

AIMS Mathematics, 7(1): 1185–1197. DOI:10.3934/math.2022069 Received: 23 May 2021 Accepted: 29 September 2021 Published: 21 October 2021

http://www.aimspress.com/journal/Math

Research article

Upper paired domination in graphs

Huiqin Jiang¹, Pu Wu², Jingzhong Zhang¹ and Yongsheng Rao^{1,*}

- 1 Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
- 2 School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- * Correspondence: Email: rysheng@gzhu.edu.cn.

Abstract: A set $PD \subseteq V(G)$ in a graph *G* is a paired dominating set if every vertex $v \notin PD$ is adjacent to a vertex in *PD* and the subgraph induced by *PD* contains a perfect matching. A paired dominating set *PD* of *G* is minimal if there is no proper subset $PD' \subset PD$ which is a paired dominating set of *G*. A minimal paired dominating set of maximum cardinality is called an upper paired dominating set, denoted by $\Gamma_{pr}(G)$ -set. Denote by *Upper-PDS* the problem of computing a $\Gamma_{pr}(G)$ -set for a given graph *G*. Michael et al. showed the APX-completeness of *Upper-PDS* for bipartite graphs with $\Delta = 4$ [11]. In this paper, we show that *Upper-PDS* is APX-complete for bipartite graphs with $\Delta = 3$.

Keywords: upper paired domination; APX-completeness **Mathematics Subject Classification:** 05C69, 68Q15

1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without multiple edges. We refer the reader to [3, 18] for terminology and notation in graph theory.

Let G = (V, E) be a graph of order *n* with vertex set V(G) and edge set E(G). The open neighborhood of a vertex *v* in *G* is $N_G(v) = N(v) = \{u \in V(G) | uv \in E(G)\}$, and the closed neighborhood of *v* is $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex *v* in the graph *G* is $d_G(v) = d(v) = |N(v)|$. Let $\delta(G) = \delta$ and $\Delta(G) = \Delta$ denote the minimum and maximum degree of a graph *G*, respectively. Denote by G[H] the induced subgraph of *G* induced by *H* with $H \subset V(G)$. A vertex *v* in *G* is a leaf if d(v) = 1. A vertex *u* is a support vertex if *u* has a leaf neighbor. Denote $L(u) = \{v | uv \in E(G), d(v) = 1\}$.

A subset $M \subseteq E(G)$ is called a *matching* in G if no two elements are adjacent in G. A vertex v is said to be *M*-saturated if some edges of M are incident with v, otherwise, v is *M*-unsaturated. If every vertex of G is *M*-saturated, the matching M is perfect. M is a maximum matching if G has no matching

M' with |M'| > |M|. Let *R* be a subgraph of *G*, *M* be a matching of *G*, $v \in V(R)$, $uv \in M$. We say the vertex *v* is R^{I} (resp. R^{O}) if $u \in V(R)$ (resp. $u \notin V(R)$).

A set VC of vertices in a graph G is a *vertex cover* of G if all the edges are touched by the vertices in VC. A vertex cover VC of G is minimal if no proper subset of it is a vertex cover of G. A minimal vertex cover of maximum cardinality is called a VC-set. In 2001, Mishra et al. [13] denote by MAX-MIN-VC the problem of finding a VC-set of G. Bazgan et al. [2] showed that MAX-MIN-VC is APX-complete for cubic graphs.

A set $PD \subseteq V(G)$ in a graph *G* is a *paired dominating set* if every vertex $v \notin PD$ is adjacent to a vertex in *PD* and the subgraph induced by *PD* contains a perfect matching. Paired domination was proposed in 1996 [9] and was studied for example in [4–6, 12, 16, 17]. A paired dominating set *PD* of *G* is minimal if there is no proper subset $PD' \subset PD$ which is a paired dominating set of *G*. A minimal paired dominating set with maximum cardinality is called a $\Gamma_{pr}(G)$ -set. The upper paired domination number of *G* is the cardinality of a $\Gamma_{pr}(G)$ -set of *G*. Denote by *Upper-PDS* the problem of finding a $\Gamma_{pr}(G)$ -set of *G*. Upper paired domination was introduced by Dorbec et al. in [7]. They investigated the relationship between the upper total domination and upper paired domination numbers of a graph. Later, they established bounds on upper paired domination number for connected claw-free graphs [10]. Denote $Pr(v) = \{u | u \notin PD, N(u) \cap PD = \{v\}, uv \in E(G)\}$, where *PD* is a minimal paired dominating set of *G*.

Recently, Michael et al. showed that *Upper-PDS* is NP-hard for split graphs and bipartite graphs, and APX-completeness of *Upper-PDS* for bipartite graphs with $\Delta = 4$ in [11]. In order to improve the results in [11], we show that *Upper-PDS* is APX-complete for bipartite graphs with $\Delta = 3$.

2. APX-completeness

The class APX is the set of NP-optimization problems that allow polynomial-time approximation algorithms with approximation ratio bounded by a constant.

First, we recall the notation of *L*-reduction [1, 15]. Given two NP-optimization problems *H* and *G* and polynomial time transformation *f* from instances of *H* to instances of *G*, we say that *f* is an *L*-reduction if there are positive constants α and β such that for every instance *x* of *H*: (i) $opt_G(f(x)) \leq \alpha opt_H(x)$;

(ii) for every feasible solution y of f(x) with objective value $m_G(f(x), y) = a$, we can find a solution y' of x with $m_H(x, y') = b$ in polynomial time such that $|opt_H(x) - b| \le \beta |opt_G(f(x)) - a|$.

To show that a problem $P \in APX$ is APX-complete, it's enough to show that there is an *L*-reduction from some APX-complete problems to *P*.

Denote by *MAX-MIN-VC* the problem of finding a maximum minimal vertex cover of *G*. Note that, Minimum Domination problem is APX-complete even for bipartite graphs with maximum degree 3 [14], and Minimum Independent Domination problem [8] is the complement problem of *MAX-MIN-VC* in a graph *G*. We can obtain an *L*-reduction from Minimum Domination problem to Minimum Independent Domination problem by replacing every edge *uv* with a path $P_{uv} = uabcv$ with $\alpha = 7$, $\beta = 1$. It's clear that Minimum Independent Domination problem is APX-complete even for bipartite graphs with maximum degree 3, so is *MAX-MIN-VC* (by Theorem 7 in [2]).

In this section, we show Upper-PDS for bipartite graphs with maximum degree 3 is APX-complete

by providing an *L*-reduction f from *MAX-MIN-VC* for bipartite graphs with maximum degree 3. We formalize the optimization problems as follows.

MAX-MIN-VC

Instance: A graph G = (V, E) with maximum degree 3. Solution: A maximum minimal vertex cover of G, VC. Measure: Cardinality of VC.

Upper-PDS

Instance: A graph G = (V, E) with maximum degree 3. Solution: A maximum minimal paired-dominating set *PD*. Measure: Cardinality of *PD*.

Lemma 1. [11] Upper-PDS can be approximated with a factor of 2Δ for graphs without isolated vertices and with maximum degree Δ .

Therefore, *Upper-PDS* is in APX.

Figure 1. The graph H_{xy} .

Let G = (V, E) be a bipartite graph with |E| = m, $\Delta(G) = 3$.

For each edge $xy \in E(G)$, let H_{xy} be the graph which is shown in Figure 1. Let $T_1 = \{a, ..., a_5, b, ..., b_5, r, ..., r_6, s, ..., s_6, c, ..., c_3, u, u_1, v, v_1\}$, $T_2 = \{p, ..., p_6, q, ..., q_6, d, ..., d_3, w, z\}$, $T_3 = \{h, ..., h_5\}$, $T_4 = \{t, ..., t_5\}$, $V(H_{xy}) = V(T_1) \cup V(T_2) \cup V(T_3) \cup V(T_4) \cup \{w_1, z_1, x, y\}$, $|V(H_{xy})| = 70$.

Construct *G'* by replacing each edge $xy \in E(G)$ with the graph H_{xy} .

It's clear, $\Delta(G') = 3$ and G' is a bipartite graph.

Let $S_p = \{p, p_1, ..., p_6\}, S_q = \{q, q_1, ..., q_6\}, S_a = \{a, a_1, ..., a_5\}, S_b = \{b, b_1, ..., b_5\},$ $S_r = \{r, r_1, ..., r_6\}, S_s = \{s, s_1, ..., s_6\}, S_c = \{c, c_1, c_2, c_3\}, S_d = \{d, d_1, d_2, d_3\}.$ Let $xy = e \in E(G), H'_e = H'_{xy} = H_{xy} - \{x, y\}, |V(H'_{xy})| = 68.$

AIMS Mathematics

Let *PD* be a paired dominating set of G', $uv \in E(G)$. We say H'_{uv} is [I, O] if u is H^I_{uv} and v is H^O_{uv} , or if v is H^I_{uv} and u is H^O_{uv} . We say H'_{uv} is [I, 0] if u is H^I_{uv} and $v \notin PD$, or if $u \notin PD$ and v is H^I_{uv} . Analogously, H'_{uv} could be [0, 0] ([I, I] or [O, O] or [O, 0]).

Note that

$$|T_1 \cap PD| = |S_a \cap PD| + |S_b \cap PD| + |S_c \cap PD| + |S_r \cap PD| + |S_s \cap PD| + |\{u, u_1, v, v_1\} \cap PD|,$$
(2.1)

$$T_2 \cap PD| = |S_p \cap PD| + |S_q \cap PD| + |S_d \cap PD| + |\{w, z\} \cap PD|,$$
(2.2)

$$|V(H'_{xy}) \cap PD| = |T_1 \cap PD| + |T_2 \cap PD| + |T_3 \cap PD| + |T_4 \cap PD| + |\{w_1, z_1\} \cap PD|.$$
(2.3)

Figure 2. (a) $|T_2 \cap PD| = 13$, (b) $|T_1 \cap PD| = 22$, (c) $|T_1 \cap PD| = 18$.

The following lemma is immediate.

Lemma 2. Let PD be a minimal paired dominating set of G, M be a perfect matching of G[PD]. If v, u are support vertices, $uv \in E(G)$, $x \in L(v)$, $y \in L(u)$, then $|\{x, y\} \cap PD| \le 1$.

Lemma 3. Let PD be a minimal paired dominating set of G', M be a perfect matching of G'[PD]. For each H_{xy} , we have

(a) $|S_c \cap PD| = 4$ if and only if $r, s \notin PD$, $Pr(c_3) \neq \emptyset$ or $Pr(c) \neq \emptyset$.

- (b) $|S_d \cap PD| = 4$ if and only if $p, q \notin PD$, $Pr(d_3) \neq \emptyset$ or $Pr(d) \neq \emptyset$.
- (c) $|T_3 \cap PD| \leq 4$ with equality if and only if (i) or (ii) holds,
 - (i) $Pr(h_1) \neq \emptyset$ if $h \notin PD$,

ii)
$$N(h) \cap PD = \{h_1\}$$
 or $Pr(h) \neq \emptyset$ if $h \in PD$.

And if *h* is $G[T_3]^O$, $|T_3 \cap PD| = 3$.

- (d) $|T_4 \cap PD| \le 4$ with equality if and only if (i) or (ii) holds, (i) $Pr(t_1) \ne \emptyset$ if $t \notin PD$,
 - (*ii*) $N(t) \cap PD = \{t_1\} \text{ or } Pr(t) \neq \emptyset \text{ if } t \in PD.$ And if t is $G[T_4]^O$, $|T_4 \cap PD| = 3.$
- (e) $|S_a \cap PD| \le 4$ with equality if and only if (i) or (ii) holds, (i) $Pr(a_1) \ne \emptyset$ if $a \notin PD$,
 - (ii) $N(a) \cap PD = \{a_1\} \text{ or } Pr(a) \neq \emptyset \text{ if } a \in PD.$

And if a is $G[S_a]^O$, $|S_a \cap PD| = 3$.

(f) $|S_b \cap PD| \le 4$ with equality if and only if (i) or (ii) holds, (i) $Pr(b_1) \ne \emptyset$ if $b \notin PD$,

(

(ii) $N(b) \cap PD = \{b_1\} \text{ or } Pr(b) \neq \emptyset \text{ if } b \in PD.$ And if b is $G[S_b]^O$, $|S_b \cap PD| = 3.$ (g) $3 \leq |S_r \cap PD| \leq 4.$ And if $r \in PD$ and r is $G[S_r]^O$, $|S_r \cap PD| = 3.$ (h) $3 \leq |S_s \cap PD| \leq 4.$ And if $s \in PD$ and s is $G[S_r]^O$, $|S_s \cap PD| = 3.$ (i) $3 \leq |S_p \cap PD| \leq 4.$ And if $p \in PD$ and p is $G[S_p]^O$, $|S_p \cap PD| = 3.$ (j) $3 \leq |S_q \cap PD| \leq 4.$ And if $q \in PD$ and q is $G[S_q]^O$, $|S_q \cap PD| = 3.$ (k) $|T_2 \cap PD| \leq 13$ with equality if and only if $|\{w, z\} \cap PD| = 1.$ (l) $|T_1 \cap PD| \leq 22$ with equality if and only if $\{u, v\} \subseteq PD.$ (m) If $\{u, v\} \cap PD = \emptyset$, $|T_1 \cap PD| \leq 18.$

Proof. (a) W.l.o.g. we consider $r \in PD$. If $rc \in M$, $|S_c \cap PD| \neq 4$. Otherwise, $c_1c_2, c_3s \in M$ and let $PD' = PD \setminus \{c_1, c_2\}, M' = M \setminus \{c_1c_2\}$. Then, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. If $rc \notin M$, $|S_c \cap PD| \neq 4$. Otherwise, $cc_1, c_2c_3 \in M$ and let $PD' = PD \setminus \{c, c_1\}, M' = M \setminus \{cc_1\}$. Then, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

If $Pr(c_3) = \emptyset$ and $Pr(c) = \emptyset$, let $PD' = PD \setminus \{c, c_3\}$ and $M' = M \setminus \{cc_1, c_2c_3\} \cup \{c_1c_2\}$. Then, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

(b) The proof is analogous to that of (a), and the proof is omitted.

(c) Clearly, $|T_3 \cap PD| \leq 4$. If $|T_3 \cap PD| = 4$, $\{h_1, h_2, h_3, h_4\} \subseteq PD$ or $\{h, h_1, h_2, h_3\} \subseteq PD$. If $\{h_1, h_2, h_3, h_4\} \subseteq PD$, $Pr(h_1) \neq \emptyset$. Otherwise, let $PD' = PD \setminus \{h_4, h_1\}$, $M' = M \setminus \{h_3h_4, h_1h_2\} \cup \{h_2h_3\}$. Then, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. If $\{h, h_1, h_2, h_3\} \subseteq PD$, $N(h) \cap PD = \{h_1\}$ or $Pr(h) \neq \emptyset$. Otherwise, let $PD' = PD \setminus \{h, h_1\}$, $M' = M \setminus \{hh_1\}$. Then, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

If *h* is $G[T_3]^O$, and since $|T_3 \setminus \{h\} \cap PD|$ is even, we have $|T_3 \cap PD| = 3$.

(d)–(f) We obtain the conclusions with a similar proof of (c).

(g) Clearly, $3 \le |S_r \cap PD| \ne 6$. If $|S_r \cap PD| = 5$, we obtain $S_r \cap PD = \{r, r_1, r_2, r_3, r_4\}$ or $S_r \cap PD = \{r, r_2, r_3, r_4, r_5\}$ by Lemma 2. Therefore, *PD* is not a minimal paired dominating set, a contradiction. Thus, $3 \le |S_r \cap PD| \le 4$.

If *r* is $G[S_r]^O$, and since $|S_r \setminus \{r\} \cap PD|$ is even, we have $|S_r \cap PD| = 3$.

(k) Since $|S_d \cap PD| \le 4$, $|T_2 \cap PD| \le 14$ by (i)–(j) and Eq (2.1).

If $|\{w, z\} \cap PD| = 0, |T_2 \cap PD| \le 12.$

If $|\{w, z\} \cap PD| = 1$, $|T_2 \cap PD| \le 13$.

Then we consider $|\{w,z\} \cap PD| = 2$. If w is $G[T_2]^I$ or z is $G[T_2]^I$, we may assume w is $G[T_2]^I$. We obtain $wp \in M$, $|S_p \cap PD| = 3$ by (i), $|S_d \cap PD| \le 3$ by (b). Therefore, $|T_2 \cap PD| \le 12$ by Eq (2.1). If w, z are $G[T_2]^O$, $|S_d \cap PD| \le 3$ by (b). Since $|T_2 \cap PD|$ is even, $|T_2 \cap PD| \le 12$ by Eq (2.1).

Thus, $|T_2 \cap PD| \le 13$ with equality if and only if $|\{w, z\} \cap PD| = 1$, see Figure 2 (a).

(h)–(j) Using similar arguments of (g), the conclusions follow.

(l)–(m) We discuss the following cases.

Case 1. $|\{u, v\} \cap PD| = 2$.

In this case, we have $|\{u_1, v_1\} \cap PD| \ge 1$, $|S_a \cap PD| \ge 3$ and $|S_c \cap PD| \ge 3$, otherwise, $|T_1 \cap PD| \le 22$ by (e)–(h) and Eq (2.2).

W.l.o.g. we assume $u_1 \in PD$.

AIMS Mathematics

First, we assume that $|S_a \cap PD| = 4$. We obtain $aa_1, uu_1 \in M$, $\{r, c, r_1\} \cap PD = \emptyset$ by (e). Thus, $|S_c \cap PD| \leq 3$. Then, we consider $|S_c \cap PD| = 3$, that is, $c_3s \in M$. By (h), we have $|S_s \cap PD| = 3$. Therefore, $|T_1 \cap PD| \leq 22$ by Eq (2.2).

Then, we consider $|S_a \cap PD| = 3$. Therefore, $v_1 \in PD$, otherwise, $|T_1 \cap PD| \le 22$ by Eq (2.2). We have $|S_b \cap PD| = 4$, otherwise, $|T_1 \cap PD| \le 22$ by Eq (2.2). By (f), $\{s, s_1, c_3\} \cap PD = \emptyset$. Thus, $|S_c \cap PD| \le 3$. Therefore, $|T_1 \cap PD| \le 22$ by Eq (2.2), see Figure 2 (b).

Case 2. $|\{u, v\} \cap PD| = 1.$

W.l.o.g. we assume $u \in PD$.

We have $|\{u_1, v_1\} \cap PD| \ge 1$ and $|S_a \cap PD| \ge 3$, otherwise, $|T_1 \cap PD| \le 21$ by Eq (2.2).

Case 2.1 $u_1 \in PD$.

If $|S_a \cap PD| = 4$, $\{r, r_1, c\} \cap PD = \emptyset$ by (e). Then $|S_c \cap PD| \le 3$. If $|S_c \cap PD| = 3$, we have $c_3s \in M$, $|S_s \cap PD| \le 3$ by (h). Therefore, $|T_1 \cap PD| \le 21$ by Eq (2.2). If $|S_c \cap PD| = 2$, $|T_1 \cap PD| \le 21$ by Eq (2.2).

Now we consider $|S_a \cap PD| = 3$. If $v_1 \notin PD$, $|T_1 \cap PD| \le 21$ by Eq (2.2). Thus, $v_1 \in PD$, that is, $v_1b \in M$. Therefore, $|S_b \cap PD| = 3$ by (f), $|T_1 \cap PD| \le 21$ by Eq (2.2).

Case 2.2 $u_1 \notin PD$.

If $v_1 \in PD$, $v_1b \in M$. Therefore, $|S_b \cap PD| = 3$ by (f), $|T_1 \cap PD| \le 21$ by Eq (2.2). Thus, $v_1 \notin PD$, and $|T_1 \cap PD| \le 21$ by Eq (2.2).

Case 3. $|\{u, v\} \cap PD| = 0.$

In this case, $|T_1 \cap PD|$ is even.

Case 3.1 $|\{u_1, v_1\} \cap PD| \ge 1$.

W.l.o.g. we assume $u_1 \in PD$. Then $u_1a \in M$, $|S_a \cap PD| = 3$ by (e). If $v_1 \notin PD$, $b \in PD$. By (a), $|S_c \cap PD| \leq 3$. Therefore, $|T_1 \cap PD| \leq 19$ by Eq (2.2). If $v_1 \in PD$, we obtain $v_1b \in M$, $|S_b \cap PD| = 3$ by (f). $|S_c \cap PD| \leq 3$ by (a). Therefore, $|T_1 \cap PD| \leq 19$ by Eq (2.2).

Case 3.2 $|\{u_1, v_1\} \cap PD| = 0.$

In this case, $a, b \in PD$. By (a), $|S_c \cap PD| \leq 3$. Therefore, $|T_1 \cap PD| \leq 19$ by Eq (2.2). Note that $|T_1 \cap PD|$ is even, so $|T_1 \cap PD| \leq 18$, see Figure 2 (c). Thus, (l) and (m) hold.

Lemma 4. Let PD be a minimal paired dominating set of G'.

 $(a) |V(H'_{xy}) \cap PD| \le 43.$

(b) If $\{xw_1, yz_1\} \subset M$, $|V(H'_{xy}) \cap PD| \leq 42$.

(c) If $\{xw_1, yz_1\} \cap M = \emptyset$ and $\{w_1, z_1\} \subseteq PD$, $|V(H'_{xy}) \cap PD| \le 42$.

(d) If $xw_1 \notin M(G)$, $w_1 \in PD$ and $y \notin PD$, then $|V(H'_{xy}) \cap PD| \le 42$.

Proof. (a) By Lemma 3 and Eq (2.3),

$$|V(H'_{xy}) \cap PD|$$

=|T₁ \cap PD| + |T₂ \cap PD| + |T₃ \cap PD| + |T₄ \cap PD| + |{w₁, z₁} \cap PD|
<22 + 13 + 4 + 4 + 2 = 45.

We consider that $\{w_1, z_1\} \cap PD \neq \emptyset$, $|T_4 \cap PD| \ge 3$ and $|T_3 \cap PD| \ge 3$, otherwise, $|V(H'_{xy}) \cap PD| \le 43$. Then, w.l.o.g. we assume that $w_1 \in PD$.

If $|T_4 \cap PD| = 4$, $\{tt_1, t_2t_3\} \subseteq M$ or $\{t_1t_2, t_3t_4\} \subseteq M$.

AIMS Mathematics

If $\{tt_1, t_2t_3\} \subseteq M$, $Pr(t) \neq \emptyset$ or $N(t) \cap PD = \{t_1\}$. If $Pr(t) \neq \emptyset$, $u \in Pr(t)$. By Lemma 3 (m), $|V(H'_{xy}) \cap PD| \leq 43$. If $N(t) \cap PD = \{t_1\}$, we have $u, w_1 \notin PD$, $|T_1 \cap PD| \leq 21$ by Lemma 3 (l). Then we obtain $z \in PD$, otherwise, $|V(H'_{xy}) \cap PD| \leq 43$ by Lemma 3 (k) and Eq (2.3). If $|T_3 \cap PD| = 4$, we have $v \notin PD$, therefore, $|V(H'_{xy}) \cap PD| \leq 43$ by Eq (2.3). If $|T_3 \cap PD| = 3$, $|V(H'_{xy}) \cap PD| \leq 43$ by Eq (2.3).

If $\{t_1t_2, t_3t_4\} \subseteq M$, $\{w, u\} \cap PD = \emptyset$. By Lemma 3 (l), $|T_1 \cap PD| \le 21$, and $v \in PD$. If $z \notin PD$, $|V(H'_{xy}) \cap PD| \le 43$ by Lemma 3 (k) and Eq (2.3). If $z \in PD$, $|T_3 \cap PD| \le 3$ by Lemma 3 (c). Therefore, $|V(H'_{xy}) \cap PD| \le 43$ by Eq (2.3).

If $|T_4 \cap PD| = 3$, we consider $|T_1 \cap PD| = 22$, and $\{u, v, z_1\} \in PD$. We have $|T_3 \cap PD| \neq 4$ by Lemma 3 (c). Therefore, $|V(H'_{xy}) \cap PD| \leq 43$ by Eq (2.3).

(b)–(d) Since $|V(H'_{xy}) \cap PD| \le 43$, and, $|V(H'_{xy}) \cap PD|$ is even in those cases, so $|V(H'_{xy}) \cap PD| \le 42$.

Figure 3. (a) $|V(H'_{xy}) \cap PD| = 41$, (b) $|V(H'_{xy}) \cap PD| = 40$.

Lemma 5. Let PD be a minimal paired dominating set of G', M be a perfect matching of G'[PD]. (a) If $\{x, w_1, y, z_1\} \subset PD$, $xw_1 \in M(G)$ and $yz_1 \notin M$, we have $|V(H'_{xy}) \cap PD| \le 41$. (b) If $\{x, y\} \cap PD = \emptyset$, $|V(H'_{xy}) \cap PD| \le 40$.

Proof. (a) In this case, we have $z \in PD$ and $zz_1 \in M$.

Since $|V(H'_{xy}) \cap PD|$ is odd, it's sufficient to show $|V(H'_{xy}) \cap PD| \le 42$. We only consider $\{u, v\} \cap PD \neq \emptyset$ by Lemma 3 (m).

Case 1. $|T_4 \cap PD| = 4$.

In this case, we have $\{t_1t_2, t_3t_4\} \subseteq M$ or $\{tt_1, t_2t_3\} \subseteq M$. If $\{t_1t_2, t_3t_4\} \subseteq M$ (or $\{tt_1, t_2t_3\} \subseteq M$), we obtain $u, w \notin PD$, $v \in PD$. Since $z, v \in PD$, $|T_3 \cap PD| \leq 3$ by Lemma 3 (c). If $|T_3 \cap PD| = 2$, $|V(H'_{xy}) \cap PD| \leq 42$ by Eq (2.3). If $|T_3 \cap PD| = 3$, $hv \in M$. Thus, $\{q, q_1, d_3\} \cap PD = \emptyset$, otherwise, let $PD' = PD \setminus \{z, z_1\}, M' = M \setminus \{zz_1\}$. Then, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. Since $zz_1 \in M$, we obtain that $|T_2 \cap PD|$ is odd. So $|T_1 \cap PD| \leq 12$. Therefore, $|V(H'_{xy}) \cap PD| \leq 42$ by Eq (2.3), see Figure 3 (a).

Case 2. $|T_4 \cap PD| = 3$.

If $tw \in M$, $u \notin PD$ or $\{p, p_1, d\} \cap PD = \emptyset$. Otherwise, let $PD' = PD \setminus \{t, w\}, M' = M \setminus \{tw\}$. Then, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. If $\{p, p_1, d\} \cap PD = \emptyset, |S_d \cap PD| \le 3$. Where $|S_d \cap PD| = 3, d_3q \in M$, otherwise, $|V(H'_{xy}) \cap PD| \le 42$ by

Eq (2.3). Thus $|S_q \cap PD| \le 3$ by Lemma 3 (j) and Eq (2.3), and $|V(H'_{xy}) \cap PD| \le 42$. If $u \notin PD$, $v \in PD$. Thus, $|T_3 \cap PD| \le 3$ by Lemma 3 (c) and Eq (2.3), and $|V(H'_{xy}) \cap PD| \le 42$.

If $tu \in M$, $|T_3 \cap PD| \leq 3$ by Lemma 3 (c). We have $|T_3 \cap PD| = 3$, $hv \in M$, otherwise, $|V(H'_{xy}) \cap PD| \leq 42$ by Eq (2.3). Let $PD' = PD \setminus \{t, h\}$, $M' = M \setminus \{tu, hv\} \cup \{uv\}$. Therefore, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

Case 3. $|T_4 \cap PD| = 2$.

Now we only consider $|T_1 \cap PD| = 22$, and $\{u, v\} \subset PD$. By Lemma 3 (c) and Eq (2.3), $|V(H'_{xy}) \cap PD| \leq 42$.

(b) Since $|V(H'_{xy}) \cap PD|$ is even, it's sufficient to show $|V(H'_{xy}) \cap PD| \le 41$.

Case 1. $|\{z_1, w_1\} \cap PD| = 0.$

We obtain $\{z, w\} \subseteq PD$, $|T_2 \cap PD| \le 12$ by Lemma 3 (k). If $|T_4 \cap PD| \le 3$, $|V(H'_{xy}) \cap PD| \le 41$ by Eq (2.3), see Figure 3 (b). If $|T_4 \cap PD| = 4$, $t \in PD$ and $Pr(t) \ne \emptyset$ by Lemma 3(d). So, $\{u, v, u_1\} \cap PD = \emptyset$. By Lemma 3 (m) and Eq (2.3), $|V(H'_{xy}) \cap PD| \le 40$.

Case 2. $|\{z_1, w_1\} \cap PD| = 1.$

W.l.o.g. we assume $w_1 \in PD$. Thus, $ww_1 \in M$, $z \in PD$, $|T_2 \cap PD| \le 12$ by Lemma 3 (k). If $|T_4 \cap PD| = 2$, $|V(H'_{xy}) \cap PD| \le 41$ by Eq (2.3). If $|T_4 \cap PD| = 4$, we obtain $Pr(t) = \{u\}$ for $t \in PD$, $\{u, u_1, v\} \cap PD = \emptyset$. By Lemma 3 (m) and Eq (2.3), $|V(H'_{xy}) \cap PD| \le 40$. If $|T_4 \cap PD| = 3$, $tu \in M$. And $v \in PD$, otherwise $|T_1 \cap PD| \le 21$ by Lemma 3 (l), $|V(H'_{xy}) \cap PD| \le 41$ by Eq (2.3). Thus, $|T_4 \cap PD| \ne 4$ by Lemma 3 (d). Afterwards, $|V(H'_{xy}) \cap PD| \le 41$ by Eq (2.3).

Case 3. $|\{z_1, w_1\} \cap PD| = 2.$

Thus, $ww_1 \in M$, $zz_1 \in M$, $|T_2 \cap PD| \le 12$ by Lemma 3 (k).

If $|T_4 \cap PD| = 4$, $t \in PD$ and $\{u, u_1, v\} \cap PD = \emptyset$. By Lemma 3 (m) and Eq (2.3), we have $|V(H'_{xy}) \cap PD| \le 40$.

If $|T_4 \cap PD| = 3$, we have $tu \in M$, and $|T_3 \cap PD| \leq 3$ by Lemma 3 (c). If $|T_3 \cap PD| = 2$, $|V(H'_{xy}) \cap PD| \leq 41$ by Eq (2.3). If $|T_3 \cap PD| = 3$, $hv \in M$. Let $PD' = PD \setminus \{t, h\}$, $M' = M \setminus \{tu, hv\} \cup \{uv\}$. Therefore, PD' is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

If $|T_4 \cap PD| = 2$, we only consider $|T_1 \cap PD| = 22$. Thus, $u, v \in PD$. By Lemma 3 (c), $|T_3 \cap PD| \le 3$. Therefore, $|V(H'_{xy}) \cap PD| \le 41$ by Eq (2.3).

Corollary 6. Let PD be a minimal paired dominating set of G'. If $|V(H'_{uv}) \cap PD| = 43$ if and only if $|\{u,v\} \cap PD| = 1$, and, u or v is H^I_{uv} .

Figure 4. (a) $|V(H'_{xy}) \cap PD| = 43$, (b) $|V(H'_{xy}) \cap PD| = 42$.

AIMS Mathematics

Lemma 7. If VC_1 is a minimal vertex cover of G, there exists a minimal paired dominating set PD_1 of G' with $|PD_1| = 42m + 2|VC|$.

Proof. A minimal paired dominating set PD_1 can be constructed by the following manner:

For each vertex $x \in VC_1$, we have $|N(x) \cap VC_1| < d(x) \le 3$. So there exists at least one edge xx_1 with $x_1 \notin VC_1$ in *G*, and maybe exist edges xx_2 or xx_3 .

Therefore, for the edge xx_1 , put *i* into PD' for $i \in \{x, w_1, p_2, p_3, p_4, p_5, d, d_1, d_2, d_3, q_2, q_3, q_4, q_5, z, z_1, h, h_2, h_3, v, b_1, b_2, b_3, b_4, s_2, s_3, s_4, s_5, c, c_1, c_2, c_3, r_2, r_3, r_4, r_5, a, a_1, a_2, a_3, t_1, t_2, t_3, t_4\}$. Put *j* into *M* for $j \in \{xw_1, p_5p_4, p_3p_2, dd_1, d_2d_3, q_2q_3, q_4q_5, zz_1, hv, h_2h_3, b_1b_2, b_3b_4, s_2s_3, s_4s_5, cc_1, c_2c_3, r_2r_3, r_4r_5, aa_1, a_2a_3, t_1t_2, t_3t_4\}$. See Figure 4 (a).

For edges xx_2, xx_3 , put *i* into *PD'* for $i \in \{x, p_2, p_3, p_4, p_5, d, d_1, d_2, d_3, q_2, q_3, q_4, q_5, z, z_1, u, v, h_2, h_3, b_1, b_2, b_3, b_4, s_2, s_3, s_4, s_5, c, c_1, c_2, c_3, r_2, r_3, r_4, r_5, a_1, a_2, a_3, a_4, t_1, t_2, t_3, t_4\}$. Put *j* into *M* for $j \in \{p_5p_4, p_3p_2, dd_1, d_2d_3, q_2q_3, q_4q_5, zz_1, h_2h_3, uv, b_1b_2, b_3b_4, s_2s_3, s_4s_5, cc_1, c_2c_3, r_2r_3, r_4r_5, a_1a_2, a_3a_4, tt_1, t_2t_3\}$. See Figure 4 (b).

Let $PD_1 = PD' \cup VC_1$. Since vertex *x* is *M*-saturated in PD_1 . Therefore, PD_1 is a paired dominating set of *G'*.

Since $N(w) \cap PD_1 = \{w_1\}$, then $PD_1 \setminus \{w_1\}$ is not a dominating set of G'. So PD_1 is a minimal paired dominating set of G'. And $|PD_1| = |VC_1| + |VC_1| \times 43 + (m - |VC_1|) \times 42$. Therefore, $|PD_1| = 2|VC_1| + 42m$.

Let *PD* be a minimal paired dominating set of G'. Algorithm 1 is to obtain a minimal vertex cover *VC* of *G*, and it terminates in polynomial time.

Algorithm 1 CONST-VC(G', PD)

```
Input: A graph G' with a minimal paired dominating set PD
Output: A graph G with a minimal vertex cover VC
 1: VC = PD
 2: for every H_{xy} \subseteq G' do
       Delete vertices in H'_{xy}
 3:
       Add an edge between x and y {obtained the graph G}
 4:
       VC = VC \setminus V(H'_{xy})
 5:
 6: end for
 7: VC' = VC
 8: De = \emptyset {Mo is the set of vertex which is removed from VC.}
 9: In = \emptyset  {In is the set of vertex which is added into VC.}
10: Mo = \emptyset {De is the set of vertex which is added into VC at first, then removed from VC.}
11: while |N[v] \cap VC| = d(v) + 1 do
12:
        VC = VC \setminus \{v\}, Mo = Mo \cup \{v\}
13: end while
14: while uv \in E(G) and u, v \notin VC do
15:
        VC = VC \cup \{u\}, In = In \cup \{u\}
16:
        for w \in N(u) do
17:
           if |N[w] \cap VC| = d(w) + 1 then
               VC = VC \setminus \{w\}, De = De \cup \{w\}
18:
19:
           end if
20:
        end for
21: end while
22: return VC
```

Lemma 8. If PD is a minimal paired dominating set of G' and VC is a minimal vertex cover of G obtained by Algorithm 1, $|VC| \ge |PD| - 42m - |VC|$.

Proof. Let *M* be the perfect matching of G[PD], $m_e = V(H'_{xy}) \cap PD$ where $e = xy \in E(G)$, $M_e = \bigcup_{e \in E(G)} m_e$, $Le = V(G) \setminus (Mo \cup In \cup De)$.

In Algorithm 1, we have:

Claim 9. (a) If v is put into Mo by the while loop (lines 11 to 13) or De (line 18), v will not be put into In later.

(b) For every vertex $v \in V(G)$, v will be put into Mo (or De or In) at most once.

(c) $Mo \cap De = \emptyset$, $Mo \cap In = \emptyset$.

(d) If $v \in De$, there exists a vertex $w \in N(v) \cap In$.

(e) If vertex $v \in De \cap In$, we have $v \notin VC'$, that is, v is put into In at first and then into De.

(f) If $u, v \in De \cup Mo$, $N(v) \cap N(u) \cap Mo \cap De = \emptyset$.

(g) If $v \in De \setminus In$, there exists a vertex $u \in N(v) \cap (In \setminus De)$, $u \notin VC'$. And $|N(u) \cap De| \leq 2$. What's more, there exists a vertex $w \in N(u) \setminus VC'$. If $w \in In \setminus De$, $|(N(u) \cup N(w)) \cap (De \setminus In)| \leq 3$.

Proof. (a) After v is put into De (or Mo), every $w \in N(v)$ has a neighbor v which does not belong to VC, so w will not be put into De. Therefore, v will not be put into In later.

(b)–(d) By (a), it is immediate.

(e) By (a) and (c), it is immediate.

(f) Suppose v is put into $De \cup Mo$. By (a), $w \in N(v)$ will not be put into $De \cup Mo$.

(g) For vertex $v \in De \setminus In$, by (d) and (f), let $u \in N(v) \cap (In \setminus De)$, and $u \notin VC'$, $|N(u) \cap De| \le 2$.

Since $u \in In \setminus De$, there exists a vertex $w \in N(u) \setminus VC'$.

Since $1 \le |N(u) \cap (De \setminus In)| \le 2$, $|N(w) \cap (De \setminus In)| \le 2$. If $w \in In \setminus De$, we may assume *u* is put into *In* at first. Then $N(u) \cap (De \setminus In)| \le 1$, otherwise, *w* will not be put into *In* later. Therefore, $|(N(u) \cup N(w)) \cap (De \setminus In)| \le 3$.

Thus,

$$|VC| = |PD| - |M_e| - |Mo| - |De| + |In|.$$
(2.4)

To show that $|M_e| + |Mo| + |De| - |In| \le 42m + |VC|$, we use the following strategy.

Discharging procedure:

In the graph *G'*, we set the initial charge of every vertex *v* to be s(v) = 1 for $v \in Mo \cup M_e \cup (De \setminus In)$, s(v) = -1 for $v \in In \setminus De$, s(v) = 0 otherwise, $s(H'_{uv}) = \sum_{x \in V(H'_{uv})} s(x)$, $s(G') = \sum_{v \in V(G')} s(v)$.

Obviously,

$$\sum_{v \in V(G')} s(v) = |M_e| + |Mo| + |De| - |In|.$$
(2.5)

We use the discharging procedure, leading to a final charge s', defined by applying the following rules: Rule 1: For the vertex $v \in Mo$, v is *M*-saturated. Therefore, v is H_{uv}^I for u. If u is H_{uv}^I , s(v) transmits 1 charge to s(u). If u is H_{uv}^O , s(v) transmits 1 charge to $s(H_{uv}')$ which is [I, O].

Rule 2: For each $s(H'_{uv}) = 43$, by Corollary 6, $s(H'_{uv})$ transmits 1 charge to $u \in VC'$.

Rule 3: For the vertex $v \in De \setminus In$, by Claim 9 (g), there exists a vertex $u \in N(v) \cap (In \setminus De)$, and a vertex $w \in N(u) \setminus VC'$ and $|N(u) \cap De| \le 2$. If $|N(u) \cap De| = 2$, s(v) transmits 1 charge to s(u) and transmits 1 charge to $s(H'_{uw})$ which is [0,0]. If $|N(u) \cap De| = 1$, s(v) transmits 2 charge to s(u).

After discharging, we have:

AIMS Mathematics

Claim 10. (a) $s'(v) \leq 0$ for $v \in Mo \cup (De \setminus In) \cup (Le \setminus VC) \cup (In \cap De)$. (b) For each H'_{xy} , $s'(H'_{xy}) \leq 42$. (c) $s'(v) \leq 1$ for $v \in (In \setminus De) \cup (Le \cap VC)$.

Proof. (a) If $v \in Mo$, by Claim 9 (f), v will not receive any charge by Rules 1 and 3. Since $N[v] \cap VC' = N[v]$. By Lemmas 4 and 5, v will not receive any charge by Rule 2. Therefore, s'(v) = 0.

If $v \in De \setminus In$, $v \in VC'$. By Claim 9 (f), $N(v) \cap Mo = \emptyset$. Thus, v will not receive any charge by Rules 1 and 3. Since v is H_{uv}^I for u. By Lemmas 4 and 5, if $u \in VC'$, v will not receive any charge by Rule 2. If $u \notin VC'$, v will receive 1 charge at most by Rule 2. Afterwards, by Rule 3, v will transmit 2 charge to others, so $s'(v) \leq 0$.

If $v \in Le \setminus VC$, v will not receive any charge by Rules 1, 2 and 3.

If $v \in In \cap De$, $v \notin VC'$ by Claim 9 (e). Thus, v will not receive any charge by Rules 1 and 2. By Claim 9 (f), $v \in De$, $N(v) \cap De = \emptyset$. Thus, v will not receive any charge by Rule 3.

(b) If H'_{uw} is [I,I] or [O,O] or [I,0] or [O,0], $s(H'_{uw})$ will not receive any charge by Rules 1, 2 and 3. If H'_{uw} is [0,0], $s(H'_{uw})$ will not receive any charge by Rules 1 and 2.

If H'_{uw} is [0,0], by Claim 9 (g), $|(N(u) \cup N(w)) \cap (De \setminus In)| \le 3$. Thus, $s(H'_{uw})$ will receive 2 charge at most from s(x) where $x \in N(v) \setminus \{w\}$ by Rule 3.

And if $s(H'_{uw}) = 43$, by Corollary 6, there exists a vertex $u \in VC'$ and u is H^I_{uw} . Therefore, $s'(H'_{uw}) = 42$ by Rule 2.

Thus, by Lemmas 4 and 5, $s'(H'_{uw}) \le 42$.

(c) If $v \in In \setminus De$, $v \notin VC'$, v will receive any charge by Rules 1 and 2. And there exists a vertex $w \in N(v)$ $w \notin VC'$ and $w \notin De \setminus In$. So v will receive 2 charge at most by Rule 3, $s'(v) \leq -1+2=1$.

If $v \in Le \cap VC$, v will receive any charge by Rule 3. By Lemmas 4, 5 and Corollary 6, H'_{uv} is [I,0] if $s(H'_{uv}) = 43$. Since v can be *M*-saturated once, v will receive 1 charge at most by Rules 1 and 2. Thus, $s'(v) \leq 0 + 1 = 1$.

By Claim 10,

$$\begin{split} &|M_e| + |Mo| + |De| - |In| \\ &= \sum_{uv \in E(G)} s(H'_{uv}) + \sum_{v \in Mo} s(v) + \sum_{v \in De \setminus In} s(v) - \sum_{v \in In \setminus De} s(v) \\ &= \sum_{uv \in E(G)} s'(H'_{uv}) + \sum_{v \in Mo} s'(v) + \sum_{v \in De \setminus In} s'(v) + \sum_{v \in In \setminus De} s'(v) \\ &+ \sum_{v \in In \cap De} s'(v) + \sum_{v \in Le \setminus VC} s'(v) \sum_{v \in Le \cap VC} s'(v) \\ &\leq 42m + |In \setminus De| + |Le \cap VC| \\ &\leq 42m + |VC|. \end{split}$$

Thus, by Eq (2.4),

$$|VC| = |PD| - |M_e| - |Mo| - |De| + |In|$$

 $\geq |PD| - 42m - |VC|.$

AIMS Mathematics

Let PD^* be a $\Gamma_{pr}(G')$ -set of G', and be the **Input** of Algorithm 1. Then we obtain the **Output** VC by Algorithm 1.

Since

$$|VC^*| \ge \frac{m}{\Delta} = \frac{m}{3}$$

By Lemma 8,

$$|VC| \ge |PD^*| - 42m - |VC| \ge |PD^*| - 42 \times 3|VC| - |VC|$$

 $|VC| \ge |PD^*| - 127|VC|$

Let VC^* be a VC-set of G. Since $|VC| \leq |VC^*|$,

$$|PD^*| \le 128|VC| \le 128|VC^*| \tag{2.6}$$

By Lemma 7, $|PD^*| \ge |PD_1| = 42m + 2|VC^*|$. By Lemma 8,

$$|PD| - |VC| \le |VC| + 42m \le |VC^*| + 42m \le |PD^*| - |VC^*|.$$

Thus,

$$|VC^*| - |VC| \le |PD^*| - |PD|$$
(2.7)

Therefore, by Eq (2.6) and Eq (2.7), f is an L-reduction with $\alpha = 128$, $\beta = 1$.

3. Conclusions

Upper-PDS for bipartite graphs is proved to be APX-complete with maximum degree 4 and still open with maximum degree 3. In this paper, we show that Upper-PDS for bipartite graphs with maximum degree 3 is APX-complete by providing an *L*-reduction *f* from *MAX-MIN-VC* for bipartite graphs to it.

Acknowledgments

This work was supported by the National Key R&D Program of China (No. 2018YFB1005100), the Guangzhou Academician and Expert Workstation (No. 20200115-9) and the Innovation Ability Training Program for Doctoral student of Guangzhou University (No. 2019GDJC-D01).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. G. Ausiello, M. Protasi, A. Marchettispaccamela, G. Gambosi, P. Crescenzi, V. Kann, *Complexity* and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer-Verlag, Berlin, 1999.

- 2. C. Bazgan, L. Brankovic, K. Casel, H. Fernau, On the complexity landscape of the domination chain, *In: Proceedings of the Second International Conference on Algorithms and Discrete Applied Mathematics*, 2016, 61–72.
- 3. J. A. Bondy, U. S. R. Murty, Graph theory with applications, USA, 1976.
- 4. L. Chen, C. Lu, Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, *J. Comb. Optim.*, **19** (2010), 457–470. doi: 10.1007/s10878-008-9177-6.
- 5. E. J. Cockayne, O. Favaron, C. M. Mynhardt, Paired-domination in claw-free cubic graphs, *Graphs Combinatorics*, **20** (2004), 447–456. doi: 10.1007/s00373-004-0577-9.
- 6. P. Dorbec, S. Gravier, M. A. Henning, Paired-domination in generalized claw-free graphs, *J. Comb. Optim.*, **14** (2007), 1–7. doi: 10.1007/s10878-006-9022-8.
- 7. P. Dorbec, M. A. Henning, J. Mccoy, Upper total domination versus upper paired-domination, *Quaestiones Mathematicae*, **30** (2007), 1–12. doi: 10.2989/160736007780205693.
- 8. M. R. Garey, D. S. Johnson, *Computers and intractability: A guide to the theory of NP-completeness*, WH Freeman & Co., New York, 1979.
- 9. T. W. Haynes, P. J. Slater, Paired-domination in graphs, *Networks*, **32** (1998), 199–206. doi: 10.1002/(SICI)1097 − 0037(199810)32 : 3 < 199 :: *AID* − *NET*4 > 3.0.*CO*; 2 − *F*.
- 10. M. A. Henning, P. Dorbec, Upper paired-domination in claw-free graphs, J. Comb. Optim., 22 (2011), 235–251. doi: 10.1007/s10878-009-9275-0.
- 11. M. A. Henning, D. Pradhan, Algorithmic aspects of upper paired-domination in graphs, *Theor. Comput. Sci.*, **804** (2020), 98–114. doi: 10.1016/j.tcs.2019.10.045.
- 12. C. Lu, B. Wang, K. Wang, Y. Wu, Paired-domination in claw-free graphs with minimum degree at least three, *Discrete Appl. Math.*, **257** (2019), 250–259. doi: 10.1016/j.dam.2018.09.005.
- 13. S. Mishra, K. Sikdar, On the hardness of approximating some NP-optimization problems related to minimum linear ordering problem, *Rairo-Theor. Inf. Appl.*, **35** (2001), 287–309. doi: 10.1051/ita:2001121.
- A. Pandey, B. S. Panda, Domination in some subclasses of bipartite graphs, *Discrete Appl. Math.*, 252 (2015), 169–180. doi: 10.1007/978-3-319-14974-5_17.
- 15. C. H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. Syst. Sci., 43 (1991), 425–440. doi: 10.1016/0022-0000(91)90023-X.
- 16. D. Pradhan, B. S. Panda, Computing a minimum paired-dominating set in strongly orderable graphs, *Discrete Appl. Math.*, **253** (2018), 37–50. doi: 10.1016/j.dam.2018.08.022.
- 17. H. Qiao, L. Kang, M. Cardei, D. Du, Paired-domination of trees, J. Global Optim., 25 (2003), 43–54. doi: 10.1023/A:1021338214295.
- 18. D. B. West, Introduction to graph theory, 2nd ed., Prentice Hall, USA, 2001.

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)