sN +  points inside s  to Eqs (8) and (9) will result in the following system of equations: 
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where ( ) ( ) ( ) ( ) ( ) ( )( ) ( )(0) (1) (0) (1)

1 2 1 1 1 2 2 2[ ] , ,..., , , ,...,s s

T
N NT u u u u u u =

 
u u x x x x x x   is the vector of 

displacements, (1) ( ) (1) ( )

1 2 1 1 2 2[ ] [ ,..., , ,..., ]T M M T   =   stands for the vector of unknown coefficients. 

According to equation (11), the unknown coefficients 
1 2[ ]T   can be expressed as: 
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or for briefly: 

 
1 ,−=U u  (13) 

where 
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u u u   and  

, 1,2
= ij i j=

U U  . The explicit expressions of unknown 

coefficients 
1 2[ ]T=    can now be calculated by a linear combination of function values at the 

1sN +  points located inside s . In our computations, we choose 2sN M=  and the final system of 

Eq (13) is overdetermined, which can be solved in a least-squares sense using various matrix solvers. 

The displacements at the central node (0)
x  can now be calculated by substituting 1−=U u  again 

into Eqs (8) and (9) as follows: 

 

( )    
1

1 111 12(0) (0)

1 1 11 12 11 12

21 222 2

( ) ( ) ( ) ( )

11 1 12 2

0

,
sN

n n n n

n

u u

u u 

−

=

    
= = =    

    

 = + 

uU U
x h h h h

U U u




 (14) 

 

( )    
1

1 111 12(0) (0)

2 2 21 22 21 22

21 222 2

( ) ( ) ( ) ( )

21 1 22 2

0

,
sN

n n n n

n

u u

u u 

−

=

    
= = =    

    

 = + 

uU U
x h h h h

U U u




 (15) 

where ( ) ( ) ( ) ( )(0) (1) (0) ( ) (0) (1) (0) ( )

1 2 1 1 2 2[ ] , ,..., , , , ,..., ,M M

i i i i i iU U U U =
 

h h x s x s x s x s   denotes the 

vector of fundamental solutions at point (0)
x , and  ( )

, 1,2

n

ij i j


=
 are the weighing coefficients. Note 

that every node inside the computational domain should be regarded to be a central node and the above 

numerical procedures should be repeated for every node. Now let’s form the final linear system of 

equations. Firstly, suppose in , 1bn  and 2bn  are the numbers of points distributed inside the domain 

and on the boundary with displacement and traction conditions, respectively. To enforce the 

satisfaction of Eqs (14) and (15) at every interior node yield the following linear system: 
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The boundary points should satisfy the given boundary conditions. For node with displacement 

conditions, the following linear system of equations can be obtained: 

 ( ) ( )

1 1 1, 1,..., ,i i

i i bu u i n n n= = + +  (18) 

 ( ) ( )

2 2 1, 1,..., .i i

i i bu u i n n n= = + +  (19) 

Similarly, for points with traction boundary conditions, another system of linear algebraic equations 

can be obtained [55]. By combining the above systems of equations, the following spare and banded 

linear algebraic equations can be formed: 

 ,=Au B  (20) 

where 2 2N NA   is the coefficient matrix, (1) ( ) (1) ( )

1 2 1 1 2 2=[ ] [ ,..., , ,..., ]T N N Tu u u u=u u u   is the vector of 

unknown displacements at every node, and 2 1NB   is the vector of the corresponding boundary 

conditions. Both the direct matrix inverse method and the moving least square approximation can be 

used to solve the final system of equations. Here, the direct matrix inverse method is used. On solving 

this system of equations, the numerical solutions of displacements at every node inside the entire 

domain can be obtained. Once all displacements are solved, the stresses can be obtained by replacing 

the displacement fundamental solutions with these for stresses, we refer the interested readers for 

Refs. [55,57] for further details. 

 

Figure 2. Multi-domain technique for a bi-material domain. 

3. The multi-domain LMFS for bi-materials 

The aforementioned numerical procedures are derived for homogeneous materials, a multi-

domain technique [53,54] is used here to solve the bi-material problems. As shown in Figure 2, the bi-

material considered here is divided into two subdomains along the interface, which are respectively 

homogeneous and isotropic, with the upper layer as the subdomain 1   and the lower as the 
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subdomain 2 . The final system of equations can be formed by assembling equations written for each 

subdomain, based on the displacement continuity and traction equilibrium conditions along the 

interface of the bi-material. Application of the LMFS formulation to both subdomains will result in the 

following matrix equations: 
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for the subdomain 1  and 
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for the subdomain 2 . In the above equations, the subscript ‘I’ denotes the interface of the bi-material. 

1

IU  and 1

IT  indicate the displacement and traction boundary conditions of the subdomain 1  on the 

interface, 1
B   stand for the known quantities of subdomain 1   on the remaining points of the 

subdomain, 1
A , 1

IG  and 1

IH  are the corresponding LMFS coefficient matrices. Similarly, 2

IU  and 

2

IT  indicate the displacement and traction boundary conditions of the subdomain 2  on the interface, 
2

B  are the known quantities of subdomain 2  on the remaining points. Along the interface of the 

bi-material, the following displacement continuity and traction equilibrium conditions should satisfy: 

 1 2 1 2

I I I I, .= = −U U T T  (23) 

According to Eqs (21)–(23), the final matrix equation for both of the subdomains can be coupled 

together as: 
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By solving the above equations, the displacements at any point inside the domain and along the 

boundary can be determined. More equations will be added into the equation system in a similar way 

for other possible subdomains.  

4. Numerical results and discussions 

Two benchmark numerical examples are examined in this section to verify the accuracy and 

efficiency of the present multi-domain LMFS method for the stress analysis of elastic bi-materials. In 

order to evaluate the performance of the present method, the relative error defined below is employed: 
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where 
numerical( )I k  and ( )exactI k  are the numerical and analytical solutions at the kth calculated point, 

respectively, M  is the number of calculation points tested. In the following two examples, the radius 

of the fictitious circle for each of the local subdomain is chosen as 0.8sR = . The number of source 

points associated with the local subdomain is taken to be 15M = . The influence of the parameters 

sR  and M  on the overall accuracy of the LMFS method has been discussed in Refs. [49,55]. It was 

observed that the numerical solutions were relatively insensitive to these two parameters. 

4.1. Test problem 1: stress analysis of a finite bi-material plate 

The first example considered here is the stress analysis of a finite bi-material plate, where L=1 m 

is the length of the bi-material, 1 0.5cH m=   the thickness of the substrate, and 2 0.1cH m=   the 

thickness of the layered coating. The geometry of the problem and the nodes distribution of the LMFS 

model can be found in Figure 3. Similar to Ref. [54], the following exact solutions 

 ( ) ( )1 1 2 2 2 2 1 2 2( ) cos( ) cos( ) / , ( ) sin( ) 1 / ,u x x x x E u x x x E= + + + = + + +x x  (26) 

for the layered coating and 

 ( ) ( )1 1 2 2 2 1 2 2 2( ) cos( ) 1 / , ( ) sin( ) cos( ) / ,u x x x E u x x x x E= + + + = + + +x x  (27) 

for substrate are employed. A Chebyshev collocation scheme proposed by Bai et al. [58] is applied for 

calculating the particular solutions for the given elastic problem. The Poisson’s ratio and elastic 

modulus of the bi-material are taken to be 0.25 =   and 200 GPaE =  . For the numerical 

implementation, a total of 3600 points are discretized inside the whole computational domain. 

 

Figure 3. Geometry of the problem (a) and the node distribution of the LMFS model (b). 
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Figures 4 and 5 show the relative errors of the calculated displacements and stresses at points 

along the interface of the bi-material. We can observe that the results calculated by using the present 

LMFS method are in excellent agreement with the corresponding analytical solutions. The LMFS 

model with only 3600 collocation points are quite accurate for this example, the size of the final system 

of equations is, therefore, quite small. 

 

Figure 4. Relative error variation of the calculated displacements at points along the 

interface of the bi-material. 

 

Figure 5. Relative error variation of the calculated stresses at points along the interface of 

the bi-material. 

The distribution of the calculated displacements and the stresses at points inside the whole 

computational domain are plotted in Figures 6 and 7. These results again are extremely agreement with 

the corresponding exact solutions. We can conclude that the present LMFS, in conjunction with the 
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multi-domain technique, can provide stable and accurate numerical solutions for stress analysis of 

elastic bi-materials. 

 

Figure 6. Distribution of the calculated displacements at points inside the whole 

computational domain. 

 

Figure 7. Distribution of the calculated stresses at points inside the computational domain. 

4.2. Test problem 2: stress analysis of a circular shaft with two layers of coatings 

Here, the stress analysis of a circular shaft with two layers of coatings is considered (see Figure 8). 

The two coatings consist of two different materials where the Young’s modulus of outside 

coating/Young’s modulus of inner coating=1/2 and Poisson ratio of outside coating=Poisson ratio of 

inner coating 0.2=  . The substrate and the two layered coatings have radii 1 25 , 6r m r m= =   and 

3 7r m= , respectively. The system is loaded by a uniform pressure 1p N=  which is distributed around 

the surface of the outside coating. The boundary conditions for the displacement, considering the rigid 

substrate assumption, are 0ru u= =   at points along the substrate-coating interface, where ( , )r   

stands for the polar coordinates. The analytical solutions corresponding to this coating system can be 

found in Ref. [54,59]. 
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Figure 8. Cross-section of a shaft with two layers of coatings. 

To investigate the convergence of the present multi-domain LMFS method, the relative errors of 

the radial ( r ) and tangential (  ) stresses at points A(5.5, 0) and B(6.5, 0) are provided in Figure 9, 

as the number of the LMFS nodes increases from 800 to 15,000. As can be seen from Figure 9, the 

present LMFS results converge towards their corresponding analytical solutions as the number of 

nodes increases. In addition, radial and tangential stress results calculated at points along the line 

0 =  are illustrated in Table 1. 

 

Figure 9. Convergence curves of the calculated radial and tangential stresses at point A and B. 
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Table 1. Radial and tangential stress results calculated at points along the line 0 = . 

r  Radial stress r  Tangential stress   

Exact 

solutions 

Present Relative 

errors 

Exact 

solutions 

Present Relative 

errors 

5.2 −1.2190 −1.2174 1.256E-03 −0.2413 −0.2413 3.568E-04 

5.4 −1.1834 −1.1815 1.623E-03 −0.2769 −0.2767 5.621E-04 

5.6 −1.1516 −1.1505 9.545E-04 −0.3087 −0.3085 4.256E-04 

5.8 −1.1231 −1.1219 1.057E-03 −0.3372 −0.3371 5.521E-04 

5. Discussion 

This paper makes the first attempt to apply the localized method of fundamental solutions (LMFS) 

for the stress analysis of two-dimensional (2D) elastic bi-materials. A multi-domain LMFS formulation 

is proposed to handle the non-homogeneity of the bi-materials. On the subdomain interface, 

compatibility of displacements and equilibrium of tractions are imposed. Two benchmark examples 

are well-studied to clarify the accuracy, efficiency and convergency of the present multi-domain LMFS 

approach. Further analyses are required in order to fully explore the applicability of the new method, 

including the detailed convergence order analyses of the method as well as the optimal choice of many 

different parameters. It must be pointed out that the proposed LMFS has many inherent shortcomings 

compared with the FEM. For example, the method cannot be used for problems whose fundamental 

solution is either not known or cannot be determined. The method is also not applicable to nonlinear 

problems for which the principle of superposition does not hold. The method also offers great promise 

in the analysis of many other problems, including wave propagations, flow problems, non-linear 

problems. Some work along these lines is already underway. 
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