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Abstract: The Levenberg-Marquardt method is one of the most important methods for solving
systems of nonlinear equations and nonlinear least-squares problems. It enjoys a quadratic convergence
rate under the local error bound condition. Recently, to solve nonzero-residue nonlinear least-squares
problem, Behling et al. propose a modified Levenberg-Marquardt method with at least superlinearly
convergence under a new error bound condtion [3]. To extend their results for systems of nonlinear
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1. Introduction

We consider the numerical solution of the following system of nonlinear equations
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F(x) = 0, (1.1)

where F : Rn → Rm is a continuously differentiable function.
Nonlinear equations of the form (1.1) are often solved as a key ingredient in simulations of many

real-world problems. Classic methods for solving (1.1) include the Gauss-Newton method, the inexact
Newton method, the Broyden’s method and the trust region method [9,13,15]. In actual computations,
however, the Gauss-Newton method becomes less competitive when the Jacobian is (nearly) rank-
deficient. By adopting a trust-region approach in place of the line search in the Gauss-Newton method,
the Levenberg-Marquardt (LM) method circumvents this shortcoming even though it uses the same
Hessian approximations as in the Gauss-Newton method.

In the trial step of the LM method, one needs to solve per step the following linear system

(JT
k Jk + λkI)dk = −JT

k Fk, (1.2)

where λk ≥ 0, Fk = F(xk), Jk = J(xk) is the Jacobian and I ∈ Rn×n stands for the identity matrix. If
Jk is nonsingular and Lipschitz continuous for the case m = n, the initial guess x0 is close enough to
the solution x∗ of (1.1) and the LM parameter λk is updated recursively, then the LM method has a
quadratic convergence rate.

For some applications, the need for a nonsingular Jacobian Jk can be rather stringent. Therefore,
it is necessary to come up with numerical methods in the absence of a nonsingular Jacobian. To this
end, some efforts have been made recently; for instance, Yamashita et al. propose a local error bound
condition which does not requires nonsingularity of the Jacobian [19]. In what follows, we denote by
X∗ the nonempty solution set of (1.1) and use ‖ · ‖ to represent the 2-norm of vectors or matrices if there
is no ambiguity. Let N(x∗, b) = {x | ‖x−x∗‖ ≤ b} be a subset of the n-dimensional vector space such that
the intersection X∗ ∩ N(x∗, b) is nonempty. The LM method is shown to have a quadratic convergence
rate if there exists a positive constant c satisfying the following local error bound condition [2, 6, 19]

c dist(x, X∗) ≤ ‖F(x)‖, for x ∈ N(x∗, b), (1.3)

where dist(x, X∗) is the distance from x to X∗.
In spite of the advantage of avoiding nonsingularity of the Jacobian, the local error bound condition

(1.3) is not always applicable for some ill-conditioned nonlinear equations from application fields like
biochemical systems. In light of this, Guo et al. present the Hölderian error bound condition that is
more applicable than (1.3) [8]. The Hölderian error bound condition is given by

c dist(x, X∗) ≤ ‖F(x)‖γ, for x ∈ N(x∗, b), (1.4)

where c > 0 and γ ∈ (0, 1]. Obviously, the Hölderian error bound condition (1.4) includes the
local error bound condition (1.3) as a special case. In fact, the bound (1.4) reduces to (1.3) when
γ = 1. It should be noted that the Hölderian local error bound condition is also called Hölder metric
subregularity which is closely related with the Łojasiewica inequalities; see [14, 17] for detail. With
the assumption (1.4), the LM method converges at least superlinearly when γ and the LM parameter
satisfy certain conditions [1, 8, 18, 21].

Apart from its application in solving systems of nonlinear equations, the LM method also finds its
way into numerical solution of nonlinear least squares problems. To investigate the local convergence
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of the LM method for the nonlinear least-squares problem with possible nonzero residue, Behling
et al. [3] present a local error bound condition characterized by ‖J(x)T F(x)‖, i.e.,

c dist(x, X∗) ≤ ‖J(x)T F(x)‖, for x ∈ N(x∗, b), (1.5)

where c > 0. We stress that the local error bound condition (1.5) can also be derived from the bound
(1.3) [10, Lemma 5.4]. However, the former is more practical than the latter in that it does not require
the nonsingularity of the Jacobian. With the assumption (1.5), the LM method is shown to have at least
linearly convergence order with suitable choices of the LM parameter [3].

As observed from (1.2), the LM parameter λk is introduced in case that JT
k Jk is (nearly) singular.

Such practice not only guarantees the uniqueness of solution of (1.2) but also helps to reduce the
iteration steps. In this sense, the LM parameter plays a key role in the LM method. Some promising
candidates of the LM parameter have been proposed recently; for instance, Yamashita et al. [19] select
λk = ‖Fk‖

2 and show that the LM method has quadratically convergence with the assumption (1.3).
Fan and Yuan [6] generalize it with the LM parameter λk = ‖Fk‖

δ with δ ∈ [1, 2]. It is shown that the
quadratic convergence is still retained with the assumption (1.3). Dennis and Schnable consider the
choice λk = O(‖JT

k Fk‖) [4]. Following this reasoning, Fischer employs λk = ‖JT
k Fk‖ in [7] which is

further generalized to the form λk = ‖JT
k Fk‖

δ with δ ∈ (0, 1] in [3]. With the assumtion (1.5), Behling
et al. conclude that the LM method converges at least linearly to some solution of (1.1) when δ ∈ (0, 1)
and quadratically when δ = 1 [3]. More recent progress in choosing the LM parameter λk can be found
in [5, 10, 11].

Instead of adopting the choice used in [3], we propose to use the LM parameter λk = ‖JT
k Fk‖

δ with
δ ∈ [1, 2] in this work. The motivation of our work is clarified as follows. Intuitively, the step size ‖dk‖

is small if ‖JT
k Fk‖ is too large, which may hamper a fast convergence. Fortunately, it poses no difficulty

by considering the following choice, i.e.,

λk =

{
‖JT

k Fk‖
δ, if ‖JT

k Fk‖ ≤ 1,
‖JT

k Fk‖
−δ, Otherwise,

δ ∈ [1, 2]. (1.6)

From the convergence theory, we know ‖JT
k Fk‖ always converges to 0, hence ‖JT

k Fk‖ > 1 only occurs
at beginning finite iterate steps and it is a special case for the numerical method. Since the choice of
λk in (1.6) is adaptive, then the variant LM method is called an adaptive Levenberg-Marquardt method
(ALMM) in this paper.

The rest of this paper is organized as follows. In Section 2, the adaptive Levenberg-Marquardt
method is introduced. Its convergence rate under the assumption (1.5) is examined. In section 3, the
adaptive Levenberg-Marquardt method with Wolfe line search rule as well as its global convergence
are investigated. In Section 4, some numerical experiments are used to verify the effectiveness of the
new method. Finally, some conclusions are given in Section 5.

2. Local Convergence of the adaptive LM method

In this section, we consider the adaptive LM method with unit step size and investigate its local
convergence near a solution.

To begin with our discussion, we present the following adaptive LM method:

dk = −(JT
k Jk + λkI)−1JT

k Fk, (2.1)
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xk+1 = xk + dk,

where the LM parameter is defined in (1.6).
To establish the local convergence results for the adaptive LM algorithm, we need the following

assumptions throughout the paper.

Assumption 2.1. (a) The Jacobian J(x) is Lipschitz continuous in a neighborhood N(x∗, b), i.e., there
exists a constant L1 > 0 such that

‖J(x) − J(y)‖ ≤ L1‖x − y‖, ∀x, y ∈ N(x∗, b). (2.2)

(b) We said that ‖J(x)T F(x)‖ provides a local error bound on N(x∗, b) if there exists a constant c > 0
such that

c dist(x, X∗) ≤ ‖J(x)T F(x)‖, ∀x ∈ N(x∗, b). (2.3)

To guarantee the initial point x0 is sufficiently close to x∗, we assume b > 0 is sufficient small.
From Assumption 2.1(a), we note that

‖F(x) − F(y) − J(y)(x − y)‖ ≤ L1‖x − y‖2, ∀x, y ∈ N(x∗, b). (2.4)

By compactness, we have

‖J(x)‖ ≤ L2 and ‖F(x)‖ ≤ β, ∀x ∈ N(x∗, b), (2.5)

where constants L2 > 0 and β > 0. Therefore, it follows from the mean value inequality that

‖F(x) − F(y)‖ ≤ L2‖x − y‖, ∀x, y ∈ N(x∗, b). (2.6)

Denote by x̄k ∈ X∗ which satisfies

‖x̄k − xk‖ = dist(xk, X∗).

Lemma 2.1. Let the sequence {xk} be generate by the adaptive LM method and Assumptions 2.1 hold.
There exists some positive constants c1, c̃1, such that

c̃1dist(xk, X∗)±δ ≤ λk ≤ min{1, cδ1dist(xk, X∗)δ}. (2.7)

Proof. We derive the proof in two cases.
Case I: ‖JT

k Fk‖ ≤ 1. Then λk = ‖JT
k Fk‖

δ. From Assumption 2.1 (b), the inequality in the left-hand
side (2.7) is obtained, i.e.,

cδdist(xk, X∗)δ ≤ λk = ‖JT
k Fk‖

δ.

Now, we verify the right-hand side inequality in (2.7).
It follows from (2.5) and (2.6) that

‖J(x)T F(x)−J(y)T F(y)‖
=‖J(x)T F(x) − J(x)T F(y) + J(x)T F(y) − J(y)T F(y)‖
≤‖J(x)T ‖ ‖F(x) − F(y)‖ + ‖F(y)‖ ‖J(x)T − J(y)T ‖
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≤L2
2‖x − y‖ + βL1‖x − y‖ = c1‖x − y‖, (2.8)

where c1 = L2
2 + βL1. Since λk = ‖JT

k Fk‖
δ, then we obtain

λk ≤ cδ1dist(xk, X∗)δ.

Case II: ‖JT
k Fk‖ > 1. Then λk = ‖JT

k Fk‖
−δ < 1. From (2.8), we also have

c−δ1 dist(xk, X∗)−δ ≤ λk = ‖JT
k Fk‖

−δ.

Summarizing the above two cases, we obtain the inequality (2.7) with c̃1 = min{cδ, c−δ1 }. The proof
is completed.

Lemma 2.2. Let the sequence {xk} be generate by the adaptive LM method and Assumptions 2.1 hold.
If xk ∈ N(x∗, b/2), there exists a constant c2 > 0 such that

‖dk‖ ≤ c2dist(xk, X∗). (2.9)

Proof. From the assumption, we have

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖ + ‖xk − x∗‖ ≤ ‖xk − x∗‖ + ‖xk − x∗‖ ≤ b,

which indicates that x̄k ∈ N(x∗, b). Define

ϕk(d) = ‖Fk + Jkd‖2 + λk‖d‖2. (2.10)

From (2.1) and the convexity of ϕk(d), we note that dk is not only a stationary point but also a
minimizer of ϕk(d). By using the fact that xk, x̄k ∈ N(x∗, b), we have from (2.4) and Lemma 2.1 that

‖dk‖
2 ≤

ϕk(dk)
λk

≤
ϕk(x̄k − xk)

λk
=
‖Fk + Jk(x̄k − xk)‖2 + λk‖d‖2

λk

≤L2
1c̃1‖x̄k − xk‖

4∓δ + ‖x̄k − xk‖
2 ≤ (L2

1c̃1 + 1)‖x̄k − xk‖
2.

It implies that
‖dk‖ ≤ c2dist(xk, X∗),

where c2 =

√
L2

1c̃1 + 1. The proof is completed.

Lemma 2.3. Let the sequence {xk} be generate by the adaptive LM method and Assumptions 2.1 hold.
Assume xk, xk+1 ∈ N(x∗, b/2), then

c dist(xk+1, X∗) ≤L1L2(2 + 3c2 + 2c2
2)‖x̄k − xk‖

2

+ L1L2
2(2 + c2)(1 + c2)2‖x̄k − xk‖

3 + L2c2λk‖x̄k − xk‖.

Proof. For all xk, xk+1 ∈ N(x∗, b/2), we get from (2.4) and (2.5) that

‖JT
k F(xk+1) − JT

k Fk − JT
k Jk(xk+1 − xk)‖ ≤L1‖Jk‖ ‖xk+1 − xk‖

2

≤L1L2 ‖xk+1 − xk‖
2,
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and

‖JT
k F(xk+1) − J(xk+1)T F(xk+1)
+ J(xk+1)T F(xk+1) − JT

k Fk − JT
k Jk(xk+1 − xk)‖ ≤ L1L2 ‖xk+1 − xk‖

2.

By the triangle inequality, the above inequality yields

‖J(xk+1)T F(xk+1) − JT
k Fk − JT

k Jk(xk+1 − xk)‖
≤L1L2 ‖xk+1 − xk‖

2 + ‖(Jk − J(xk+1))T F(xk+1)‖. (2.11)

For all x̄k ∈ X∗ ∩ N(x∗, b), we obtain

‖(Jk − J(xk+1))T F(xk+1)‖
=‖(Jk − J(x̄k) + J(x̄k) − J(xk+1))T F(xk+1)‖
≤‖(Jk − J(x̄k))T F(xk+1)‖ + ‖(J(x̄k) − J(xk+1))T F(xk+1)‖

≤‖(Jk − J(x̄k))T ‖
(
‖F(x̄k) + J(x̄k)(xk+1 − x̄k)‖ + L2

2‖xk+1 − x̄k‖
2
)

+ ‖(J(x̄k) − J(xk+1))T ‖ (‖F(x̄k) + J(x̄k)(xk+1 − x̄k)‖

+L2
2‖xk+1 − x̄k‖

2
)

≤L1L2‖xk − x̄k‖ ‖xk+1 − x̄k‖ + L1L2
2‖xk − x̄k‖ ‖xk+1 − x̄k‖

2

+ L1L2‖xk+1 − x̄k‖
2 + L1L2

2‖xk+1 − x̄k‖
3. (2.12)

Similarly, using the triangle inequality yields

‖J(xk+1)T F(xk+1) − JT
k Fk − JT

k Jk(xk+1 − xk)‖
≥‖J(xk+1)T F(xk+1)‖ − ‖JT

k Fk + JT
k Jk(xk+1 − xk)‖. (2.13)

It follows from (1.2), (2.11) and (2.13) that

‖J(xk+1)T F(xk+1)‖
≤‖J(xk+1)T F(xk+1) − JT

k Fk − JT
k Jk(xk+1 − xk)‖

+ ‖JT
k Fk + JT

k Jk(xk+1 − xk)‖
≤L1L2 ‖dk‖

2 + ‖(Jk − J(xk+1))T F(xk+1)‖ + ‖JT
k Fk + JT

k Jkdk‖

≤L1L2 ‖dk‖
2 + ‖(Jk − J(xk+1))T F(xk+1)‖ + L2λk‖dk‖. (2.14)

From Lemma 2.2, we have ‖dk‖ ≤ c2‖x̄k − xk‖, which implies that

‖xk+1 − x̄k‖ ≤ ‖xk+1 − xk‖ + ‖xk − x̄k‖ ≤ (1 + c2)‖x̄k − xk‖. (2.15)

Since x̄k ∈ X∗ ∩ N(x∗, b) and δ ∈ [1, 2], together with Assumption 2.1 (b), (2.12), (2.14) and (2.15),
we obtain

c dist(xk+1, X∗) ≤‖J(xk+1)T F(xk+1)‖
≤L1L2c2

2‖x̄k − xk‖
2 + L1L2(1 + c2)‖xk − x̄k‖

2
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+ L1L2
2(1 + c2)2‖x̄k − xk‖

3 + L1L2(1 + c2)2‖x̄k − xk‖
2

+ L1L2
2(1 + c2)3‖x̄k − xk‖

3 + L2c2λk‖x̄k − xk‖

≤L1L2(2 + 3c2 + 2c2
2)‖x̄k − xk‖

2

+ L1L2
2(2 + c2)(1 + c2)2‖x̄k − xk‖

3 + L2c2λk‖x̄k − xk‖.

The proof is completed.
Henceforth, according to the choices of the LM parameter, namely ‖JT

k Fk‖ ≤ 1 and ‖JT
k Fk‖ > 1, we

divide the convergence analysis in two cases.

Case 1: ‖JT
k Fk‖ ≤ 1

Firstly, we consider the convergence rate of the adaptive LM method with the LM paramter
‖JT

k Fk‖ ≤ 1 in this subsection.

Lemma 2.4. Let the sequence {xk} be generate by the adaptive LM method and Assumptions 2.1 hold.
If xk, xk+1 ∈ N(x∗, b/2) and ‖JT

k Fk‖ ≤ 1, then there exists a positive constant c3 such that

dist(xk+1, X∗) ≤ c3dist(xk, X∗)2. (2.16)

Proof. From Lemmas 2.1 and 2.3, we have

c dist(xk+1, X∗) ≤L1L2(2 + 3c2 + 2c2
2)‖x̄k − xk‖

2

+ L1L2
2(2 + c2)(1 + c2)2‖x̄k − xk‖

3 + L2c2λk‖x̄k − xk‖

≤L1L2(2 + 3c2 + 2c2
2)‖x̄k − xk‖

2

+ L1L2
2(2 + c2)(1 + c2)2‖x̄k − xk‖

3 + L2c2cδ1‖x̄k − xk‖
1+δ.

Since δ ∈ [1, 2], then Lemma 2.4 holds with c3 = c−1(L1L2(2+3c2 +2c2
2)+ L2c2cδ1 + L1L2

2(2+c2)(1+

c2)2). The proof is completed.
Lemma 2.4 shows that if xk ∈ N(x∗, b/2) for all k, then {dist(xk, X∗)} converges to zero quadratically.

Next, we show that the latter theory holds if x0 is sufficiently close to x∗. Let

r = min
{

b
2(1 + 2c2)

,
1

2c3

}
. (2.17)

Lemma 2.5. Let the sequence {xk} be generate by the adaptive LM method and Assumptions 2.1 hold.
If x0 ∈ N(x∗, r) with r given by (2.17), then for all k, we have xk ∈ N(x∗, b/2).

Proof. We show the proof by induction. It follows from Lemma 2.2 that

‖x1 − x∗‖ ≤ ‖x0 − x∗‖ + ‖d0‖ ≤ ‖x0 − x∗‖ + ‖x0 − x̄0‖ ≤ (1 + c2)r ≤ b/2.

It indicates that x1 ∈ N(x∗, b/2). Assume for i = 2, · · · , k, xi ∈ N(x∗, b/2). It follows from
Lemma 2.4 that

dist(xi, X∗) ≤ c3dist(xi−1, X∗)2 ≤ · · · ≤ c2i−1
3 ‖x0 − x∗‖2

i
≤ r

(
1
2

)2i−1

,

where the last inequality is derived from ‖x0 − x∗‖ ≤ r and r ≤ 1/2c3. Therefore, we have from
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Lemma 2.2

‖di‖ ≤ c2dist(xi, X∗) ≤ c2r
(
1
2

)2i−1

≤ c2r
(
1
2

)2i−1

, (2.18)

for i = 1, · · · , k. It then follows from (2.17) that

‖xk+1 − x∗‖ ≤‖x1 − x∗‖ +

k∑
i=1

‖di‖ ≤ (1 + c2)r + c2r
k∑

i=1

(
1
2

)2i−1

≤(1 + c2)r + c2r
∞∑

i=1

(
1
2

)i

≤ (1 + 2c2)r ≤
b
2
,

which indicates that xk+1 ∈ N(x∗, b/2). The proof is completed.

Theorem 2.1. Let Assumption 2.1 hold and {xk} be the LM sequence which is generated by the adaptive
LM method with x0 ∈ N(x∗, r), where r is given by (2.17). If ‖JT

k Fk‖ ≤ 1, then the sequence {dist(xk, X∗)}
converges to zero quadratically. Moreover, {xk} converges to a solution of (1.1).

Proof. Lemma 2.4 and 2.5 indicates that the sequence {dist(xk, X∗)} converges to 0 quadratically.
So, we only have to prove the second part.

According to the assumption, we have xk ∈ N(x∗, b/2) for all k. Then we only have to prove that
{xk} converges to some solution x̄ ∈ X∗. In fact, for any p, q ∈ N+ (let p ≥ q, we also obtain the same
result for p < q), from (2.18), we have

‖xp − xq‖ ≤

p−1∑
i=q

‖di‖ ≤

∞∑
i=q

‖di‖ ≤ c2r
∞∑

i=q

c2r
(
1
2

)2i−1

=
4
3

c2r
(
1
2

)2q−1

. (2.19)

The above inequality indicates that the sequence {xk} is a Cauchy sequence, and hence {xk}

converges. The proof is completed.
Theorem 2.1 shows that the sequence {dist(xk, X∗)} converges to zero quadratically and {xk}

converges to the solution set X∗. However, little is known about the behaviour of the sequence {xk}. In
the following theorem, we will see that the sequence {xk} converges to a solution x̄ of (1.1), and that
the rate of convergence is also locally quadratic.

Theorem 2.2. Let Assumption 2.1 hold, {xk} be the LM sequence which is generated by the adaptive
LM method with x0 ∈ N(x∗, r) where r is given by (2.17), and limit point x̂∗ ∈ X∗ ∩ N(x∗, b/2). If
‖JT

k Fk‖ ≤ 1, then the sequence {xk} converges to x̂∗ quadratically.

Proof. In view of Theorem 2.1, we have dist(xk+1, X∗) ≤ 1
2dist(xk, X∗) for all sufficiently large k. By

letting p→ ∞ in (2.19), we deduce from Lemma 2.2 and 2.4 that

‖x̂∗ − xq‖ ≤

∞∑
i=q

‖di‖ ≤ c2

∞∑
i=q

dist(xi, X∗) ≤ c2

∞∑
i=q

(
1
2

)i−q

dist(xq, X∗)

≤2c2dist(xq, X∗) ≤ 2c2c3dist(xq−1, X∗)2 ≤ 2c2c3‖x̂∗ − xq−1‖
2,

where the last inequality follows from the definition of dist(xk, X∗). Hence, the sequence {xk} converges
to x̂∗ quadratically. The proof is completed.
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Case 2: ‖JT
k Fk‖ > 1

Now, we consider the convergence rate of adaptive LM method with the LM paramter ‖JT
k Fk‖ > 1.

Lemma 2.6. Let the sequence {xk} be generate by the adaptive LM method and Assumptions 2.1 hold.
Assume ‖JT

k Fk‖ > 1, if xk, xk+1 ∈ N(x∗, b/2) and dist(xk, X∗) ≤ r < 1, where

r = min

 b
2(1 + c2

1−c4
)
,

c − L2c2

L1L2(2 + 3c2 + 2c2
2) + L1L2

2(2 + c2)(1 + c2)2

 (2.20)

with c > L2c2, then there exists a positive constant c4 ∈ (0, 1) such that

dist(xk+1, X∗) ≤ c4dist(xk, X∗). (2.21)

Proof. From Lemma 2.1, we have λk < 1. Together with Lemma 2.3, we obtain

c dist(xk+1, X∗)
≤L1L2(2 + 3c2 + 2c2

2)‖x̄k − xk‖
2

+ L1L2
2(2 + c2)(1 + c2)2‖x̄k − xk‖

3 + L2c2λk‖x̄k − xk‖

≤
((

L1L2(2 + 3c2 + 2c2
2) + L1L2

2(2 + c2)(1 + c2)2
)

r + L2c2

)
‖x̄k − xk‖,

which indicates that Lemma 2.6 holds with c4 = c−1(L1L2(2+3c2+2c2
2)+L1L2

2(2+c2)(1+c2)2)r+c−1L2c2.
The proof is completed.

Lemma 2.7. Let the sequence {xk} be generate by the adaptive LM method and Assumptions 2.1 hold.
If x0 ∈ N(x∗, r) with r given by (2.20), then for all k, we have xk ∈ N(x∗, b/2) and dist(xk, X∗) ≤ r.

Proof. Since the proof is analogous to the one of Lemma 2.5, we only verify the inductive step, i.e.,
assume Lemma 2.7 holds with i = k and consider the next step.

It follows from Lemma 2.6 that

dist(xk+1, X∗) ≤ c4dist(xk, X∗) ≤ c4r < r (2.22)

and

dist(xk+1, X∗) ≤ c4dist(xk, X∗) ≤ · · · ≤ ck+1
4 dist(x0, X∗) ≤ ck+1

4 r < r. (2.23)

Thus, from Lemma 2.2 and (2.20), we have

‖xk+1 − x∗‖ ≤‖x1 − x∗‖ +

k∑
i=1

‖di‖ ≤ ‖x1 − x∗‖ +

k∑
i=1

c2dist(xi, X∗)

≤(1 + c2)r + c2r
∞∑

i=1

ci
4 ≤ (1 +

c2

1 − c4
)r ≤

b
2
,

which indicates that xk+1 ∈ N(x∗, b/2). The proof is completed.

Theorem 2.3. Let Assumption 2.1 hold and {xk} be the LM sequence which is generated by the adaptive
LM method with x0 ∈ N(x∗, r), where r is given by (2.20). If ‖JT

k Fk‖ > 1, then the sequence {dist(xk, X∗)}
converges to zero linearly. Moreover, the sequence {xk} converges to a solution x̂∗ ∈ X∗ ∩ N(x∗, b/2)
linearly.

Proof. The proof is similar to the proofs of Theorems 2.1 and 2.2.
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3. Global convergence of the adaptive LM method

To establish the global convergence of the adaptive LM method, we employ some line search rules
such as Armijo rule, Goldstein rule and Wolfe rule [15] etc. Consider the merit function

Φ(x) =
1
2
‖F(x)‖2.

At iteration k, the next step is computed by

xk+1 = xk + αkdk,

where dk is a direction from (2.1) and αk is a step size satisfying certain line search conditions. The
Wolfe line search is one of commonly used inexact line search which requires αk > 0 satisfies

‖F(xk + αkdk)‖2 ≤ ‖F(x)‖2 + σ1αkFT
k Jkdk

and
F(xk + αkdk)T J(xk + αkdk)dk ≥ σ2FT

k Jkdk. (3.1)

Here σ1 ≤ σ2 are two constants in (0, 1).

Algorithm 3.1 (The adaptive LM method with Wolfe line search).

Step 1: Given x0 ∈ R
n, δ ∈ [1, 2], η ∈ (0, 1), σ1 ∈ (0, 1/2), σ2 ∈ (σ1, 1), k := 0.

Step 2: If ‖JT
k Fk‖ = 0, stop. Set λk as (1.6); determine dk by computing (2.1).

Step 3: If dk satisfies
‖F(xk + dk)‖ ≤ η‖F(xk)‖, (3.2)

set xk+1 = xk + dk, and go to step 5. Otherwise, go to step 4.

Step 4: Set xk+1 = xk + αkdk, where αk is determined by Wolfe line search.

Step 5: Set k := k + 1; go to Step 2.

Theorem 3.1. Assume F(x) is continuously differentiable. Let {xk} be a sequence generated by
Algorithm 3.1. Then any accumulation point x∗ of {xk} is a stationary point of Φ.

Proof. From [20, Eq (2.10)], the inequality (3.1) implies that

‖F(xk+1)‖2 ≤ ‖Fk‖
2 − σ1σ3

(FT
k Jkdk)2

‖dk‖
2 , (3.3)

where σ3 is some positive constant. Together with Steps 3 of Algorithm 3.1, the sequence {‖ f (xk)‖} is
monotonically decreasing and bounded from below, and thus converges to zero. Hence {xk} converges
to a stationary point x∗ of Φ. The proof is completed.

Theorem 3.2. Under Assumption 2.1, let {xk} be a sequence generated by Algorithm 3.1 and has an
accumulation point x∗. If x∗ is a solution of system of nonlinear Eq (1.1), then the sequence {xk}

converges to x∗ at least linearly.
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Proof. It is sufficient to show that ‖F(xk + dk)‖ ≤ η‖F(xk)‖ holds for all large k.
If ‖JT

k Fk‖ ≤ 1. Since the sequence {xk} converges to a stationary point x∗ which is a solution of
system of nonlinear Eq (1.1), we have that

‖F(xK)‖ ≤
c2η

L3
2c3

(3.4)

and
‖xK − x∗‖ ≤ r,

hold for all sufficiently large K ∈ N, where r is defined by (2.17), and c, c3 and L2 are given in
Section 2.

Let sequence {yk} be generated by the adaptive LM method with unit step size and y0 = xK . Then,
by the result of Theorem 2.1, the sequence dist(yl, X∗) quadratic converges to zero. Hence, we only
have to prove that xK+l = yl for all l ∈ N, i.e., the sequence {yl} satisfies

‖F(yl+1)‖ ≤ η‖F(yl)‖.

Let ȳl+1 ∈ X∗ such that dist(yl+1, X∗) = ‖ȳl+1 − yl+1‖. Then we obtain from Assumption 2.1(b),
Lemma 2.4, (2.6) and (3.4) that

‖F(yl+1)‖ =‖F(ȳl+1) − F(yl+1)‖ ≤ L2dist(yl+1, X∗)

≤L2c3dist(yl, X∗)2 ≤
L2c3

c2 ‖J(yl)T F(yl)‖2

≤
L3

2c3

c2 ‖F(yl)‖2 ≤
L3

2c3‖F(yl)‖
c2 ‖F(yl)‖

≤η‖F(yl)‖

holds for η ∈ (0, 1) and all l. The above inequality indicates that the step size αk = 1 holds for all
large k in Algorithm 3.1. We conclude that (3.2) holds for all k ≥ K. Consequently, by mathematical
induction, Algorithm 3.1 reduces to the adaptive LM method for all k ≥ K. Thus, we have that {xk}

converges to the solution x∗ quadratically.
Similar to the above process, when ‖JT

k Fk‖ > 1, we obtain that {xk} converges to the solution x∗

linearly.
The proof is completed.

4. Numerical examples

In this section, we carry out some numerical experiments to verify the effectiveness of the proposed
adaptive Levenberg-Marquardt method (ALMM). The Levenberg-Marquardt method (LMM) given by
Behling et al. [3] is used for comparison. The first test is a nonlinear least squares problem while the
second are some systems of nonlinear equations.

Example 4.1. Consider the nonlinear least squares problem [3]

min
x∈Rn

Φ(x) =
1
2
‖F(x)‖2, (4.1)
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where F(x) = (x3
1 − x1x2 + 1, x3

1 + x1x2 + 1)T .
Consider X∗ = {(0, ξ), ξ ∈ R} be the non-isolated set of minimizers such that dist(x, X∗) = |x1|. Then

the rank of the Jacobian will be 0 at the origin, 1 at x with x1 = 0 for x2 , 0, and 2 for x1 , 0.
Thus the Jacobian is not always of full rank at the stationary points. The starting point is set to be
x0 = (0.008, 2)T . All methods terminate if ‖JT

k Fk‖ < 10−10. The results are tabulated in Table 1.
As illustrated, ALMM generally converges to the required accuracy with less iterations than LMM.

Besides, distances between xk obtained from ALMM and the solution set X∗ are shorter than those from
LMM.

Table 1. Numerical results for nonlinear least-squares problem.

LMM ALMM
δ Iters dist(xk, X∗) ‖JT

k Fk‖ δ Iters dist(xk, X∗) ‖JT
k Fk‖

10−4 0 8.0000e-03 6.4385e-02 1 0 8.0000e-03 6.4385e-02
2 9.3495e-05 7.4799e-04 1 1.6286e-05 1.3029e-04
5 1.2786e-07 1.0228e-06 2 6.6308e-11 5.3046e-10
8 1.7465e-10 1.3972e-09 3 1.0899e-17 0
10 2.1481e-12 1.7185e-11

0.5 0 8.0000e-03 6.4385e-02 1.5 0 8.0000e-03 6.4385e-02
1 1.9951e-04 1.5963e-03 1 3.1845e-05 2.5477e-04
2 9.6178e-07 7.6941e-06 2 7.7713e-10 6.2174e-09
3 3.3268e-10 2.6613e-09 3 7.4217e-17 8.8818e-16
4 2.1187e-15 1.6875e-14

1 0 8.0000e-03 6.4385e-02 2 0 8.0000e-03 6.4385e-02
1 1.6286e-05 1.3029e-04 1 4.5185e-05 3.6159e-04
2 6.6308e-11 5.3046e-10 2 1.5793e-09 1.2639e-08
3 1.0899e-17 0 3 5.0847e-18 0

Example 4.2. Consider systems of nonlinear equations adapted from the nonsingular problems given
in [12, 16]

F̂(x) = F(x) − J(x∗)A(AT A)−1AT (x − x∗) = 0,

where F(x) is the standard nonsingular test function, x∗ is its root, and A ∈ Rn×k has full column rank
with 1 ≤ k ≤ n. It is easy to check that F̂(x∗) = 0 and the rank of Ĵ(x∗) = J(x∗)(I − A(AT A)−1AT ) is
n − k. A disadvantage of these problems is that F̂(x) may have roots that are not roots of F(x). We
present two sets of singular problems with the rank of Ĵ(x∗) being n − 1 and n − 2, respectively. The
corresponding matrices of A and AT are given by

A ∈ Rn, AT = (1, 1, · · · , 1)

and

A ∈ Rn×2, AT =

(
1 1 1 1 · · · 1
1 −1 1 −1 · · · ±1

)
.

Note that the size of the original problem which has n + 2 equations in n unknowns is reduced by
eliminating the (n − 1)st and the nth equations.
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Several choices of the LM parameter are considered in the two LM methods. In accordance with
the range of δ defined in LMM and ALMM, we use δ = 10−4, 0.5 and 1 associated with λk = ‖JT

k Fk‖
δ

for LMM and employ δ = 1, 1.5 and 2 for ALMM. All algorithms are terminated if ‖JT
k Fk‖ < 10−6

or the number of the iterations exceeds 100(n + 1). Numerical results for the rank n − 1 case and the
rank n − 2 case are listed in Table 2 and in Table 3, respectively. The values 1, 10 and 100 in the
third column associate with starting points with x0, 10x0, and 100x0, where x0 is the option suggested
in [12]. The symbol “–” is used if the corresponding method fails to reach the required accuracy within
the prescribed maximum iterations. To ensure the numerical stability, we use the MATLAB function
pcg (the preconditioned conjugate gradient method) to solve the inner linear system (1.2).

Some remarks are in order. In all tests, ALMM converges to the required accuracy within the
maximum iterations while LMM fails for some cases; see, for instance, Powell badly scaled problem in
Table 2 and Discrete integral equation problem in Table 3. Furthermore, the number of iteration step
required by ALMM is less than that by LMM. For this reason, we conclude that ALMM is a competitive
variant of the Levenberg-Marquardt method.

Table 2. Numerical results of the first singular test with rank(F′(x∗)) = n − 1.
LMM ALMM

Function n x0 δ = 10−4 δ = 0.5 δ = 1 δ = 1 δ = 1.5 δ = 2
Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times

Rosenbrock 2 1 – 145/1.0994e-04/0.05 31/5.2121e-05/0.01 21/6.3319e-05/0.02 13/8.1986e-05/0.01 11/1.6249e-04/0.01
10 – 165/1.0996e-04/0.05 64/5.9032e-05/0.02 17/3.5338e-04/0.01 15/1.3638e-04/0.00 14/1.8112e-04/0.00
100 – 215/1.1005e-04/0.06 291/3.1076e-04/0.07 24/4.0893e-05/0.01 19/1.4436e-04/0.01 17/1.6579e-04/0.01

Powell badly scaled 2 1 – – 46/2.1150e-05/0.02 16/1.6882e-05/0.01 17/2.0346e-06/0.01 22/3.0992e-08/0.01
10 – – 43/5.9893e-05/0.01 3/4.3848e-08/0.00 3/4.3848e-08/0.00 3/4.3848e-08/0.00
100 – – – 3/4.1815e-08/0.00 3/4.1815e-08/0.00 3/4.1814e-08/0.00

Wood 4 1 – 68/8.2258e-05/0.03 26/2.5450e-04/0.01 16/1.0639e-04/0.01 22/2.6387e-07/0.01 19/3.4455e-07/0.01
10 – 73/8.4198e-05/0.03 79/1.1002e-04/0.02 19/9.3086e-05/0.01 25/2.0022e-07/0.01 22/3.7076e-07/0.01
100 – 94/8.6162e-05/0.03 – 23/1.5300e-04/0.01 27/4.8468e-07/0.02 25/4.7057e-07/0.01

Helical valley 3 1 395/8.2335e-05/0.18 36/1.7042e-05/0.02 22/1.6542e-05/0.01 14/2.2764e-07/0.01 11/2.2832e-08/0.00 10/2.9028e-11/0.00
10 396/8.2458e-05/0.15 39/2.3758e-05/0.02 37/1.7814e-05/0.01 13/3.8763e-09/0.00 10/1.2850e-08/0.00 9/2.3258e-09/0.00
100 386/8.3458e-05/0.25 40/1.0493e-05/0.01 138/6.9960e-09/0.02 13/1.2005e-09/0.01 9/3.8526e-06/0.00 9/7.9799e-10/0.00

Brown almost-linear 10 1 323/1.7755e-04/0.09 11/1.4159e-04/0.00 9/1.3099e-04/0.00 7/1.3034e-04/0.00 7/9.2295e-05/0.00 7/8.2906e-05/0.00
10 327/1.7624e-04/0.06 25/1.3093e-04/0.01 35/1.0117e-04/0.01 22/1.2089e-04/0.00 22/9.7275e-05/0.01 22/9.1952e-05/0.01
100 349/1.7616e-04/0.05 47/1.2040e-04/0.01 200/1.1852e-04/0.03 44/9.6552e-05/0.01 44/7.6970e-05/0.01 44/7.2340e-05/0.01

Discrete boundary value 10 1 59/1.7216e-04/0.03 6/1.6987e-04/0.01 3/1.6852e-04/0.00 3/1.6852e-04/0.00 4/1.3377e-05/0.00 2/1.2224e-04/0.00
10 – 306/1.7513e-03/0.14 21/3.2163e-04/0.02 19/2.3639e-04/0.01 11/1.1817e-05/0.01 9/5.4119e-06/0.01
100 – 77/7.0660e-05/0.03 62/8.1935e-07/0.02 20/4.6172e-05/0.01 14/5.9162e-09/0.01 11/6.4234e-06/0.01

Discrete integral equation 30 1 – 31/9.2503e-04/0.05 7/1.1033e-04/0.02 7/1.1033e-04/0.02 6/1.1846e-05/0.02 5/1.3736e-05/0.01
10 – 109/9.2782e-04/0.15 24/9.2831e-05/0.04 22/6.1841e-05/0.05 14/8.2706e-06/0.03 11/1.2210e-05/0.02
100 49/1.5445e-05/0.07 22/4.7434e-07/0.03 97/1.1979e-06/0.12 12/1.2250e-08/0.03 10/2.3696e-06/0.02 10/3.0014e-09/0.02

Variably dimensioned 10 1 30/4.3266e-05/0.02 13/3.0661e-05/0.00 16/1.0323e-05/0.00 13/2.2903e-05/0.01 13/2.2553e-05/0.01 13/2.2472e-05/0.01
10 44/1.9588e-04/0.02 15/1.2677e-04/0.01 35/2.4191e-05/0.01 15/1.1615e-05/0.01 15/1.1407e-05/0.00 15/1.1345e-05/0.01
100 – 29/2.0406e-04/0.02 249/1.3347e-05/0.05 18/3.8117e-05/0.01 18/3.7443e-05/0.01 18/3.7241e-05/0.01

Broyden tridiagonal 30 1 1676/4.0928e-04/1.49 25/3.5494e-04/0.03 12/1.9277e-05/0.02 10/2.9073e-05/0.01 9/1.6273e-05/0.02 9/1.1863e-05/0.02
10 1681/4.0933e-04/1.48 31/3.7621e-04/0.03 66/3.0745e-05/0.04 15/2.8837e-05/0.02 14/1.4125e-05/0.01 14/9.5072e-06/0.02
100 1685/4.0919e-04/1.50 35/3.6087e-04/0.03 564/2.0700e-05/0.15 18/3.8010e-05/0.03 17/1.7068e-05/0.01 17/1.0588e-05/0.02

Broyden banded 30 1 468/2.1508e-04/0.37 17/1.0301e-04/0.02 15/3.3592e-06/0.02 13/2.6804e-06/0.03 12/1.7694e-06/0.02 12/1.3777e-06/0.02
10 474/2.1511e-04/0.37 23/1.1049e-04/0.02 71/6.8476e-06/0.04 19/3.0285e-06/0.04 18/2.0737e-06/0.02 18/1.6308e-06/0.02
100 480/2.1493e-04/0.38 29/9.8317e-05/0.02 571/5.1853e-06/0.19 24/5.9445e-06/0.03 23/4.5273e-06/0.02 23/3.4937e-06/0.02

5. Conclusions

We present a Levenberg-Marquardt method with an adaptive LM parameter for solving systems of
nonlinear equations. We have analyzed its local and global convergence under a new error bound
condition of function, which can be derived from the local error bound condition, and Lipschitz
continuity of the Jacobian. These properties hold in many applied problems, as they are satisfied by
any real analytic function. The effectiveness of the adaptive Levenberg-Marquardt method is validated
by the numerical examples.

AIMS Mathematics Volume 7, Issue 1, 1241–1256.



1254

Table 3. Numerical results of the second singular test with rank(F′(x∗)) = n − 2.
LMM ALMM

Function n x0 δ = 10−4 δ = 0.5 δ = 1 δ = 1 δ = 1.5 δ = 2
Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times Iters/Fun./Times

Rosenbroc 2 1 191/1.3540e-04/0.04 12/7.5794e-05/0.00 12/1.2508e-04/0.00 10/6.1241e-05/0.03 10/5.2300e-05/0.00 10/4.9886e-05/0.01
10 194/1.3508e-04/0.03 14/1.2086e-04/0.00 27/3.6441e-05/0.01 12/1.3200e-04/0.01 12/1.1282e-04/0.00 12/1.0763e-04/0.00
100 197/1.3524e-04/0.03 18/6.8028e-05/0.00 139/6.3285e-05/0.02 16/4.4471e-05/0.01 16/3.7792e-05/0.00 16/3.5998e-05/0.01

Powell badly scaled 2 1 – – 24/2.1152e-03/0.01 15/1.8965e-03/0.01 9/2.0698e-03/0.00 9/1.8361e-03/0.01
10 2/3.3652e-05/0.00 2/3.3652e-05/0.00 2/3.3652e-05/0.00 2/3.3652e-05/0.00 2/3.3648e-05/0.00 2/3.3541e-05/0.00
100 2/9.9781e-03/0.00 2/9.9781e-03/0.00 2/9.9781e-03/0.00 4/8.8941e-03/0.00 3/6.0819e-05/0.00 3/4.0610e-05/0.00

Wood 4 1 244/1.5339e-04/0.10 15/6.9391e-05/0.01 20/2.7220e-06/0.01 13/6.7353e-06/0.01 13/4.0105e-06/0.01 13/3.7030e-06/0.02
10 247/1.5336e-04/0.09 18/6.7864e-05/0.01 62/3.7183e-06/0.02 16/6.2995e-06/0.02 16/3.7303e-06/0.01 16/3.4399e-06/0.02
100 250/1.5354e-04/0.08 21/7.8180e-05/0.01 448/6.9661e-06/0.07 19/9.5795e-06/0.01 19/5.9123e-06/0.01 19/5.5402e-06/0.02

Helical valley 3 1 – 74/9.6343e-05/0.03 26/7.3446e-05/0.01 16/6.9973e-05/0.01 19/1.1355e-06/0.01 16/5.2337e-07/0.01
10 – 80/9.8653e-05/0.03 40/1.7523e-04/0.01 15/1.3215e-05/0.01 11/3.3338e-09/0.01 10/2.0070e-06/0.01
100 – 97/9.6417e-05/0.03 166/1.3437e-04/0.03 11/3.5474e-07/0.01 10/1.0864e-07/0.01 10/1.1739e-07/0.01

Brown almost-linear 10 1 323/1.7755e-04/0.05 11/1.4159e-04/0.00 9/1.3099e-04/0.00 7/1.3034e-04/0.01 7/9.2295e-05/0.00 7/8.2906e-05/0.01
10 327/1.7624e-04/0.05 25/1.3093e-04/0.01 35/1.0117e-04/0.01 22/1.2089e-04/0.01 22/9.7275e-05/0.01 22/9.1952e-05/0.02
100 349/1.7616e-04/0.05 47/1.2040e-04/0.01 200/1.1852e-04/0.03 44/9.6552e-05/0.01 44/7.6970e-05/0.02 44/7.2340e-05/0.02

Discrete boundary value 10 1 52/1.7225e-04/0.02 6/1.7033e-04/0.01 3/1.6895e-04/0.00 3/1.6895e-04/0.00 4/1.3268e-05/0.01 2/1.2316e-04/0.00
10 – 307/1.7442e-03/0.15 21/2.9159e-04/0.02 18/3.3749e-04/0.03 11/1.0832e-05/0.02 9/5.5811e-06/0.02
100 – 96/1.7953e-04/0.04 63/5.2469e-06/0.02 21/1.0307e-04/0.03 14/4.2442e-06/0.01 12/1.0017e-07/0.02

Discrete integral equation 30 1 – 31/9.2504e-04/0.05 7/1.1033e-04/0.02 7/1.1033e-04/0.03 6/1.1846e-05/0.02 5/1.3736e-05/0.02
10 – 109/9.2784e-04/0.16 24/9.2835e-05/0.04 22/6.1844e-05/0.10 14/8.2708e-06/0.04 11/1.2211e-05/0.04
100 – 98/4.5114e-03/0.15 112/1.5727e-03/0.13 22/2.3434e-03/0.06 19/1.6518e-05/0.06 14/2.9746e-05/0.05

Variably dimensioned 10 1 30/4.2924e-05/0.02 13/3.0590e-05/0.01 16/1.0322e-05/0.01 13/2.2897e-05/0.01 13/2.2549e-05/0.01 13/2.2469e-05/0.01
10 32/4.1881e-05/0.01 15/2.2471e-05/0.01 35/1.6634e-05/0.01 15/1.1612e-05/0.01 15/1.1406e-05/0.02 15/1.1344e-05/0.02
100 36/4.1593e-05/0.01 22/1.1535e-05/0.01 246/1.7497e-05/0.04 18/3.8108e-05/0.01 18/3.7440e-05/0.01 18/3.7239e-05/0.02

Broyden tridiagonal 30 1 1676/4.0925e-04/1.45 25/3.5485e-04/0.03 12/1.9268e-05/0.02 10/2.9527e-05/0.02 9/1.6388e-05/0.03 9/1.1923e-05/0.03
10 1681/4.0930e-04/1.48 31/3.7612e-04/0.03 66/3.0634e-05/0.04 15/2.8724e-05/0.03 14/1.4120e-05/0.03 14/9.5108e-06/0.04
100 1685/4.0916e-04/1.49 35/3.6079e-04/0.03 564/2.0621e-05/0.15 18/3.7836e-05/0.02 17/1.7045e-05/0.03 17/1.0580e-05/0.03

Broyden banded 30 1 468/2.1499e-04/0.40 17/1.0294e-04/0.03 15/3.3561e-06/0.02 13/2.6796e-06/0.02 12/1.7692e-06/0.04 12/1.3776e-06/0.04
10 474/2.1502e-04/0.38 23/1.1041e-04/0.02 71/6.8405e-06/0.04 19/3.0266e-06/0.03 18/2.0731e-06/0.03 18/1.6305e-06/0.04
100 480/2.1484e-04/0.39 29/9.8244e-05/0.02 571/5.1799e-06/0.22 24/5.9415e-06/0.03 23/4.5260e-06/0.04 23/3.4930e-06/0.04
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