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Abstract: A set PD⊆V (G) in a graph G is a paired dominating set if every vertex v < PD is adjacent
to a vertex in PD and the subgraph induced by PD contains a perfect matching. A paired dominating
set PD of G is minimal if there is no proper subset PD′ ⊂ PD which is a paired dominating set of
G. A minimal paired dominating set of maximum cardinality is called an upper paired dominating
set, denoted by Γpr(G)-set. Denote by U pper-PDS the problem of computing a Γpr(G)-set for a
given graph G. Michael et al. showed the APX-completeness of U pper-PDS for bipartite graphs with
∆ = 4 [11]. In this paper, we show that U pper-PDS is APX-complete for bipartite graphs with ∆ = 3.
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1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without multiple
edges. We refer the reader to [3, 18] for terminology and notation in graph theory.

Let G = (V,E) be a graph of order n with vertex set V (G) and edge set E(G). The open
neighborhood of a vertex v in G is NG(v) = N(v) = {u ∈ V (G)|uv ∈ E(G)}, and the closed
neighborhood of v is NG[v] = N[v] = N(v) ∪ {v}. The degree of a vertex v in the graph G is
dG(v) = d(v) = |N(v)|. Let δ (G) = δ and ∆(G) = ∆ denote the minimum and maximum degree of a
graph G, respectively. Denote by G[H] the induced subgraph of G induced by H with H ⊂ V (G). A
vertex v in G is a lea f if d(v) = 1. A vertex u is a support vertex if u has a leaf neighbor. Denote
L(u) = {v|uv ∈ E(G),d(v) = 1}.

A subset M ⊆ E(G) is called a matching in G if no two elements are adjacent in G. A vertex v is
said to be M-saturated if some edges of M are incident with v, otherwise, v is M-unsaturated. If every
vertex of G is M-saturated, the matching M is perfect. M is a maximum matching if G has no matching
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M′ with |M′| > |M|. Let R be a subgraph of G, M be a matching of G, v ∈ V (R), uv ∈M. We say the
vertex v is RI (resp. RO ) if u ∈V (R) (resp. u <V (R)).

A set VC of vertices in a graph G is a vertex cover of G if all the edges are touched by the vertices in
VC. A vertex cover VC of G is minimal if no proper subset of it is a vertex cover of G. A minimal vertex
cover of maximum cardinality is called a VC-set. In 2001, Mishra et al. [13] denote by MAX-MIN-VC
the problem of finding a VC-set of G. Bazgan et al. [2] showed that MAX-MIN-VC is APX-complete
for cubic graphs.

A set PD ⊆ V (G) in a graph G is a paired dominating set if every vertex v < PD is adjacent to a
vertex in PD and the subgraph induced by PD contains a perfect matching. Paired domination was
proposed in 1996 [9] and was studied for example in [4–6, 12, 16, 17]. A paired dominating set PD
of G is minimal if there is no proper subset PD′ ⊂ PD which is a paired dominating set of G. A
minimal paired dominating set with maximum cardinality is called a Γpr(G)-set. The upper paired
domination number of G is the cardinality of a Γpr(G)-set of G. Denote by U pper-PDS the problem
of finding a Γpr(G)-set of G. Upper paired domination was introduced by Dorbec et al. in [7]. They
investigated the relationship between the upper total domination and upper paired domination numbers
of a graph. Later, they established bounds on upper paired domination number for connected claw-free
graphs [10]. Denote Pr(v) = {u|u < PD,N(u)∩PD = {v},uv ∈ E(G)}, where PD is a minimal paired
dominating set of G.

Recently, Michael et al. showed that U pper-PDS is NP-hard for split graphs and bipartite graphs,
and APX-completeness of U pper-PDS for bipartite graphs with ∆ = 4 in [11]. In order to improve the
results in [11], we show that U pper-PDS is APX-complete for bipartite graphs with ∆ = 3.

2. APX-completeness

The class APX is the set of NP-optimization problems that allow polynomial-time approximation
algorithms with approximation ratio bounded by a constant.

First, we recall the notation of L-reduction [1, 15]. Given two NP-optimization problems H and
G and polynomial time transformation f from instances of H to instances of G, we say that f is an
L-reduction if there are positive constants α and β such that for every instance x of H:
(i) optG( f (x))≤ αoptH(x);
(ii) for every feasible solution y of f (x) with objective value mG( f (x),y) = a, we can find a solution y′

of x with mH(x,y′) = b in polynomial time such that |optH(x)−b| ≤ β |optG( f (x))−a|.
To show that a problem P ∈ APX is APX-complete, it’s enough to show that there is an L-reduction

from some APX-complete problems to P.
Denote by MAX-MIN-VC the problem of finding a maximum minimal vertex cover of G. Note

that, Minimum Domination problem is APX-complete even for bipartite graphs with maximum degree
3 [14], and Minimum Independent Domination problem [8] is the complement problem of MAX-MIN-
VC in a graph G. We can obtain an L-reduction from Minimum Domination problem to Minimum
Independent Domination problem by replacing every edge uv with a path Puv = uabcv with α = 7,
β = 1. It’s clear that Minimum Independent Domination problem and MAX-MIN-VC are in APX.
Thus, Minimum Independent Domination problem is APX-complete even for bipartite graphs with
maximum degree 3, so is MAX-MIN-VC (by Theorem 7 in [2]).

In this section, we show U pper-PDS for bipartite graphs with maximum degree 3 is APX-complete
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by providing an L-reduction f from MAX-MIN-VC for bipartite graphs with maximum degree 3.
We formalize the optimization problems as follows.

MAX-MIN-VC

Instance: A graph G = (V,E) with maximum degree 3.
Solution: A maximum minimal vertex cover of G, VC.
Measure: Cardinality of VC.

U pper-PDS

Instance: A graph G = (V,E) with maximum degree 3.
Solution: A maximum minimal paired-dominating set PD.
Measure: Cardinality of PD.

Lemma 1. [11] U pper-PDS can be approximated with a factor of 2∆ for graphs without isolated
vertices and with maximum degree ∆.

Therefore, U pper-PDS is in APX.

Figure 1. The graph Hxy.

Let G = (V,E) be a bipartite graph with |E|= m, ∆(G) = 3.
For each edge xy ∈ E(G), let Hxy be the graph which is shown in Figure 1. Let T1 = { a, ...,a5,

b, ...,b5, r, ...,r6, s, ...,s6, c, ..,c3, u,u1,v,v1}, T2 = {p, ..., p6, q, ...,q6, d, ...,d3,w,z}, T3 = {h, ..,h5},
T4 = {t, ..., t5}, V (Hxy) =V (T1)∪V (T2)∪V (T3)∪V (T4)∪{w1,z1,x,y}, |V (Hxy)|= 70.

Construct G′ by replacing each edge xy ∈ E(G) with the graph Hxy.
It’s clear, ∆(G′) = 3 and G′ is a bipartite graph.
Let Sp = {p, p1, ..., p6}, Sq = {q,q1, ...,q6}, Sa = {a,a1, ...,a5}, Sb = {b,b1, ...,b5},

Sr = {r,r1, ...,r6}, Ss = {s,s1, ...,s6}, Sc = {c,c1,c2,c3}, Sd = {d,d1,d2,d3}.
Let xy = e ∈ E(G), H ′e = H ′xy = Hxy−{x,y}, |V (H ′xy)|= 68.
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Let PD be a paired dominating set of G′, uv∈ E(G). We say H ′uv is [I,O] if u is HI
uv and v is HO

uv, or if
v is HI

uv and u is HO
uv. We say H ′uv is [I,0] if u is HI

uv and v < PD, or if u < PD and v is HI
uv. Analogously,

H ′uv could be [0,0] ([I, I] or [O,O] or [O,0]).
Note that

|T1∩PD|=|Sa∩PD|+ |Sb∩PD|+ |Sc∩PD|
+ |Sr∩PD|+ |Ss∩PD|+ |{u,u1,v,v1}∩PD|,

(2.1)

|T2∩PD|= |Sp∩PD|+ |Sq∩PD|+ |Sd ∩PD|+ |{w,z}∩PD|, (2.2)

|V (H ′xy)∩PD|=|T1∩PD|+ |T2∩PD|+ |T3∩PD|+ |T4∩PD|
+ |{w1,z1}∩PD|.

(2.3)

Figure 2. (a) |T2∩PD|= 13, (b) |T1∩PD|= 22, (c) |T1∩PD|= 18.

The following lemma is immediate.

Lemma 2. Let PD be a minimal paired dominating set of G, M be a perfect matching of G[PD]. If v,u
are support vertices, uv ∈ E(G), x ∈ L(v), y ∈ L(u), then |{x,y}∩PD| ≤ 1.

Lemma 3. Let PD be a minimal paired dominating set of G′, M be a perfect matching of G′[PD]. For
each Hxy, we have
(a) |Sc∩PD|= 4 if and only if r,s < PD, Pr(c3) , /0 or Pr(c) , /0.
(b) |Sd ∩PD|= 4 if and only if p,q < PD, Pr(d3) , /0 or Pr(d) , /0.
(c) |T3∩PD| ≤ 4 with equality if and only if (i) or (ii) holds,

(i) Pr(h1) , /0 if h < PD,
(ii) N(h)∩PD = {h1} or Pr(h) , /0 if h ∈ PD.
And if h is G[T3]

O, |T3∩PD|= 3.
(d) |T4∩PD| ≤ 4 with equality if and only if (i) or (ii) holds,

(i) Pr(t1) , /0 if t < PD,
(ii) N(t)∩PD = {t1} or Pr(t) , /0 if t ∈ PD.
And if t is G[T4]

O, |T4∩PD|= 3.
(e) |Sa∩PD| ≤ 4 with equality if and only if (i) or (ii) holds,

(i) Pr(a1) , /0 if a < PD,
(ii) N(a)∩PD = {a1} or Pr(a) , /0 if a ∈ PD.
And if a is G[Sa]

O, |Sa∩PD|= 3.
(f) |Sb∩PD| ≤ 4 with equality if and only if (i) or (ii) holds,

(i) Pr(b1) , /0 if b < PD,
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(ii) N(b)∩PD = {b1} or Pr(b) , /0 if b ∈ PD.
And if b is G[Sb]

O, |Sb∩PD|= 3.
(g) 3≤ |Sr∩PD| ≤ 4. And if r ∈ PD and r is G[Sr]

O, |Sr∩PD|= 3.
(h) 3≤ |Ss∩PD| ≤ 4. And if s ∈ PD and s is G[Sr]

O, |Ss∩PD|= 3.
(i) 3≤ |Sp∩PD| ≤ 4. And if p ∈ PD and p is G[Sp]

O, |Sp∩PD|= 3.
(j) 3≤ |Sq∩PD| ≤ 4. And if q ∈ PD and q is G[Sq]

O, |Sq∩PD|= 3.
(k) |T2∩PD| ≤ 13 with equality if and only if |{w,z}∩PD|= 1.
(l) |T1∩PD| ≤ 22 with equality if and only if {u,v} ⊆ PD.
(m) If {u,v}∩PD = /0, |T1∩PD| ≤ 18.

Proof. (a) W.l.o.g. we consider r ∈ PD. If rc ∈ M, |Sc ∩PD| , 4. Otherwise, c1c2,c3s ∈ M and let
PD′ = PD\{c1,c2}, M′ = M \{c1c2}. Then, PD′ is a paired dominating set and PD is not a minimal
paired dominating set, a contradiction. If rc < M, |Sc ∩PD| , 4. Otherwise, cc1,c2c3 ∈ M and let
PD′ = PD \ {c,c1}, M′ = M \ {cc1}. Then, PD′ is a paired dominating set and PD is not a minimal
paired dominating set, a contradiction.

If Pr(c3) = /0 and Pr(c) = /0, let PD′ = PD\{c,c3} and M′ = M \{cc1,c2c3}∪{c1c2}. Then, PD′

is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.
(b) The proof is analogous to that of (a), and the proof is omitted.
(c) Clearly, |T3 ∩ PD| ≤ 4. If |T3 ∩ PD| = 4, {h1,h2,h3,h4} ⊆ PD or {h,h1,h2,h3} ⊆ PD. If

{h1,h2,h3,h4} ⊆ PD, Pr(h1) , /0. Otherwise, let PD′ = PD \ {h4,h1},
M′ = M \{h3h4,h1h2}∪{h2h3}. Then, PD′ is a paired dominating set and PD is not a minimal paired
dominating set, a contradiction. If {h,h1,h2,h3} ⊆ PD, N(h)∩PD = {h1} or Pr(h) , /0. Otherwise,
let PD′ = PD \ {h,h1}, M′ = M \ {hh1}. Then, PD′ is a paired dominating set and PD is not a
minimal paired dominating set, a contradiction.

If h is G[T3]
O, and since |T3 \{h}∩PD| is even, we have |T3∩PD|= 3.

(d)–(f) We obtain the conclusions with a similar proof of (c).
(g) Clearly, 3≤ |Sr ∩PD| , 6. If |Sr ∩PD|= 5, we obtain Sr ∩PD = {r,r1,r2,r3,r4} or Sr ∩PD =

{r,r2,r3,r4,r5} by Lemma 2. Therefore, PD is not a minimal paired dominating set, a contradiction.
Thus, 3≤ |Sr∩PD| ≤ 4.

If r is G[Sr]
O, and since |Sr \{r}∩PD| is even, we have |Sr∩PD|= 3.

(k) Since |Sd ∩PD| ≤ 4, |T2∩PD| ≤ 14 by (i)–(j) and Eq (2.1).
If |{w,z}∩PD|= 0, |T2∩PD| ≤ 12.
If |{w,z}∩PD|= 1, |T2∩PD| ≤ 13.
Then we consider |{w,z}∩PD| = 2. If w is G[T2]

I or z is G[T2]
I , we may assume w is G[T2]

I . We
obtain wp ∈M, |Sp∩PD| = 3 by (i), |Sd ∩PD| ≤ 3 by (b). Therefore, |T2∩PD| ≤ 12 by Eq (2.1). If
w,z are G[T2]

O, |Sd ∩PD| ≤ 3 by (b). Since |T2∩PD| is even, |T2∩PD| ≤ 12 by Eq (2.1).
Thus, |T2∩PD| ≤ 13 with equality if and only if |{w,z}∩PD|= 1, see Figure 2 (a).
(h)–(j) Using similar arguments of (g), the conclusions follow.
(l)–(m) We discuss the following cases.
Case 1. |{u,v}∩PD|= 2.
In this case, we have |{u1,v1}∩PD| ≥ 1, |Sa∩PD| ≥ 3 and |Sc∩PD| ≥ 3, otherwise, |T1∩PD| ≤ 22

by (e)–(h) and Eq (2.2).
W.l.o.g. we assume u1 ∈ PD.
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First, we assume that |Sa ∩PD| = 4. We obtain aa1,uu1 ∈ M, {r,c,r1} ∩PD = /0 by (e). Thus,
|Sc ∩PD| ≤ 3. Then, we consider |Sc ∩PD| = 3, that is, c3s ∈ M. By (h), we have |Ss ∩PD| = 3.
Therefore, |T1∩PD| ≤ 22 by Eq (2.2).

Then, we consider |Sa ∩ PD| = 3. Therefore, v1 ∈ PD, otherwise, |T1 ∩ PD| ≤ 22 by Eq (2.2).
We have |Sb ∩PD| = 4, otherwise, |T1 ∩PD| ≤ 22 by Eq (2.2). By (f), {s,s1,c3}∩PD = /0. Thus,
|Sc∩PD| ≤ 3. Therefore, |T1∩PD| ≤ 22 by Eq (2.2), see Figure 2 (b).

Case 2. |{u,v}∩PD|= 1.
W.l.o.g. we assume u ∈ PD.
We have |{u1,v1}∩PD| ≥ 1 and |Sa∩PD| ≥ 3, otherwise, |T1∩PD| ≤ 21 by Eq (2.2).
Case 2.1 u1 ∈ PD.
If |Sa∩PD|= 4, {r,r1,c}∩PD = /0 by (e). Then |Sc∩PD| ≤ 3. If |Sc∩PD|= 3, we have c3s ∈M,

|Ss∩PD| ≤ 3 by (h). Therefore, |T1∩PD| ≤ 21 by Eq (2.2). If |Sc∩PD| = 2, |T1∩PD| ≤ 21 by Eq
(2.2).

Now we consider |Sa ∩PD| = 3. If v1 < PD, |T1 ∩PD| ≤ 21 by Eq (2.2). Thus, v1 ∈ PD, that is,
v1b ∈M. Therefore, |Sb∩PD|= 3 by (f), |T1∩PD| ≤ 21 by Eq (2.2).

Case 2.2 u1 < PD.
If v1 ∈ PD, v1b ∈M. Therefore, |Sb∩PD| = 3 by (f), |T1∩PD| ≤ 21 by Eq (2.2). Thus, v1 < PD,

and |T1∩PD| ≤ 21 by Eq (2.2).
Case 3. |{u,v}∩PD|= 0.
In this case, |T1∩PD| is even.
Case 3.1 |{u1,v1}∩PD| ≥ 1.
W.l.o.g. we assume u1 ∈ PD. Then u1a ∈ M, |Sa ∩PD| = 3 by (e). If v1 < PD, b ∈ PD. By (a),

|Sc∩PD| ≤ 3. Therefore, |T1∩PD| ≤ 19 by Eq (2.2). If v1 ∈ PD, we obtain v1b ∈M, |Sb∩PD| = 3
by (f). |Sc∩PD| ≤ 3 by (a). Therefore, |T1∩PD| ≤ 19 by Eq (2.2).

Case 3.2 |{u1,v1}∩PD|= 0.
In this case, a,b ∈ PD. By (a), |Sc∩PD| ≤ 3. Therefore, |T1∩PD| ≤ 19 by Eq (2.2).
Note that |T1∩PD| is even, so |T1∩PD| ≤ 18, see Figure 2 (c).
Thus, (l) and (m) hold. �

Lemma 4. Let PD be a minimal paired dominating set of G′.
(a) |V (H ′xy)∩PD| ≤ 43.
(b) If {xw1,yz1} ⊂M, |V (H ′xy)∩PD| ≤ 42.
(c) If {xw1,yz1}∩M = /0 and {w1,z1} ⊆ PD, |V (H ′xy)∩PD| ≤ 42.
(d) If xw1 <M(G), w1 ∈ PD and y < PD, then |V (H ′xy)∩PD| ≤ 42.

Proof. (a) By Lemma 3 and Eq (2.3),

|V (H ′xy)∩PD|
=|T1∩PD|+ |T2∩PD|+ |T3∩PD|+ |T4∩PD|+ |{w1,z1}∩PD|
≤22+13+4+4+2 = 45.

We consider that {w1,z1}∩PD, /0, |T4∩PD| ≥ 3 and |T3∩PD| ≥ 3, otherwise, |V (H ′xy)∩PD| ≤ 43.
Then, w.l.o.g. we assume that w1 ∈ PD.

If |T4∩PD|= 4, {tt1, t2t3} ⊆M or {t1t2, t3t4} ⊆M.
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If {tt1, t2t3} ⊆ M, Pr(t) , /0 or N(t)∩ PD = {t1}. If Pr(t) , /0, u ∈ Pr(t). By Lemma 3 (m),
|V (H ′xy)∩PD| ≤ 43. If N(t)∩PD = {t1}, we have u,w1 < PD, |T1∩PD| ≤ 21 by Lemma 3 (l). Then
we obtain z ∈ PD, otherwise, |V (H ′xy)∩PD| ≤ 43 by Lemma 3 (k) and Eq (2.3). If |T3∩PD|= 4, we
have v < PD, therefore, |V (H ′xy)∩PD| ≤ 43 by Eq (2.3). If |T3∩PD| = 3, |V (H ′xy)∩PD| ≤ 43 by Eq
(2.3).

If {t1t2, t3t4} ⊆ M, {w,u} ∩PD = /0. By Lemma 3 (l), |T1 ∩PD| ≤ 21, and v ∈ PD. If z < PD,
|V (H ′xy)∩PD| ≤ 43 by Lemma 3 (k) and Eq (2.3). If z∈ PD, |T3∩PD| ≤ 3 by Lemma 3 (c). Therefore,
|V (H ′xy)∩PD| ≤ 43 by Eq (2.3).

If |T4∩PD|= 3, we consider |T1∩PD|= 22, and {u,v,z1} ∈ PD. We have |T3∩PD| , 4 by Lemma
3 (c). Therefore, |V (H ′xy)∩PD| ≤ 43 by Eq (2.3).

(b)–(d) Since |V (H ′xy)∩PD| ≤ 43, and, |V (H ′xy)∩PD| is even in those cases, so |V (H ′xy)∩PD| ≤ 42.
�

Figure 3. (a) |V (H ′xy)∩PD|= 41, (b) |V (H ′xy)∩PD|= 40.

Lemma 5. Let PD be a minimal paired dominating set of G′, M be a perfect matching of G′[PD].
(a) If {x,w1,y,z1} ⊂ PD, xw1 ∈M(G) and yz1 <M, we have |V (H ′xy)∩PD| ≤ 41.
(b) If {x,y}∩PD = /0, |V (H ′xy)∩PD| ≤ 40.

Proof. (a) In this case, we have z ∈ PD and zz1 ∈M.
Since |V (H ′xy)∩PD| is odd, it’s sufficient to show |V (H ′xy)∩PD| ≤ 42. We only consider {u,v}∩

PD , /0 by Lemma 3 (m).
Case 1. |T4∩PD|= 4.
In this case, we have {t1t2, t3t4} ⊆ M or {tt1, t2t3} ⊆ M. If {t1t2, t3t4} ⊆ M (or {tt1, t2t3} ⊆ M),

we obtain u,w < PD, v ∈ PD. Since z,v ∈ PD, |T3 ∩ PD| ≤ 3 by Lemma 3 (c). If |T3 ∩ PD| = 2,
|V (H ′xy)∩PD| ≤ 42 by Eq (2.3). If |T3∩PD| = 3, hv ∈M. Thus, {q,q1,d3}∩PD = /0, otherwise, let
PD′ = PD \ {z,z1}, M′ = M \ {zz1}. Then, PD′ is a paired dominating set and PD is not a minimal
paired dominating set, a contradiction. Since zz1 ∈M, we obtain that |T2∩PD| is odd. So |T1∩PD| ≤
12. Therefore, |V (H ′xy)∩PD| ≤ 42 by Eq (2.3), see Figure 3 (a).

Case 2. |T4∩PD|= 3.
If tw ∈M, u < PD or {p, p1,d}∩PD = /0. Otherwise, let PD′ = PD\{t,w},M′ = M \{tw}. Then,

PD′ is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. If
{p, p1,d}∩PD = /0, |Sd ∩PD| ≤ 3. W have |Sd ∩PD|= 3, d3q ∈M, otherwise, |V (H ′xy)∩PD| ≤ 42 by
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Eq (2.3). Thus |Sq∩PD| ≤ 3 by Lemma 3 (j) and Eq (2.3), and |V (H ′xy)∩PD| ≤ 42. If u < PD, v ∈ PD.
Thus, |T3∩PD| ≤ 3 by Lemma 3 (c) and Eq (2.3), and |V (H ′xy)∩PD| ≤ 42.

If tu ∈ M, |T3 ∩PD| ≤ 3 by Lemma 3 (c). We have |T3 ∩PD| = 3, hv ∈ M, otherwise, |V (H ′xy)∩
PD| ≤ 42 by Eq (2.3). Let PD′ = PD \ {t,h}, M′ = M \ {tu,hv}∪ {uv}. Therefore, PD′ is a paired
dominating set and PD is not a minimal paired dominating set, a contradiction.

Case 3. |T4∩PD|= 2.
Now we only consider |T1∩PD| = 22, and {u,v} ⊂ PD. By Lemma 3 (c) and Eq (2.3), |V (H ′xy)∩

PD| ≤ 42.
(b) Since |V (H ′xy)∩PD| is even, it’s sufficient to show |V (H ′xy)∩PD| ≤ 41.
Case 1. |{z1,w1}∩PD|= 0.
We obtain {z,w}⊆ PD, |T2∩PD| ≤ 12 by Lemma 3 (k). If |T4∩PD| ≤ 3, |V (H ′xy)∩PD| ≤ 41 by Eq

(2.3), see Figure 3 (b). If |T4∩PD|= 4, t ∈ PD and Pr(t) , /0 by Lemma 3(d). So, {u,v,u1}∩PD = /0.
By Lemma 3 (m) and Eq (2.3), |V (H ′xy)∩PD| ≤ 40.

Case 2. |{z1,w1}∩PD|= 1.
W.l.o.g. we assume w1 ∈ PD. Thus, ww1 ∈ M, z ∈ PD, |T2 ∩ PD| ≤ 12 by Lemma 3 (k). If

|T4∩PD| = 2, |V (H ′xy)∩PD| ≤ 41 by Eq (2.3). If |T4∩PD| = 4, we obtain Pr(t) = {u} for t ∈ PD,
{u,u1,v}∩PD = /0. By Lemma 3 (m) and Eq (2.3), |V (H ′xy)∩PD| ≤ 40. If |T4∩PD|= 3, tu ∈M. And
v∈ PD, otherwise |T1∩PD| ≤ 21 by Lemma 3 (l), |V (H ′xy)∩PD| ≤ 41 by Eq (2.3). Thus, |T4∩PD| , 4
by Lemma 3 (d). Afterwards, |V (H ′xy)∩PD| ≤ 41 by Eq (2.3).

Case 3. |{z1,w1}∩PD|= 2.
Thus, ww1 ∈M, zz1 ∈M, |T2∩PD| ≤ 12 by Lemma 3 (k).
If |T4∩PD|= 4, t ∈ PD and {u,u1,v}∩PD = /0. By Lemma 3 (m) and Eq (2.3), we have |V (H ′xy)∩

PD| ≤ 40.
If |T4 ∩ PD| = 3, we have tu ∈ M, and |T3 ∩ PD| ≤ 3 by Lemma 3 (c). If |T3 ∩ PD| = 2,

|V (H ′xy) ∩ PD| ≤ 41 by Eq (2.3). If |T3 ∩ PD| = 3, hv ∈ M. Let PD′ = PD \ {t,h},
M′ = M \ {tu,hv}∪{uv}. Therefore, PD′ is a paired dominating set and PD is not a minimal paired
dominating set, a contradiction.

If |T4∩PD|= 2, we only consider |T1∩PD|= 22. Thus, u,v ∈ PD. By Lemma 3 (c), |T3∩PD| ≤ 3.
Therefore, |V (H ′xy)∩PD| ≤ 41 by Eq (2.3). �

Corollary 6. Let PD be a minimal paired dominating set of G′. If |V (H ′uv)∩PD| = 43 if and only if
|{u,v}∩PD|= 1, and, u or v is HI

uv.

Figure 4. (a) |V (H ′xy)∩PD|= 43, (b) |V (H ′xy)∩PD|= 42.
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Lemma 7. If VC1 is a minimal vertex cover of G, there exists a minimal paired dominating set PD1 of
G′ with |PD1|= 42m+2|VC|.

Proof. A minimal paired dominating set PD1 can be constructed by the following manner:
For each vertex x ∈ VC1, we have |N(x)∩VC1| < d(x) ≤ 3. So there exists at least one edge xx1

with x1 <VC1 in G, and maybe exist edges xx2 or xx3.
Therefore, for the edge xx1, put i into PD′ for i ∈ {x,w1, p2, p3, p4, p5, d,d1,d2,d3, q2,q3,q4,q5,

z,z1, h,h2,h3, v, b1,b2,b3,b4, s2,s3,s4,s5, c,c1,c2,c3, r2,r3,r4,r5, a,a1,a2,a3, t1, t2, t3, t4}. Put j into M
for j ∈ {xw1, p5 p4, p3 p2,dd1,d2d3, q2q3,q4q5, zz1, hv, h2h3, b1b2,b3b4, s2s3,s4s5, cc1,c2c3, r2r3,r4r5,
aa1,a2a3, t1t2, t3t4}. See Figure 4 (a).

For edges xx2,xx3, put i into PD′ for i ∈ {x, p2, p3, p4, p5, d,d1,d2,d3, q2,q3,q4,q5, z,z1, u,v,
h2,h3, b1,b2,b3,b4, s2,s3,s4,s5, c,c1,c2,c3, r2,r3,r4,r5, a1,a2,a3,a4, t1, t2, t3, t4}. Put j into M for
j ∈ { p5 p4, p3 p2,dd1,d2d3, q2q3,q4q5, zz1, h2h3, uv, b1b2,b3b4, s2s3,s4s5, cc1,c2c3, r2r3,r4r5,
a1a2,a3a4, tt1, t2t3}. See Figure 4 (b).

Let PD1 = PD′∪VC1. Since vertex x is M-saturated in PD1. Therefore, PD1 is a paired dominating
set of G′.

Since N(w)∩PD1 = {w1}, then PD1 \ {w1} is not a dominating set of G′. So PD1 is a minimal
paired dominating set of G′. And |PD1|= |VC1|+ |VC1|×43+(m−|VC1|)×42. Therefore, |PD1|=
2|VC1|+42m.

�

Let PD be a minimal paired dominating set of G′. Algorithm 1 is to obtain a minimal vertex cover
VC of G, and it terminates in polynomial time.

Algorithm 1 CONST-VC(G′,PD)

Input: A graph G′ with a minimal paired dominating set PD
Output: A graph G with a minimal vertex cover VC
1: VC = PD
2: for every Hxy ⊆ G′ do
3: Delete vertices in H ′xy
4: Add an edge between x and y {obtained the graph G}
5: VC =VC \V (H ′xy)
6: end for
7: VC′ =VC
8: De = /0 {Mo is the set of vertex which is removed from VC.}
9: In = /0 {In is the set of vertex which is added into VC.}

10: Mo = /0 {De is the set of vertex which is added into VC at first, then removed from VC.}
11: while |N[v]∩VC|= d(v)+1 do
12: VC =VC \{v},Mo = Mo∪{v}
13: end while
14: while uv ∈ E(G) and u,v <VC do
15: VC =VC∪{u}, In = In∪{u}
16: for w ∈ N(u) do
17: if |N[w]∩VC|= d(w)+1 then
18: VC =VC \{w},De = De∪{w}
19: end if
20: end for
21: end while
22: return VC
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Lemma 8. If PD is a minimal paired dominating set of G′ and VC is a minimal vertex cover of G
obtained by Algorithm 1, |VC| ≥ |PD|−42m−|VC|.

Proof. Let M be the perfect matching of G[PD], me = V (H ′xy)∩ PD where e = xy ∈ E(G), Me =⋃
e∈E(G)me, Le =V (G)\ (Mo∪ In∪De).

In Algorithm 1, we have:

Claim 9. (a) If v is put into Mo by the while loop (lines 11 to 13) or De (line 18), v will not be put into
In later.

(b) For every vertex v ∈V (G), v will be put into Mo (or De or In) at most once.
(c) Mo∩De = /0, Mo∩ In = /0.
(d) If v ∈ De, there exists a vertex w ∈ N(v)∩ In.
(e) If vertex v ∈ De∩ In, we have v <VC′, that is, v is put into In at first and then into De.
(f) If u,v ∈ De∪Mo, N(v)∩N(u)∩Mo∩De = /0.
(g) If v ∈ De\ In, there exists a vertex u ∈ N(v)∩ (In\De), u <VC′. And |N(u)∩De| ≤ 2. What’s

more, there exists a vertex w ∈ N(u)\VC′. If w ∈ In\De, |(N(u)∪N(w))∩ (De\ In)| ≤ 3.

Proof. (a) After v is put into De (or Mo), every w ∈ N(v) has a neighbor v which does not belong to
VC, so w will not be put into De. Therefore, v will not be put into In later.

(b)–(d) By (a), it is immediate.
(e) By (a) and (c), it is immediate.
(f) Suppose v is put into De∪Mo. By (a), w ∈ N(v) will not be put into De∪Mo.
(g) For vertex v ∈ De\ In, by (d) and (f), let u ∈ N(v)∩ (In\De), and u <VC′, |N(u)∩De| ≤ 2.

Since u ∈ In\De, there exists a vertex w ∈ N(u)\VC′.
Since 1 ≤ |N(u)∩ (De \ In)| ≤ 2, |N(w)∩ (De \ In)| ≤ 2. If w ∈ In \De, we may assume u is put
into In at first. Then N(u)∩ (De \ In)| ≤ 1, otherwise, w will not be put into In later. Therefore,
|(N(u)∪N(w))∩ (De\ In)| ≤ 3. �

Thus,
|VC|= |PD|− |Me|− |Mo|− |De|+ |In|. (2.4)

To show that |Me|+ |Mo|+ |De|− |In| ≤ 42m+ |VC|, we use the following strategy.
Discharging procedure:

In the graph G′, we set the initial charge of every vertex v to be s(v) = 1 for v ∈Mo∪Me∪ (De\ In),
s(v) =−1 for v ∈ In\De, s(v) = 0 otherwise, s(H ′uv) = ∑x∈V (H ′uv)

s(x), s(G′) = ∑v∈V (G′) s(v).
Obviously,

∑
v∈V (G′)

s(v) = |Me|+ |Mo|+ |De|− |In|. (2.5)

We use the discharging procedure, leading to a final charge s′, defined by applying the following rules:
Rule 1: For the vertex v ∈Mo, v is M-saturated. Therefore, v is HI

uv for u. If u is HI
uv, s(v) transmits

1 charge to s(u). If u is HO
uv, s(v) transmits 1 charge to s(H ′uv) which is [I,O].

Rule 2: For each s(H ′uv) = 43, by Corollary 6, s(H ′uv) transmits 1 charge to u ∈VC′.
Rule 3: For the vertex v ∈ De \ In, by Claim 9 (g), there exists a vertex u ∈ N(v)∩ (In \De), and

a vertex w ∈ N(u) \VC′ and |N(u)∩De| ≤ 2. If |N(u)∩De| = 2, s(v) transmits 1 charge to s(u) and
transmits 1 charge to s(H ′uw) which is [0,0]. If |N(u)∩De|= 1, s(v) transmits 2 charge to s(u).

After discharging, we have:
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Claim 10. (a) s′(v)≤ 0 for v ∈Mo∪ (De\ In)∪ (Le\VC)∪ (In∩De).
(b) For each H ′xy, s′(H ′xy)≤ 42.
(c) s′(v)≤ 1 for v ∈ (In\De)∪ (Le∩VC).

Proof. (a) If v∈Mo, by Claim 9 (f), v will not receive any charge by Rules 1 and 3. Since N[v]∩VC′ =
N[v]. By Lemmas 4 and 5, v will not receive any charge by Rule 2. Therefore, s′(v) = 0.

If v∈De\ In, v∈VC′. By Claim 9 (f), N(v)∩Mo = /0. Thus, v will not receive any charge by Rules
1 and 3. Since v is HI

uv for u. By Lemmas 4 and 5, if u ∈VC′, v will not receive any charge by Rule 2.
If u < VC′, v will receive 1 charge at most by Rule 2. Afterwards, by Rule 3, v will transmit 2 charge
to others, so s′(v)≤ 0.

If v ∈ Le\VC, v will not receive any charge by Rules 1, 2 and 3.
If v ∈ In∩De, v < VC′ by Claim 9 (e). Thus, v will not receive any charge by Rules 1 and 2. By

Claim 9 (f), v ∈ De, N(v)∩De = /0. Thus, v will not receive any charge by Rule 3.
(b) If H ′uw is [I, I] or [O,O] or [I,0] or [O,0], s(H ′uw) will not receive any charge by Rules 1, 2 and 3.

If H ′uw is [0,0], s(H ′uw) will not receive any charge by Rules 1 and 2.
If H ′uw is [0,0], by Claim 9 (g), |(N(u)∪N(w))∩ (De\ In)| ≤ 3. Thus, s(H ′uw) will receive 2 charge

at most from s(x) where x ∈ N(v)\{w} by Rule 3.
And if s(H ′uw) = 43, by Corollary 6, there exists a vertex u∈VC′ and u is HI

uw. Therefore, s′(H ′uw) =
42 by Rule 2.

Thus, by Lemmas 4 and 5, s′(H ′uw)≤ 42.
(c) If v ∈ In \De, v < VC′, v will receive any charge by Rules 1 and 2. And there exists a vertex

w ∈ N(v) w <VC′ and w < De\ In. So v will receive 2 charge at most by Rule 3, s′(v)≤−1+2 = 1.
If v ∈ Le∩VC, v will receive any charge by Rule 3. By Lemmas 4, 5 and Corollary 6, H ′uv is [I,0] if

s(H ′uv) = 43. Since v can be M-saturated once, v will receive 1 charge at most by Rules 1 and 2. Thus,
s′(v)≤ 0+1 = 1. �

By Claim 10,

|Me|+ |Mo|+ |De|− |In|
= ∑

uv∈E(G)

s(H ′uv)+ ∑
v∈Mo

s(v)+ ∑
v∈De\In

s(v)− ∑
v∈In\De

s(v)

= ∑
uv∈E(G)

s′(H ′uv)+ ∑
v∈Mo

s′(v)+ ∑
v∈De\In

s′(v)+ ∑
v∈In\De

s′(v)

+ ∑
v∈In∩De

s′(v)+ ∑
v∈Le\VC

s′(v) ∑
v∈Le∩VC

s′(v)

≤ 42m+ |In\De|+ |Le∩VC|
≤ 42m+ |VC|.

Thus, by Eq (2.4),

|VC| = |PD|− |Me|− |Mo|− |De|+ |In|
≥ |PD|−42m−|VC|.

�
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Let PD∗ be a Γpr(G′)-set of G′, and be the Input of Algorithm 1. Then we obtain the Output VC
by Algorithm 1.

Since
|VC∗| ≥ m

∆
=

m
3
.

By Lemma 8,

|VC| ≥ |PD∗|−42m−|VC| ≥ |PD∗|−42×3|VC|− |VC|
|VC| ≥ |PD∗|−127|VC|

Let VC∗ be a VC-set of G. Since |VC| ≤ |VC∗|,

|PD∗| ≤ 128|VC| ≤ 128|VC∗| (2.6)

By Lemma 7, |PD∗| ≥ |PD1|= 42m+2|VC∗|. By Lemma 8,

|PD|− |VC| ≤ |VC|+42m≤ |VC∗|+42m≤ |PD∗|− |VC∗|.

Thus,
|VC∗|− |VC| ≤ |PD∗|− |PD| (2.7)

Therefore, by Eq (2.6) and Eq (2.7), f is an L-reduction with α = 128, β = 1.

3. Conclusions

U pper-PDS for bipartite graphs is proved to be APX-complete with maximum degree 4 and still
open with maximum degree 3. In this paper, we show that U pper-PDS for bipartite graphs with
maximum degree 3 is APX-complete by providing an L-reduction f from MAX-MIN-VC for bipartite
graphs to it.
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