
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(1): 1224–1240.
DOI: 10.3934/math.2022072
Received: 03 August 2021
Accepted: 30 September 2021
Published: 21 October 2021

Research article

Remarks on topological spaces on Zn which are related to the Khalimsky
n-dimensional space

Sang-Eon Han1, Saeid Jafari2, Jeong Min Kang3 and Sik Lee4,*

1 Department of Mathematics Education, Institute of Pure and Applied Mathematics, Jeonbuk
National University, Jeonju-City Jeonbuk 54896, Republic of Korea

2 College of Vestsjaelland South, Herrestraede 11 and Mathematical and Physical Science
Foundation, 4200 Slagelse, Denmark

3 Mathematics, School of Liberal, Arts Education, University of Seoul, Seoul 02504, Republic of
Korea

4 Department of Mathematics Education, Chonnam National University, Gwangju-City 61186,
Republic of Korea

* Correspondence: Email: slee@jnu.ac.kr; Tel: 82625302478.

Abstract: The present paper intensively studies various properties of certain topologies on the set of
integers Z (resp. Zn) which are either homeomorphic or not homeomorphic to the typical Khalimsky
line topology (resp. n-dimensional Khalimsky topology). This finding plays a crucial role in addressing
some problems which remain open in the field of digital topology.

Keywords: Khalimsky topology; T 1
2
-separation axiom; Alexandroff topology; quasi-discrete;

digital topology
Mathematics Subject Classification: 54A05, 54J05, 54F05, 54C08, 54F65, 68U05

1. Introduction

A recent paper [8] developed infinitely many types of topological structures on Zn which need not
be homeomorphic to the n-dimensional Khalimsky topological space. In this paper, since we will
often use the term “Khalimsky”, hereafter, we are willing to use the notation “K-” for brevity instead
of the “Khalimsky” if there is no danger of ambiguity. Besides, we also take the notations N, Z0, Z1,
and Zn to indicate the sets of natural numbers, even integers, odd integers, and the n-fold of Cartesian
product of the set of integers Z, respectively. In addition, the notation “ :=” will be used to introduce a
new term. As usual we denote by X] the cardinal number of the given set X.
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After formulating infinitely many types of subbases on Z, the paper [8] proposed various kinds of
topologies generated by the given subbases. Furthermore, it proved that many of the obtained
topologies are not homeomorphic to the K-topological line topology (or 1-dimensional K-topology).
Motivated by this finding, we can address some issues which remain open in the fields of digital
topology and digital geometry. Meanwhile, the paper [8] contains some misprinted parts which
should be improved (see Remark 5.6). Hence the present paper makes them fixed and widely extends
various properties of the obtained results in [8] from the viewpoint of digital topology and further, it
investigates some properties of (Z,T−k) or (Zn, (Tk)n). Owing to this improvement, for k ∈ Z, we can
in turn confirm some utilities of the topological spaces (Z,Tk), (Z2, (Tk × Tk)), (Zn, (Tk)n), and so forth
(see Sections 3–6 in the present paper) where Tk := TS k is the topology generated by S k (see (2.1)) as
a subbase. For each k ∈ Z, given (Z,Tk) (for details, see Section 2 in the present paper), in relation to
the above work, we now focus on the following issues.
(•1) Characterization of the closures of singletons of (Z,Tk) and (Z,T−k).
(•2) Investigation of the numbers of components of (Z,Tk) and (Z,T−k).
(•3) Determination of the number k leading to a homeomorphism between (Z,Tk) and (Z,T−k).
(•4) Finding a necessary and sufficient condition supporting connectedness of (Z,Tk).

Indeed, the present paper aims at investigating various properties of (Zn, (Tk)n), n ∈ N, k ∈ Z \ {0}.
Besides, the paper deals with some topics such as connectedness, homeomorphisms of Alexandroff

(topological) structures [1, 2] and so on. In particular, this approach plays an important role in the
fields of fixed point theory, digital topological rough set theory, digital geometry, and so forth [9, 10].
Thus, the study of the recently-established topologies on Zn in [8] which are different from the well-
known topologies on Zn can activate some studies of pure and applied sciences including computer
science.

The rest of the paper is organized as follows: Section 2 refers to some notions relating to various
structures of Alexandroff spaces. Section 3 investigates certain structures of the closures of singletons
of (Z,Tk), k ∈ Z. Section 4 proves non-connectedness of the topological spaces (Z,Tk), k ∈ Z \ {−1, 1}.
We say that a topological space X satisfies the separation axiom T 1

2
[3, 4, 14] if every singleton of X

is either an open or a closed set. Owing to the topological structure of Tk, k , 0, satisfying the T 1
2
-

separation axiom and the closures of singletons of Z, we can study various structures of (Z,Tk) and
(Z2,Tk × Tk) more efficiently. Finally, it proves that for k ∈ Z \ {0} the topological space (Z,Tk) has
k components. Section 5 proves that (Z,Ti) is not homeomorphic to (Z,T j) if i , j, i, j ∈ N ∪ {0}.
Furthermore, (Z,Tk) is homeomorphic to (Z,T−k) if k ∈ N. Section 6 concludes the paper and refers to
further works.

2. Preliminaries

In this section, we refer to several concepts which are used in this paper. We say that a topological
space (X,T ) is an Alexandroff (topological) space [1, 2] if every point x ∈ X has the smallest (or
minimal) open neighborhood in (X,T ). It turns out that the n-dimensional Khalimsky topological
space is an Alexandroff space [10–13]. For details, let us now recall basic notions related to the K-
topological structure on Zn. The Khalimsky line topology on Z, denoted by (Z, κ), is induced by the set
{[2n − 1, 2n + 1]Z | n ∈ Z} as a subbase [11], where for a, b ∈ Z, [a, b]Z := {x ∈ Z | a ≤ x ≤ b}. It turns
out that (Z, κ) places between the semi-T 1

2
and T1-separation axiom [3]. The product topology on Zn

AIMS Mathematics Volume 7, Issue 1, 1224–1240.



1226

induced by (Z, κ) is called the Khalimsky product topology on Zn (or the n-dimensional K-topological
space or the Khalimsky nD space), denoted by (Zn, κn) and further, various properties of (Zn, κn) have
been investigated [3, 10–13].

As usual, we denote the cardinality of an (infinite) denumerable set with ℵ0. Besides, we will often
use the following notations in this paper: [m,+∞)Z := {x ∈ Z |m ≤ x} and (−∞, n]Z := {x ∈ Z | x ≤ n}.
Given a universal set U, for a subset A ⊂ U, as usual we use the notation Ac to indicate the complement
of A in U. A topology T is called quasi-discrete [15] (or clopen or pseudo-discrete [16]) if every open
set in T is closed. In view of the K-topological structure of (Zn, κn), it is clear that any infinite subset
of (Zn, κn) is not compact in (Zn, κn) and due to the connectedness of (Z, κ) [12], (Zn, κn) is clearly
connected. Based on this approach, a map h : X → Y is called a K-homeomorphism if h is a K-
continuous bijection and further, h−1 : Y → X is K-continuous, where for two K-topological spaces
X := (X, κn1

X ) and Y := (Y, κn2
Y ), we say that a map f : X → Y is K-continuous if for every point x ∈ X,

f (S NK(x)) ⊂ S NK( f (x)), and S NK(x) (resp. S NK( f (x)) means the smallest open set of x (resp. f (x))
in X (resp. Y).

In the paper [8], many types of subbases, say S k, k ∈ Z (see (2.1) in Section 2 of the present
paper), were introduced to establish various types of topologies on Z. Then, it intensively explored
some topological features of Tk, k ∈ Z, with respect to the separation axioms and an Alexandroff space
structure. In view of each element [2n− 1, 2n + 1]Z of the subbase of the K-line topology, the topology
on Z generated by the set {[2n, 2n + 2]Z | n ∈ Z} as a subbase is indeed homeomorphic to (Z, κ). Thus,
in digital topology it is natural to consider other types of elements which are not consecutive, such as
for a given number k ∈ Z, {{2n, 2n + 1, 2n + 2k + 1} | n ∈ Z}, {{2n, 2n + 1, 2n + 2k} | n ∈ Z} and so forth.
Indeed, this establishment facilitates various studies in digital topology and computer science related
to writing parallel algorithms on subsets of Zn.

Let us now recall various properties of the topologies generated by certain subbases S k, k ∈ Z [8].
For details, given a number k ∈ Z, assume the set

S k := {S k,n | S k,n := {2n, 2n + 1, 2n + 2k + 1}, n ∈ Z}. (2.1)

Consider a topology on Z generated by S k as a subbase, denoted by Tk := TS k . Then, it turns out that
(Z,Tk) is an Alexandroff space [8], k ∈ Z. Hereinafter, with (Z,Tk), given a point x ∈ Z, we denote by

S Nk(x) the smallest open neighborhood of x. (2.2)

For instance, consider the topology T−1 := TS −1 generated by the set S −1 = {{2n− 1, 2n, 2n + 1} | n ∈ Z}
as a subbase [8]. Then, for any n ∈ Z, we respectively have the smallest open neighborhood of 2n and
2n + 1 in (Z,T−1) denoted by

S N−1(2n) = [2n − 1, 2n + 1]Z and S N−1(2n + 1) = {2n + 1}, (2.3)

from which T−1 is proved to be an Alexandroff topology.
Next, consider the topology T0 := TS 0 generated by the set S 0 = {{2n, 2n+1} | n ∈ Z} as a subbase [8].

Then, for any n ∈ Z we respectively obtain the smallest open neighborhood of 2n and 2n + 1 in (Z,T0)
denoted by

S N0(2n) = S N0(2n + 1) = {2n, 2n + 1}, (2.4)

which implies that T0 is also an Alexandroff topology.
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Finally, assume the topology T1 := TS 1 generated by the set S 1 = {{2n, 2n + 1, 2n + 3} | n ∈ Z} as a
subbase [8]. Then, for any n ∈ Z we respectively have the smallest open neighborhood of 2n and 2n+1
in (Z,T1) denoted by

S N1(2n) = {2n, 2n + 1, 2n + 3} and S N1(2n + 1) = {2n + 1}, (2.5)

which means that T1 is also an Alexandroff topology.
Based on the structures of (2.3)–(2.5), for distinct numbers k1, k2 ∈ Z, we obtain the following [8]:
(1) S k1 ∩ S k2 = ∅.
(2) BS k1

, BS k2
, where BS ki

means the base generated by the subbase S ki , i ∈ {1, 2}.
(3) (Z,T0) is not a Kolmogorov space.
(4) (Z,Tk) is a T 1

2
-space, i.e., Tk satisfies the separation axiom T 1

2
, k ∈ Z \ {0}.

3. Characterization of the closures of singletons in (Z,Tk), k ∈ Z

In this section, we intensively characterize the topological spaces (Z,Tk), k ∈ Z. One important thing
is that there are infinitely many types of topologies on Z generated by the given subbases S k in (2.1)
according to the number k ∈ Z. Furthermore, they are related to a quasi-discrete, a K-topological, an
Alexandroff topological structure and so forth. It turns out that (Z,T0) is a quasi-discrete (not discrete)
topological space and further, (Z,T0) is not connected [8]. Meanwhile, (Z,T−1) is the K-topological
line (see Theorems 1 and 2 of [8]).

Furthermore, for i , j, i, j ∈ Z, we find that Ti , T j [8] and further, in the case i , j, i, j ∈ N, it
turns out that Ti is not homeomorphic to T j either (see Theorem 2(4) of [8] and Corollaries 4.4 and 4.8
and also Remark 5.6 in the present paper).

With (Z,Tk), k ∈ Z, since the closure of a singleton plays a significant role in studying (Z,Tk), k ∈ Z,
let us now intensively investigate certain structures of the closures of singletons of Z. For our purposes,
in (Z,Tk), k ∈ Z, for a subset A ⊂ Z we denote by Clk(A) the closure of A.

Theorem 3.1. With (Z,Tk), k ∈ N ∪ {0},Cl0({2n + 1}) = {2n, 2n + 1} = Cl0({2n}), and

Clk({2n + 1}) = {2n − 2k, 2n, 2n + 1}, Clk({2n}) = {2n} if k ∈ N.


Proof: Before starting the proof, we had better remind that for any k ∈ N and any even x ∈ Z,

Clk(x) = {x}. Therefore, in the proof we can consider only odd integers. According to the structure of
(Z,Tk), k ∈ Z, we have the following cases.

(Case 1) In the case of k = 0, owing to the quasi-discrete structure of (Z,T0) with S N0(2n) =

{2n, 2n + 1} = S N0(2n + 1) (see (2.4)) [8], the proof is completed.
(Case 2) In the case of k ∈ N, according to the number k we have the following:
(Case 2-1) In the case of k = 1, based on (Z,T1), for each 2n + 1, to find the closure of the singleton

{2n + 1}, we look for the largest open set that does not contain the element 2n + 1. In fact, we find that
it is equal to Z \ {2n − 2, 2n, 2n + 1}. To be specific, the set (see Figure 1(1))⋃

m∈2Z,m≤2n−4

{m,m + 1,m + 3} ∪ [2n + 2,+∞)Z
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is the maximal open set excluding the set {2n − 2, 2n, 2n + 1}. Thus we obtain

Cl1({2n + 1}) = {2n − 2, 2n, 2n + 1}.

(Case 2-2) In the case of k = 2, based on (Z,T2), we obviously have that the set (see Figure 1(2))⋃
m∈2Z,m≤2n−6

{m,m + 1,m + 5} ∪ {2n − 2, 2n − 1, 2n + 3} ∪ [2n + 2,+∞)Z

is the maximal open set excluding the set {2n − 4, 2n, 2n + 1}. Thus we have

Cl2({2n + 1}) = {2n − 4, 2n, 2n + 1}.

(Case 2-3) In the case of k = 3, based on (Z,T3), it is clear that the set (see Figure 1(3))
⋃

m∈2Z,m≤2n−8

{m,m + 1,m + 7} ∪ {2n − 4, 2n − 3, 2n + 3}∪

{2n − 2, 2n − 1, 2n + 5} ∪ [2n + 2,+∞)Z


is the maximal open set excluding the set {2n − 6, 2n, 2n + 1}. Thus we have

Cl3({2n + 1}) = {2n − 6, 2n, 2n + 1}.

Using a method similar to this approach, in general, we obtain the following:
(Case l) In the case of k = l ≥ 4, for each 2n + 1 ∈ Z

⋃
m∈2Z,m≤2n−2l−2

{m,m + 1,m + 2l + 1}

∪ {2n − 2l + 2, 2n − 2l + 3, 2n + 3} ∪ · · ·
∪ {2n − 2, 2n − 1, 2n + 2l − 1} ∪ [2n + 2,+∞)Z.

 (3.1)

is the maximal open set excluding the set {2n − 2l, 2n, 2n + 1}. Finally, we obtain

Cll({2n + 1}) = {2n − 2l, 2n, 2n + 1}.

Thus, it is clear that the complement of {2n − 2k, 2n, 2n + 1} in (Z,Tk) is the largest open set that does
not contain the element 2n + 1.

Next, since the singleton {2n} is a closed set, it is clear that Clk({2n}) = {2n}. �

Example 3.1. (1) As an example guaranteeing (Case 2-1), we have Cl1({3}) = {0, 2, 3} (see Figure 1(1))
because ⋃

m∈2Z,m≤−2

{m,m + 1,m + 3} ∪ [4,+∞)Z

is the maximal open set excluding the set {0, 2, 3}.
(2) To support the proof of (Case 2-2), we have Cl2({3}) = {−2, 2, 3} (see Figure 1(2)) because⋃

m∈2Z,m≤−4

{m,m + 1,m + 5} ∪ {0, 1, 5} ∪ [4,+∞)Z
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is the maximal open set excluding the set {−2, 2, 3}.
(3) To guarantee (Case 2-3), we have Cl3({7}) = {0, 6, 7} because⋃

m∈2Z,m≤−2

{m,m + 1,m + 7} ∪ {2, 3, 9} ∪ {4, 5, 11} ∪ [8,+∞)Z

is the maximal open set excluding the set {0, 6, 7}.

So far, we have studied some structures of singletons of the topological space (Z,Tk). Let us
examine certain structure of closures of the singletons in (Z,T−k).

Theorem 3.2. With (Z,T−k), k ∈ N \ {1}, we obtain

Cl−k({2n + 1}) = {2n, 2n + 1, 2n + 2k}, Cl−k({2n}) = {2n}.

Proof: Using a method used in the proof of Theorem 3.1 (see (3.1)), for each 2n + 1 ∈ Z, we obtain

Cl−k({2n + 1}) = {2n, 2n + 1, 2n + 2k}

because the complement of {2n, 2n + 1, 2n + 2k} in Z is the maximal open set in (Z,T−k) excluding the
set {2n, 2n + 1, 2n + 2k}.

Next, since the singleton {2n} is a closed set in (Z,T−k), it is clear that Cl−k({2n}) = {2n}. �
To support the proof of Theorem 3.2, we can consider the following example. In (Z,T−2), we obtain

Cl−2({3}) = {2, 3, 6} (see Figure 1(4)).

0
 1
 2
 3
-1
 4
 5
 6
 7
-2
-4
 -3


0
 1
 2
 3
-1
 4
 5
 6
 7
 8
-2
-4
 -3
-5
-6


(1)


(2)


0
 1
 2
 3
-1
 4
 5
 6
 7
 8
 9
 10
 11
-2


(3)


-4
 -3
-5
-6


0
 1
 2
 3
-1
 4
 5
 6
 7
 8
 9
 10
 11
-2


(4)


-4
 -3
-5
-6


Figure 1. Configuration of the closure of the singleton {2n + 1} in (Z,Tk), k ∈ {1, 2, 3}. For
details, in (1) we obtain Cl1({3}) = {0, 2, 3}. In (2) we obtain Cl2({3}) = {−2, 2, 3}. In (3) we
obtain Cl3({7}) = {0, 6, 7}. In (4), in (Z,T−2), Cl−2({3}) = {2, 3, 6}.
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Besides, in (Z,T−3), we obtain Cl−3({3}) = {2, 3, 8} (see Figure 2)

0 1 2 3-1 4 8-2 13 1514-3

Figure 2. In (Z,T−3), configuration of Cl−3({3}).

It is obvious that (Z,T0) is not a Kolmogorov space. Let us now examine the other cases.

Remark 3.3. For each k ∈ Z\{0}, even though (Z,Tk) is a Kolmogorov space, it is not a Fréchet space,
i.e., it does not satisfy the separation axiom T1.

Proof: By Theorems 3.1 and 3.2, we observe that not every singleton is closed in (Z,Tk), which
implies that (Z,Tk) is not a T1-space. To be specific, for any two points 2n, 2n + 1 ∈ (Z,Tk), k ∈ Z \ {0},
we have 2n + 1 ∈ S Nk(2n) and 2n < S Nk(2n + 1) = {2n + 1}. �

4. The numbers of components of (Z,Tk), k ∈ Z

Let us now calculate the numbers of components of (Z,Tk), k ∈ Z. This study is essential for
characterizing topological structures of (Z,Tk), k ∈ Z.

Lemma 4.1. (Z,Tk), k ∈ Z is locally connected.

Proof: For each k ∈ Z, since (Z,Tk) is an Alexandroff topological space (see Lemma 1 of [8]), for
each point x ∈ Z, the minimal open neighborhood of x in (Z,Tk) is connected. �

Hereinafter, for our purposes, given two numbers i,m ∈ N, we use the notation
mZ + i := {mn + i | n ∈ Z}.

Proposition 4.2. With the topological space (Z,Tk) and k ∈ N, for i ∈ [1, k]Z, let

Ci :=
⋃

n∈2kZ+2(i−1)

{n, n + 1, n + 2k + 1}. (4.1)

Then the set {Ci | i ∈ [1, k]Z} is a partition of Z such that Ci is both an open and a closed set in (Z,Tk),
i ∈ [1, k]Z, and C]

i = ℵ0.

Proof: Depending on the number k of (Z,Tk), we have the following:
(Case 1) In the case of k = 1, we obtain (see Figure 3(1))

C1 :=
⋃
n∈2Z

{n, n + 1, n + 3} = Z. (4.2)

AIMS Mathematics Volume 7, Issue 1, 1224–1240.
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(Case 2) In the case of k = 2, we obtain (see Figure 3(2-1) and (2-2))
(1) C1 :=

⋃
n∈4Z

{n, n + 1, n + 5}, and

(2) C2 :=
⋃

n∈4Z+2

{n, n + 1, n + 5},

 (4.3)

such that for i ∈ [1, 2]Z
C1 ∪C2 = Z,C1 ∩C2 = ∅, and Ci,Cc

i ∈ T2,

where Cc
i means the complement of the given set Ci in Z.

(Case 3) In the case of k = 3, we have (see Figure 3(3-1)–(3-3))

(1) C1 :=
⋃
n∈6Z

{n, n + 1, n + 7},

(2) C2 :=
⋃

n∈6Z+2

{n, n + 1, n + 7}, and

(3) C3 :=
⋃

n∈6Z+4

{n, n + 1, n + 7},


(4.4)

such that for distinct numbers i, j ∈ [1, 3]Z

C1 ∪C2 ∪C3 = Z,Ci ∩C j = ∅, and Ci,Cc
i ∈ T3.

0 1 2 3-1-2 13 1514

0 1 2 3-1 4 5 6 7-2-4 -3

0 1 2 3-1 4 5 6 10 11-2-4 -3-5-6

0 1 2 3-1 4 5 11 12-2 13 1514 16

16

(1)

(2-1)

(2-2)

(3-1)

(3-2)

0 1 2 3-1 4 5 6 7-2-4 -3-5-6

0 1 2 3-1 4 5-2 13 1514 16 17

(3-3)

Figure 3. (1) In (Z,T1), the only one component is C1; (2) In (Z,T2), the only two
components are C1 (see (2-1)) and C2 (see (2-2)); (3) In (Z,T3), the only three components
are C1 (see (3-1)), C2 (see (3-2)), and C3 (see (3-3)).
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In general, using a method similar to the above approach, we obtain the following:
(Case m) In the case of k = m, we have

(1) C1 :=
⋃

n∈2mZ

{n, n + 1, n + 2m + 1},

(2) C2 :=
⋃

n∈2mZ+2

{n, n + 1, n + 2m + 1},

(3) C3 :=
⋃

n∈2mZ+4

{n, n + 1, n + 2m + 1},

· · ·

· · ·

(m) Cm :=
⋃

n∈2mZ+2(m−1)

{n, n + 1, n + 2m + 1},



(4.5)

such that for distinct numbers i, j ∈ [1, k]Z⋃
i∈[1,k]Z

Ci = Z,Ci ∩C j = ∅, and Ci,Cc
i ∈ Tk.

In view of (4.5), in (Z,Tk), for distinct numbers i, j ∈ [1, k]Z, we obtain

Z =
⋃

i∈[1,k]Z

Ci such that Ci ∩C j = ∅, i , j. (4.6)

Furthermore, owing to the structure Ci, i ∈ [1, k]Z which is a union of the smallest open sets, each Ci is
clearly open set in (Z,Tk). Finally, by (4.6), we conclude that each Ci has the property

Ci = Z \
⋃

j∈[1,k]Z\{i}

C j.

Hence each set Ci, i ∈ [1, k]Z, is also a closed set in (Z,Tk), which completes the proof. �

In view of Lemma 4.1, since (Z,Tk), k ∈ N, is locally connected, we can confirm that each
component Ci in (4.1) is both an open and a closed set in (Z,Tk), k ∈ N.

In view of Proposition 4.2, we obtain the following:

Theorem 4.3. (1) (Z,T0) has ℵ0 components.
(2) For the topological spaces (Z,Tk) and each k ∈ N, (Z,Tk) has k components.

Proof: (1) Owing the quasi-discrete structure of (Z,T0), we observe that for any n ∈ Z(1) S N0(2n) = {2n, 2n + 1} = S N0(2n + 1), and
(2) Cl0(2n) = {2n, 2n + 1} = Cl0(2n + 1).


Thus, after letting Cn := {2n, 2n + 1}, n ∈ Z, we obtain that {Cn | n ∈ Z} is a partition of Z consisting

of the open sets and components Cn, n ∈ Z, in (Z,T0). To be specific,

Z =
⋃
n∈Z

Cn,Cn ∈ T0 and further, Ci ∩C j = ∅, i , j, i, j ∈ Z.

AIMS Mathematics Volume 7, Issue 1, 1224–1240.



1233

(2) In view of Proposition 4.2, for each k ∈ N and i ∈ [1, k]Z, it suffices to prove that each Ci of
(4.1) is a component in (Z,Tk). To be specific, for each n ∈ 2kZ + 2(i − 1) of (4.1), consider the subset
{n, n+1, n+2k +1} of Ci of (4.1). Then the set {n, n+1, n+2k +1} is a certain S k,n ∈ S k (see (2.1)), and
it is one of the smallest open set containing the element n in the Alexandroff topological space (Z,Tk).
Hence {n, n + 1, n + 2k + 1} is connected in (Z,Tk). Then, take another smallest open set which is a
neighbor of {n, n+1, n+2k+1} which is also the smallest open set in (Z,Tk), so that it is also connected
in (Z,Tk). Furthermore, the intersection of these two smallest open sets is not an empty set. Thus the
union of these two smallest open sets is connected in (Z,Tk). Using this method, we clearly see that the
set Ci of (4.1) is connected in (Z,Tk) and further, it is a component of the element n ∈ 2kZ + 2(i − 1).
Besides, as proved in Proposition 4.2, for i , j, i, j ∈ [1, k]Z, since

Ci ∩C j = ∅ and
⋃

i∈[1,k]Z

Ci = Z,

which implies that for each k ∈ N, (Z,Tk) has k components.
For instance, let us consider the case (Z,T3) as mentioned in (4.4). Then the set

{C1,C2,C3}

is a partition of Z and each Ci, i ∈ [1, 3]Z, is a component in (Z,T3). To be specific, based on (4.1), for
i ∈ [1, 3]Z, we have

Ci :=
⋃

n∈6Z+2(i−1)

{n, n + 1, n + 7},

where 
C1 = · · · ∪ {0, 1, 7} ∪ {6, 7, 13} ∪ {12, 13, 19} ∪ · · ·
C2 = · · · ∪ {2, 3, 9} ∪ {8, 9, 15} ∪ {14, 15, 21} ∪ · · ·
C3 = · · · ∪ {4, 5, 11} ∪ {10, 11, 17} ∪ {16, 17, 23} ∪ · · · .


Then, it is clear that C1 is a component of the element 0, C2 is a component of the element 2, and C3 is
that of the element 4. Besides, for i , j, i, j ∈ [1, 3]Z, we obviously have

C1 ∪C2 ∪C3 = Z and Ci ∩C j = ∅.�

Corollary 4.4. For distinct numbers i, j ∈ N ∪ {0}, (Z,Ti) is not homeomorphic to (Z,T j).

Proof: By Theorem 4.3, since each (Z,Ti), i ∈ N, has i components, in the case of i , j, i, j ∈ N, it
is clear that Ti is not homeomorphic to T j. Besides, since (Z,T0) has ℵ0 components, it is clear that T0

is not homeomorphic to Ti, i ∈ N. �
By Proposition 4.2 and Theorem 4.3, we obtain the following:

Corollary 4.5. (1) (Z,T1) is connected.
(2) (Z,Tk) is not connected if k ∈ (N \ {1}) ∪ {0}.

With (Z,T−k), depending on the number k ∈ N, let us now investigate the number of components of
(Z,T−k), as follows:
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Proposition 4.6. With the topological space (Z,T−k), given k ∈ N, for i ∈ [1, k]Z, let

Di :=
⋃

n∈2kZ+2(i−1)

{n − 2k + 1, n, n + 1}. (4.7)

Then the set {Di | i ∈ [1, k]Z} is a partition of Z such that Di is both an open and a closed set in (Z,T−k),
and D]

i = ℵ0.

Proof: Depending on the number k ∈ N of (Z,T−k), using a method similar to the construction of Ci

in Proposition 4.2, we have the following (see the cases in Figure 4 related to T−2):
In general, with the topological space (Z,T−k), for each k ∈ N and i ∈ [1, k]Z, we have

(1) D1 :=
⋃

n∈2kZ

{n − 2k + 1, n, n + 1},

(2) D2 :=
⋃

n∈2kZ+2

{n − 2k + 1, n, n + 1},

(3) D3 :=
⋃

n∈2kZ+4

{n − 2k + 1, n, n + 1},

· · ·

(k) Dk :=
⋃

n∈2kZ+2(k−1)

{n − 2k + 1, n, n + 1}.



(4.8)

0 1 2 3-1 4 5 6 7 8 9 10 11-2

(C  )

-4 -3-5-6

0 1 2 3-1 4 5 6 7 8 9 10 11-2-4 -3-5-6

1

(C  )2

Figure 4. Two components of the topological space (Z,T−2).

In view of (4.8), in (Z,T−k) for distinct numbers i ∈ [1, k]Z, we obtain

Z =
⋃

i∈[1,k]Z

Di such that Di ∩ D j = ∅. (4.9)

Hence, we obtain a partition of Z, as follows:

{Di | i ∈ [1, k]Z}.

Furthermore, owing to the structure Di which is a union of the smallest open sets

S N−k(n) = {n − 2k + 1, n, n + 1} ∈ S −k ⊂ T−k,
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each Di is clearly an open set in (Z,T−k) (see (4.8)). Besides, in view of (4.9), each Di has the property

Di = Z \
⋃

j∈[1,k]Z\{i}

D j.

Hence each set Di, i ∈ [1, k]Z is also a closed set in (Z,T−k). �
Besides, by Lemma 4.1, since (Z,T−k) is locally connected, we can confirm that Di is both an open

and a closed set in T−k.
Besides, Proposition 4.6 leads to the following:

Corollary 4.7. For each k ∈ N, the topological space, (Z,T−k) has k components.

Proof: By Proposition 4.6 and using a method similar to the proof of Theorem 4.3, it turns out that
for each k ∈ N, (Z,T−k) has k components. �

Corollary 4.8. For distinct numbers i, j ∈ N ∪ {0}, (Z,T−i) is not homeomorphic to (Z,T− j).

Proof: The proof is identical to that of Corollary 4.4. �
By Corollary 4.7, we obtain the following:

Corollary 4.9. (Z,T−k) is not connected if k ∈ N \ {1}.

Some further studies of the structures of (Z,T−i), i ∈ Z, will intensively be done in Section 5 (see
Proposition 5.1).

Corollary 4.10. Each Tk is connected if and only if k ∈ {−1, 1}.

Proof: By Theorem 4.3(2) and Corollary 4.7, the proof is completed. �

5. Homeomorphisms between (Z,T−k) and (Z,Tk), k ∈ N

Comparing the numbers of components of (Z,Tk), k ∈ N ∪ {0}, it turns out that Ti is not
homeomorphic to T j if i , j and i, j ∈ N ∪ {0} (see Corollary 4.4). Furthermore, T−i is proved not to
be homeomorphic to T− j if i , j and i, j ∈ N ∪ {0} (see Corollary 4.8). Let us now investigate various
topological properties of (Z,T−k), k ∈ N and further, examine if (Z,T−k) is homeomorphic to
(Z,Tk), k ∈ N.

Proposition 5.1. (Z,T−k) is homeomorphic to (Z,Tk), k ∈ N.

Before proving this assertion, note that there are infinitely many homeomorphisms between
(Z,T−k) and (Z,Tk).

Proof: Let us consider the map h : (Z,T−k)→ (Z,Tk), k ∈ N, defined by

h(x) =

x, x ∈ Z0, and
x + 2k, x ∈ Z1.

 (5.1)

Then, it is clear that h is bijective. Next, we now prove that each of the maps h and h−1 is continuous.
(Case 1) Note that for x ∈ Z0, we have

h(x) = h(2n) = 2n
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and
S N−k(2n) = {2n − 2k + 1, 2n, 2n + 1} and S Nk(2n) = {2n, 2n + 1, 2n + 2k + 1}.

(Case 2) Note that for x ∈ Z1, we have

h(x) = h(2n + 1) = 2n + 2k + 1

and
S N−k(2n + 1) = {2n + 1} and S Nk(2n + 2k + 1) = {2n + 2k + 1}.

Owing to these (Case 1) and (Case 2), we see that the map h is continuous. Finally, through a similar
process, we obtain that h−1 is continuous. Hence h is a homeomorphism, which completes the proof.

In addition, based on the components Di,Ci, i ∈ [1, k]Z in (4.1) and (4.7), it is clear that for each
Di, i ∈ [1, k]Z, we can observe that the restriction of h to Di, say h|Di : Di → Ci, is also a
homeomorphism. Hence we also have the homeomorphism h : (Z,T−k) → (Z,Tk) as an extension of
the given h|Di , i ∈ [1, k]Z. For instance, in Figure 6, we may assume the map F := h and
F|Di := h|Di := fi, i ∈ {1, 2}. �

Example 5.1. (1) (Z,T−1) is homeomorphic to (Z,T1).
(2) (Z,T−2) is homeomorphic to (Z,T2).

To support these homeomorphisms h : (Z,T−k) → (Z,Tk), k ∈ {1, 2}, we consider the two cases, as
follows:

(Case 1) Assume the case k = 1. Then we take the following map h (see Figure 5).

h(x) =

x, x ∈ Z0, and
x + 2, x ∈ Z1.


Then, it is clear that the map h is a homeomorphism.

0

1

2

3

4

5

h

0

1

2

3

4

5

6

T -1 T1

-1 -1

-2

-3

-2

-3

-4-4

-5

7

Figure 5. Configuration of a certain homeomorphism between (Z,T−1) and (Z,T1).
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(Case 2) Assume the case k = 2. Then we take the following map h (see Figure 6).

h(x) =

x, x ∈ Z0, and
x + 4, x ∈ Z1.

 (5.2)

Then, it is clear that the map h is a homeomorphism.

0

1

2

3

4

5

6

-1

-2

-3

-4

0

1

2

3

4

5

6

-1

-2

-3

-4

7

-8

-5

-6

-7

-5

-6

-7

0

1

2

3

4

5

6

f
D1

-1

-2

-3

-4

0

1

2

3

4

5

6

-1

-2

-3

-4

7

-8

-5

-6

-7

-5

-6

-7

C1
1 f

2 C2
2D

7

-8

-9

Figure 6. A homeomorphism between (Z,T−2) and (Z,T2) formulated by the two
homeomorphisms f1 and f2. Naively, F : (Z,T−2) → (Z,T2) can be considered as a union of
the two homeomorphisms f1 and f2, i.e., F := f1 ∪ f2.

In view of Proposition 5.1, we observe that for k ∈ N \ {1}, (Z,Tk) and (Z,T−k) are free (topological)
sum of Ci and Di, respectively.

By Proposition 5.1 and Corollary 4.4, we obtain the following:

Corollary 5.2. There are infinitely many topologies TS k×S k , k ∈ N \ {1}, which are not homeomorphic
to the 2-dimensional K-topological plane, i.e., (Z2, κ2), where TS k×S k is the topology on Z2 generating
by the set S k × S k as a subbase.

Using the method given in Corollary 5.2, for the set Zn, we can also obtain infinitely many
topologies generated by certain n-tuple Cartesian products of S k. Furthermore, each of these
topologies need not be homeomorphic to the n-dimensional K-topological space, i.e., (Zn, κn).
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After replacing the subbase S k of (2.1) by the set S ′k (see (5.3)), where

S ′k := {S ′k,n | S
′
k,n = {2n, 2n + 1, 2n + 2k}, n ∈ Z}, (5.3)

the paper [8] studied some properties of topologies, denoted by T ′k := TS ′k
generated by the set S ′k as a

subbase. Then, after comparing topologies T ′k and Tk, we can recognize some similarities and
differences between S k of (2.1) and S ′k of (5.3) [8], as follows:

(1) S ]
k,n = (S ′k,n)] for k, n ∈ Z,

(2) S ]
k = ℵ0 = (S ′k)

] for k ∈ Z, and
(3) the only difference between S k,n and S ′k,n
are the two distinct numbers 2n + 2k + 1 and 2n + 2k.


Lemma 5.3. [8] Given a number k ∈ Z, (Z,TS ′k

) is an Alexandroff space.

Using a method similar to the proof of Propositions 4.2 and 4.6, we obtain the following:

Proposition 5.4. For each i ∈ N, (Z,T ′i ) has i components.

Proof: Using a method similar to the proof of Propositions 4.2 and 4.6, the proof is completed. �

Corollary 5.5. For the topological spaces (Z,T ′i ), i ∈ N ∪ {0}, we obtain the following:
For distinct numbers i, j ∈ N ∪ {0}, (Z,T ′i ) is not homeomorphic to (Z,T ′j).

Based on the various properties of (Z,Tk), we obtain the following which are certain corrections of
some assertions proposed in [8].

Remark 5.6. (Correction) (1) In Theorem 2(5) of [8], the set “Z” should be replace by “N∪ {0}” (see
Corollary 4.4 in the present paper).

(2) In Corollary 1 of [8], the part “ if i ∈ Z \ {0}” should be replaced with “ if i ∈ {−1, 1}” (see
Corollary 4.10 in the present paper).

(3) In Corollary 2(5) of [8], the set “Z” should be replaced by “N ∪ {0}” (see Corollary 5.5 of the
present paper).

(4) Remark 2(3) of [8] should be changed into ‘‘(Z,T ′i ) is not homeomorphic to (Z,T ′j) if two distinct
i, j ∈ N ∪ {0}” (see Corollary 5.5 of the present paper).

6. Further remark and work

Since the advent of the digital spaces derived from certain digital topological spaces facilitated
many works from the viewpoints of digital topology, and based on the works in the paper, we can
further study the following:
(?1) Unlike Remark 2(3) of [8] (see Remark 5.6(4)), we can examine if (Z,T ′i ) and (Z,Ti) are
homeomorphic to each other.
(?2) Comparison among T ′i , Ti, T ′

−i, and T−i with respect to certain digital space structures associated
with these topological structures.
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(?3) Formulation of digital spaces generated by the topological structures T ′i , Ti, T ′
−i, and T−i.

(?4) Comparison among certain adjacencies on Z induced by the topological structures T ′i , Ti, T ′
−i,

and T−i.
(?5) Under what condition do we have the typical k-adjacencies on Zn induced by the product
topological structures (T ′i )

n, (Ti)n, (T ′
−i)

n, (T−i)n and their product topologies?
(?6) One of the important problems is that we need to examine if two digital spaces induced by two
homeomorphic topologies on Zn have certain relationships.
(?7) What are the benefits of the topologies T ′i , T ′

−i, Ti, and T−i?
(?8) Based on the locally finite covering approximations in [5–7], using the topological structure of
(Z2,Tk), we can follow the approach to develop a certain locally finite covering approximation space.

7. Conclusions

We have shown infinitely many topologies on the set Z which are not homeomorphic to the K-line
topology. In particular, we proved that (Z,Tk) is connected if and only if k ∈ {−1, 1}. Furthermore, we
proved that (Z,Tk), k ∈ N, has k-components. This finding plays an important role in writing parallel
algorithms to address some complicated problems. Indeed, these newly-studied topological structures
facilitate the studies of digital topological spaces related to the fixed point theory, rough set theory,
writing parallel algorithms and so on. As a further work we can intensively study T ′k := TS ′k

generated
by the set S ′k as a subbase. We further study digital topological structures induced by T ′k, T ′

−k, Tk, T−k

and then applied them to applied sciences as well as computer science.
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