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1. Introduction

Lotka-Volterra systems are very important mathematical models in the theory of mathematical
biology, often deeply perturbed by activities of human exploitation, such as, crop-dusting,
deforestation, hunting, harvesting. To accurately describe these systems, one need to use impulsive
differential equations. Basic theory of impulsive differential equations can be found in
monographs [1–3].

Over the years, much attention has been paid to the dynamical behaviors (such as, the permanence,
extinction, global asymptotic behavior) of Lotka-Volterra systems with impulsive effects (see [4–6]).
Thereinto, the existence of positive periodic solutions is important direction. Many important and
interesting results can be found in [7–10] and references therein.

In paper [10], by applying the Mawhin’s continuation theorem, the authors obtained the existence
of periodic solutions of a non-autonomous Lotka-Volterra network-like predator-prey system with
harvesting terms:
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N′i (t) = Ni(t)[ai(t) − bi(t)Ni(t) −
∑n

r=1,r,i ci,r(t)Nr(t) −
∑m

j=1 di, j(t)Nn+ j(t)] − hi(t),
N′n+ j(t) = Nn+ j(t)[α j(t) − β j(t)Nn+ j(t) −

∑m
l=1,l, j γl, j(t)Nn+l(t) +

∑n
i=1 δi, j(t)Ni(t)] − e j(t).

(1.1)

The properties of almost periodic solutions of different classes of biological models have been
extensively investigated during the years [11–15] since these states are more general that the pure
periodicity and consistent with real world. In addition, as the generalization of periodicity, the interest
in the investigation of almost periodic solutions of models is sometimes caused by the absence of
periodic solutions [16].

In fact, the Mawhin’s continuation theorem is one of the powerful and effective methods on the
existence of periodic solutions to periodic systems (regardless of the systems with impulse or not).
Concerning the almost periodic solutions, to our best knowledge, it is usually employed to prove the
existence of almost periodic solutions for differential equations without impulse, such as [17, 18].
There are rarely articles applied this method to prove the existence of almost periodic solutions for
impulsive differential equations, except [19, 20]. Li and Ye [19] considered the existence of almost
periodic solutions of impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting
terms: 

N′i (t) = Ni(t)[ai(t) − bi(t)Ni(t) −
∑n

r=1,r,i ci,r(t)Nr(t − τi,r(t))
−

∑m
j=1 di, j(t)Nn+ j(t − σi, j(t))] − hi(t), t , tk, i = 1, 2, ...n,

N′n+ j(t) = Nn+ j(t)[α j(t) − β j(t)Nn+ j(t) −
∑m

l=1,l, j γl, j(t)Nn+l(t − θl, j(t))
+

∑n
i=1 δi, j(t)Ni(t − νi, j(t))] − e j(t), t , tk, j = 1, 2, ...m,

Nh(t+
k ) = (1 + ρhk)Nh(tk), h = 1, 2, ...n + m, k ∈ Z+.

(1.2)

where, i = 1, 2, ...n, j = 1, 2, ...m, ai(·), bi(·), and hi(·) are the ith prey species birth rate, death rate and
harvesting rate, respectively; α j(·), β j(·) and e j(·) stand for the jth predator species birth rate, death
rate and harvesting rate, respectively; ci,r(·)(i , r) represent the competition rate between the ith prey
species and the rth prey species; di, j(·) represent the jth predator species predation rate on the ith prey
species; γl, j(·)(l , j) stand for the competition rate between the lth predator species and the jth predator
species; δi, j(·) stand for the transformation rate between the ith prey species and the jth predator species;
τi,r(·), σi, j(·), θl, j(·), νi, j(·) are the time delays; ρhk are the impulsive oscillations.

In order to obtain the existence of almost periodic solutions of Eq (1.2), Li and Ye [19] transformed
Eq (1.2) into Eq (3.1) in [19].

By employing Lemmas 2.3 and 2.4 in [19] and the Mawhin’s continuation theorem in coincidence
degree theory, the existence of almost periodic solutions of Eq (3.1) in [19] was obtained. Based on
this, the existence of almost periodic solutions of Eq (1.2) was obtained (Theorem 3.1 in [19]). In the
proving process, Li and Ye acquiesced that the almost periodic solutions of Eq (3.1) in [19] belonged to
C1, which is also an important and necessary condition in order to use Lemmas 2.3 and 2.4. However,
obviously, the solutions of Eq (3.1) in [19] don’t belong to C1.

Motivated by these, we still use the Mawhin’s continuation theorem to investigate the existence of
almost periodic solutions of Eq (1.2). The main contribution of this paper is: (1) The result of this
paper corrects and generalizes the previous results in [10, 19]; (2) The method used in this paper can
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be applied to study the existence of almost periodic solutions of impulsive differential equations with
linear impulsive perturbations.

The remaining parts of this paper are organized as follows: The next section presents some
preliminaries; In section 3, by employing the Mawhin’s continuation theorem of coincidence degree
theory, a criterion is established for the existence of almost periodic solutions of system (1.2). Finally,
an example and its corresponding numerical simulation are presented to explain our theoretical result.

2. Preliminaries

Some preliminaries will be presented in this section in order to prove our main result in Section 3.

Definition 2.1. ( [21]) ϕ(·) ∈ C(R,Rn) is said to be almost periodic in sense of Bohr if ∀ε > 0, there
exists a relatively dense set T (ϕ, ε) such that if τ ∈ T (ϕ, ε), then |ϕ(t) − ϕ(t + τ)| < ε for all t ∈ R.
Denote by ap(R,Rn) all such functions.

Definition 2.2. ( [3]) Let φ(·) = (φ1(·), φ2(·), ...φn(·)) be a piecewise continuous function with first kind
discontinuities at the points of a fixed sequence {tk}, we call φ almost periodic if:

1) {tk} is equipotentially almost periodic, that is, ∀ε > 0 there exists a relatively dense set of ε-almost
periodic common for any sequences {t j

k}, t
j
k = tk+ j − tk;

2) ∀ε > 0, ∃δ > 0 such that if the points t′, t′′ belong to the same interval of continuity and
|t′ − t′′| < δ, then |φi(t′) − φi(t′′)| < ε, i=1,2,...n;

3) ∀ε > 0, there exists a relatively dense set T (φi, ε) such that if τ ∈ T (φi, ε), then |φi(t)−φi(t+τ)| < ε
for all t ∈ R which satisfy the condition |t − tk| > ε, i = 1, 2, ...n, k = 0,±1,±2, ....

Denote by AP(R,Rn) all such functions.

Now we introduce some basic notations. Let g be continuous or piecewise continuous function,
we denote gM = supt∈R |g(t)|, gL = inft∈R |g(t)|. Suppose f ∈ ap(R,Rn) or f ∈ AP(R,Rn), a(λ, f ),
Λ f = {λ, a(λ, f ) , 0} and m( f ) denote the Fourier coefficient, Fourier exponent set and the mean value
of f , respectively. mod( f ) means the module of f .

Further theory of almost periodic functions can be found in the literatures [22–28]. Besides,The
following lemmas are important for our result.

Lemma 2.3. ( [20] Favard’s theorem of AP function) Suppose f ∈ AP, there exist α1 > α > 0 such
that ∀λ ∈ Λ f , α1 > |λ| > α, Σ∞i=1|a(λi, f )| < +∞, then the primitive function of f is almost periodic
function in sense of Bohr.

Lemma 2.4. ( [22]) Suppose f , g ∈ ap, the following two conditions are equivalent:
1) mod( f ) ⊂ mod(g);
2) For any ε > 0, there exist δ > 0 such that T (g, δ) ⊂ T ( f , ε).

Lemma 2.5. ( [23]) The necessary and sufficient condition that a family F of functions from ap be
relatively compact is that the following properties hold true:

1) F is equi-continuous;
2) F is equi-almost periodic;
3) For any t ∈ R, the set of values of functions from F be relatively compact.
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Let X and Z be real Banach spaces, L : domL ⊂ X → Z be a linear mapping, N : X → Z be a
continuous mapping. L is called a Fredholm mapping of index zero if dimKerL = codimImL < ∞ and
ImL is close in Z. If L is a Fredholm mapping of index zero, there are continuous projects P : X →
X,Q : Z → Z such that ImP = KerL, ImL = KerQ = Im(I − Q). It follows that L|domL ∩ KerP :
(I − P)X → ImL is invertible. We denote the inverse of that map by Kp. If Ω is a open subset of
X, the mapping N on Ω × [0, 1] will be called L−compact on Ω if QN(Ω̄ × [0, 1]) is bounded and
Kp(I − Q)N : Ω̄ × [0, 1]→ X is compact. Since ImQ is isomorphic to KerL, there exist isomorphisms
J : ImQ→ KerL. The following result is proved in [29].

Lemma 2.6. (Mawhins continuation theorem) Let Ω ⊂ X be an open bounded set, L be a Fredholm
mapping of index zero and N be L−compact on Ω̄ × [0, 1]. Assume

1) For each λ ∈ (0, 1), every solution x of Lx = λN(x, λ) is such that x < ∂Ω;
2) For each x ∈ KerL ∩ ∂Ω,QN(x, 0) , 0;
3) deg(JQN(x, 0),KerL ∩Ω, 0) , 0.
Then Lx = N(x, 1) has at least one solution in domL ∩ Ω̄.

3. Main results

In this section, by means of the Mawhin’s continuation theorem of coincidence degree theory, we
investigate the existence of almost periodic solutions of Eq (1.2). To do so, we firstly consider the
following equation:

y′i(t) = yi(t)[ai(t) − b̄i(t)yi(t) −
∑n

r=1,r,i c̄i,r(t)yr(t − τi,r(t))
−

∑m
j=1 d̄i, j(t)yn+ j(t − σi, j(t))] − h̄i(t), i = 1, 2, ...n,

y′n+ j(t) = yn+ j(t)[α j(t) − β̄ j(t)yn+ j(t) −
∑m

l=1,l, j γ̄l, j(t)yn+l(t − θl, j(t))
+

∑n
i=1 δ̄i, j(t)yi(t − νi, j(t))] − ē j(t), j = 1, 2, ...m,

(3.1)

where

b̄i(t) = bi(t)
∏

0<tk<t(1 + ρik), h̄i(t) = hi(t)
∏

0<tk<t(1 + ρik)−1, i, r = 1, 2, ..n,
c̄i,r(t) = ci,r(t)

∏
0<tk<t−τi,r(t)(1 + ρrk), d̄i, j(t) = di, j(t)

∏
0<tk<t−σi, j(t)(1 + ρn+ j,k), r , i;

β̄ j(t) = β j(t)
∏

0<tk<t(1 + ρn+ j,k), ē j(t) = e j(t)
∏

0<tk<t(1 + ρn+ j,k)−1, l, j = 1, 2, ...m,
γ̄l, j(t) = γl, j(t)

∏
0<tk<t−θl, j(t)(1 + ρn+l,k), δ̄i, j(t) = δi, j(t)

∏
0<tk<t−νi, j(t)(1 + ρik), l , j.

Remark 3.1. In paper [19], the authors define c̄i,r(t), d̄i, j(t), γ̄l, j(t) and δ̄i, j(t) in other forms. We think
those should be the forms above. Throughout this paper, we suppose the following hypotheses hold:

(H1) ai(·), bi(·), ci,r(·), τi,r(·), di, j(·), σi, j(·), hi(·), α j(·), β j(·), γl, j(·), θl, j(·)δi, j(·), νi, j(·) and e j(·) are all
positive almost periodic functions in sense of Bohr, i, r = 1, 2, ...n, l, j,= 1, 2, ...m. {ρhk} are almost
periodic sequences, h = 1, 2, ..., n + m, {tk}is an equipotentially almost periodic sequence.

(H2)
∏

0<tk<t(1+ρik),
∏

0<tk<t(1+ρn+ j,k),
∏

0<tk<t−τi,r(t)(1+ρrk),
∏

0<tk<t−σi, j(t)(1+ρn+ j,k),
∏

0<tk<t−θl, j(t)(1+

ρn+l,k), and
∏

0<tk<t−νi, j(t)(1 + ρik) are all positive almost periodic functions, inft∈R
∏

0<tk<t |(1 + ρi,k)| >
0, inft∈R

∏
0<tk<t |(1 + ρn+ j,k)| > 0, i, r = 1, 2, ..n, l, j = 1, 2, ...m.

(H3) m(b̄i) > 0,m(β̄ j) > 0, m(ai)2 − 4m(b̄i)m(h̄i) > 0,m(α j)2 − 4m(β̄ j)m(ē j) > 0, i = 1, 2, ..n, j =

1, 2, ...m.
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The solutions of Eqs (1.2) and (3.1) satisfy the following relations:

Lemma 3.2. Suppose (H2) is satisfied, the following results hold:
1) If N(t) = (N1(t), ...,Nn+m(t)) is a positive AP solution of Eq (1.2), then

y(t) = (y1(t), ..., yn+m(t)) = (
∏

0<tk<t

(1 + ρ1k)−1N1(t), ...,
∏

0<tk<t

(1 + ρn+m,k)−1Nn+m(t))

is a positive ap solution of Eq (3.1);
2) If y(t) = (y1(t), ..., yn+m(t)) is a positive ap solution of Eq (3.1), then

N(t) = (N1(t), ...,Nn+m(t)) = (
∏

0<tk<t

(1 + ρ1k)y1(t), ...,
∏

0<tk<t

(1 + ρn+m,k)yn+m(t))

is a positive AP solution of Eq (1.2).

Proof. If N(t) = (N1(t), ...,Nn+m(t)) is a positive AP solution of Eq (1.2), for any i = 1, 2, ..., n + m,

yi(t+
k ) =

∏
0<tl<t+k

(1 + ρil)−1Ni(t+
k ) =

∏
0<tl<t+k

(1 + ρil)−1(1 + ρik)Ni(tk) = yi(tk).

Since
∏

0<tk<t(1 + ρik) ∈ AP, and inft∈R
∏

0<tk<t |(1 + ρik)| > 0, from [20], we know
∏

0<tk<t(1 + ρik)−1 ∈

AP, i = 1, ...n + m. Then, y(t) = (y1(t), ..., yn+m(t)) ∈ ap; If yi(·) ∈ ap, it follow from (H2) that
Ni(t) =

∏
0<tk<t(1 + ρik)yi(t) ∈ AP, i = 1, ...n + m. Similar as [19], the rest proof of Lemma 3.2 can be

obtained easily, we omit it here. �

By making the transformations yi(t) = exi(t), yn+ j(t) = exn+ j(t), i = 1, 2, ...n, j = 1, ...,m, system (3.1)
is changed into: 

x′i(t) = ai(t) − b̄i(t)exi(t) −
∑n

r=1,r,i c̄i,r(t)exr(t−τi,r(t))

−
∑m

j=1 d̄i, j(t)exn+ j(t−σi, j(t)) − h̄i(t)e−xi(t), i = 1, 2, ...n,
x′n+ j(t) = α j(t) − β̄ j(t)exn+ j(t) −

∑m
l=1,l, j γ̄l, j(t)exn+l(t−θl, j(t))

+
∑n

i=1 δ̄i, j(t)exi(t−νi, j(t)) − ē j(t)e−xn+ j(t), j = 1, 2, ...m.

(3.2)

Obviously, the existence of ap solutions of Eq (3.2) can lead to the existence of strictly positive ap
solutions of Eq (3.1). Then, it follow from Lemma 3.2 that there exist strictly positive AP solutions of
Eq (1.2). Due to this, we concentrate on solving the existence of ap solutions of Eq (3.2). we take

X1 = {x = (x1, ..., xm+n) ∈ ap : mod(xi) ⊂ mod(F),∀λ ∈ Λxi , α1 > |λ| > α, i = 1, ...,m + n} ∪ {0},
Z1 = {z = (z1, ...zm+n) ∈ AP, zi(·) are piecewise continuous with discontinuous points{tk},

mod(zi) ⊂ mod(F),∀λ ∈ Λzi , α1 > |λ| > α,
∑∞

j=1 |a(λ j, zi)| < +∞, i = 1, ...,m + n} ∪ {0},
Z2 = X2 = {x = (h1, h2, ..., hm+n) ∈ Rm+n},

where, α and α1 are given positive constants, F is given almost periodic function in sense of Bohr.
Define X = X1 ⊕ X2,Z = Z1 ⊕ Z2 with the norm ‖φ‖ = max1≤i≤n+m supt∈R |φi(t)|, φ ∈ X or Z.

By using Lemma 2.3, similar to the proof of Lemma 3.3 in [20], we can obtain

AIMS Mathematics Volume 7, Issue 1, 925–938.



930

Lemma 3.3. X and Z are Banach spaces equipped with the norm ‖ · ‖.

Lemma 3.4. Let
L : X → Z, L(x1, x2, ..., xm+n) = (

dx1

dt
,

dx2

dt
, ...,

dxm+n

dt
),

then L is a Fredholm mapping of index zero.

Remark 3.5. (1) In Lemma 3.4 in [19], the authors took X = Z = V1
⊕

V2, L : X → Z, Lz =

z′ = (z′1, z
′
2, ..., z

′
n+m). Obviously, z′ should belong to a piecewise continuous function space, hence, Z

appeared in Lemma 3.3 in [19] was not suitable.
(2) If f ∈ ap, ∀λ ∈ Λ f , |λ| > α > 0, then f has ap primitive function. It doesn’t hold for AP

function. Lemma 2.3 implies that if f ∈ AP, ∀λ ∈ Λ f , α1 > |λ| > α > 0,
∑∞

i=1 |a(λi, z)| < +∞, then f
has ap primitive function. That is the reason why we take Z1 like that.

Let
P : X → X, P(x1, ..., xn, ..., xm+n) = (m(x1), ...,m(xn), ...,m(xm+n)),

Q : Z → Z,Q(z1, ..., zn, ..., zm+n) = (m(z1), ...,m(zn), ...,m(zm+n)),

N : X × [0, 1]→ Z,N(x1, ..., xn, ..., xm+n, λ) = (N(x1, λ), ...,N(xn, λ), ...N(xm+n, λ)),

where

N(xi(t), λ) = ai(t) − b̄i(t)exi(t) − λ

n∑
r=1,r,i

c̄i,r(t)exr(t−τi,r(t))

−λ

m∑
j=1

d̄i, j(t)exn+ j(t−σi, j(t)) − h̄i(t)e−xi(t), i = 1, 2, ...n,

N(xn+ j(t), λ) = α j(t) − β̄ j(t)exn+ j(t) − λ

m∑
l=1,l, j

γ̄l, j(t)exn+l(t−θl, j(t))

+λ

n∑
i=1

δ̄i, j(t)exi(t−νi, j(t)) − ē j(t)e−xn+ j(t), j = 1, ...,m,

then we have:

Lemma 3.6. N is L-compact on Ω̄, (Ω is an open, bounded subset of X).

Proof. Firstly, it is easy to prove that P and Q are continuous projectors such that

ImP = KerL, ImL = Im(I − Q) = KerQ,

where I is identity mapping. Hence, L|domL ∩ KerP : (I − P)X → ImL is invertible. We denote the
inverse of that map by Kp. Kp : ImL→ KerP ∩ DomL has the form:

Kpz = Kp(z1, z2, ..., zn+m) = (
∫ t

0
z1(s)ds − m(

∫ t

0
z1(s)ds), ...,

∫ t

0
zm+n(s)ds − m(

∫ t

0
zm+n(s)ds))

then,
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QN(x, λ) = (QN(x1, λ), ...,QN(xm+n, λ)),

Kp(I − Q)N(x, λ) =
(
f (x1(t)) − Q f (x1(t)), ..., f (xm+n(t)) − Q f (xm+n(t))

)
,

where

f (xi(t)) =

∫ t

0
(N(xi(s), λ) − QN(xi(s), λ))ds, i = 1, 2, ..., n + m.

Obviously, QN and (I − Q)N are continuous, so is Kp. In fact, for any z = (z1, z2, ..., zm+n) ∈ Z1 = ImL,
according to Lemma 2.3, we know

∫ t

0
zi(s)ds ∈ ap. Besides, we have:

Λ∫ t
0 zi(s)ds\{0} = Λzi = Λ∫ t

0 zi(s)ds−m(
∫ t

0 zi(s)ds), i = 1, 2, ..n + m.

Since mod(zi) ⊂ mod(F), then mod(
∫ t

0
zi(s)ds) ⊂ mod(F). It follows from Lemma 2.4 that for any

ε > 0, there exists δ > 0 such that T (F, δ) ⊂ T (
∫ t

0
zi(s)ds, ε). Let l be the inclusion interval of T (F, δ).

For any t < [0, l], there exists ξ ∈ T (F, δ) ⊂ T (
∫ t

0
zi(s)ds, ε) such that t + ξ ∈ [0, l], hence, for any

i = 1, 2, ...n + m,

sup
t∈R
|

∫ t

0
zi(s)ds| ≤ sup

t∈[0,l]
|

∫ t

0
zi(s)ds| + sup

t<[0,l]
|

∫ t

0
zi(s)ds −

∫ t+ξ

0
zi(s)ds| + sup

t<[0,l]
|

∫ t+ξ

0
zi(s)ds|

≤ 2 sup
t∈[0,l]

∫ t

0
|zi(s)|ds + sup

t<[0,l]
|

∫ t

0
zi(s)ds −

∫ t+ξ

0
zi(s)ds|

≤ 2
∫ l

0
|zi(s)|ds + ε.

We can conclude that Kp is continuous, and consequently, Kp(I − Q)N is also continuous. In addition,
we also have Kp(I − Q)N(x, λ) is uniformly bounded in Ω̄ × [0, 1], QN(Ω̄ × [0, 1]) is bounded and
Kp(I − Q)N(x, λ) is equicontinuous in Ω̄ × [0, 1]. For any x = (x1, ..., xn+m) ∈ Ω, λ ∈ [0, 1], since

(I − Q)N(x, λ) ∈ Z1 = ImL,ΛKp(I−Q)N(xi,λ) = Λ(I−Q)N(xi,λ),

then, mod(Kp(I − Q)N(xi, λ)) = mod((I − Q)N(xi, λ)) ⊂ mod(F). For any ε > 0, ∃δ > 0 such
that T (F, δ) ⊂ T (Kp(I − Q)N(xi, λ), ε), i = 1, ..., n + m, hence, Kp(I − Q)N is equi-almost periodic in
Ω× [0, 1]. According to Lemma 2.5, we can immediately conclude that ¯Kp(I − Q)NΩ̄ is compact, thus
N is L-compact on Ω̄. �

Combining Lemmas 3.3–3.6, for Eq (3.2), we have the result:

Lemma 3.7. If (H1)–(H3) are all satisfied, then Eq (3.2) has at least one almost periodic solution (in
sense of Bohr).

Proof. Define the isomorphism J : ImQ→ KerL be an identity mapping. We search for an appropriate
bounded open subset Ω for the application of Lemma 2.6. Corresponding to operator equation Lx =

λN(x, λ), λ ∈ (0, 1) we have:
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x′i(t) = λ(ai(t) − b̄i(t)exi(t) − λ

n∑
r=1,r,i

c̄i,r(t)exr(t−τi,r(t))

−λ

m∑
j=1

d̄i, j(t)exn+ j(t−σi, j(t)) − h̄i(t)e−xi(t)), i = 1, 2, ...n, (3.3)

x′n+ j(t) = λ(α j(t) − β̄ j(t)exn+ j(t) − λ

m∑
l=1,l, j

γ̄l, j(t)exn+l(t−θl, j(t))

+λ

n∑
i=1

δ̄i, j(t)exi(t−νi, j(t)) − ē j(t)e−xn+ j(t)), j = 1, 2, ...m. (3.4)

If x = (x1, ..., xn+m) ∈ X is an almost periodic solution of system (3.2), then

m(exk(t)x′k(t)) = lim
T→∞

1
T

∫ T

0
exk(s)x′k(s)ds = lim

T→∞

ezk(T ) − ezk(0)

T
= 0, k = 1, .., n + m.

Multiplying exi(t), i = 1, ..., n, and exn+ j(t), j = 1, 2, ...m, on both sides of the Eqs (3.3) and (3.4),
respectively, then, taking the limit mean, we can obtain:

λm(
n∑

r=1,r,i

c̄i,r(t)exr(t−τi,r(t))exi(t) +

m∑
j=1

d̄i, j(t)exn+ j(t−σi, j(t))exi(t))

=m(ai(t)exi(t) − b̄i(t)e2xi(t) − h̄i(t)), (3.5)

λm(
m∑

l=1,l, j

γ̄l, j(t)exn+l(t−θl, j(t))exn+ j(t) −

n∑
i=1

δ̄i, j(t)exi(t−νi, j(t))exn+ j(t))

=m(α j(t)exn+ j(t) − β̄ j(t)e2xn+ j(t) − ē j(t)). (3.6)

From Eq (3.5), we can obtain:

m(ai(t)exi(t) − b̄i(t)e2xi(t) − h̄i(t)) ≥ 0,

hence,
0 ≥ m(b̄i(t)e2xi(t) − ai(t)exi(t) + h̄i(t)) ≥ m(b̄L

i e2xi(t) − aM
i exi(t) + h̄L

i ).

We assert that there exist ξi, i = 1, ..., n such that

aM
i −

√
(aM

i )2 − 4b̄L
i h̄L

i

4b̄L
i

≤ exi(ξi) ≤
3aM

i +

√
(aM

i )2 − 4b̄L
i h̄L

i

4b̄L
i

, i = 1, ...n,

then, there exist at least one ξi, i = 1, ..., n such that

|xi(ξi)| < | ln
aM

i −

√
(aM

i )2 − 4b̄L
i h̄L

i

4b̄L
i

| + | ln
3aM

i +

√
(aM

i )2 − 4b̄L
i h̄L

i

4b̄L
i

|, i = 1, ...n. (3.7)

Since x′i ∈ Z1,
∫ t

a
x′i(s)ds ∈ ap,mod(

∫ t

a
x′i(s)ds) ⊂ mod(F),∀a ∈ R, i = 1, ..., n, it follows from

Lemma 2.4 that for ε = 1, there exist δ > 0 such that T (F, δ) ⊂ T (
∫ t

a
x′i(s)ds, 1). Let l be the inclusion

interval of T (F, δ). Same argument as Lemma 3.6 can drive that
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|xi(t)| = |xi(ξi) +

∫ t

ξi

x′i(s)ds|

≤ |xi(ξi)| + |
∫ t

ξi

x′i(s)ds|

≤ |xi(ξi)| + 1 + 2
∫ ξi+l

ξi

|x′i(s)|ds, (3.8)

∫ ξi+l

ξi

|x′i(s)|ds =

∫ ξi+l

ξi

|ai(s) − b̄i(s)exi(s) − λ

n∑
r=1,r,i

c̄i,r(t)exr(s−τi,r(s))ds

− λ

m∑
j=1

d̄i, j(t)exn+ j(s−σi, j(s)) − h̄i(s)e−xi(s)|

≤

∫ ξi+l

ξi

|ai(s)|ds. (3.9)

Combining (3.7)–(3.9), we know that for any t ∈ R, i = 1, ..., n

|xi(t‖ ≤ 3laM
i + 3 + | ln

aM
i −

√
(aM

i )2 − 4b̄L
i h̄L

i

4b̄L
i

| + | ln
3aM

i +

√
(aM

i )2 − 4b̄L
i h̄L

i

4b̄L
i

| , xM
i .

Similar argument as above, from Eq (3.6), we know that:

m(α j(t)exn+ j(t) − β̄ j(t)e2xn+ j(t) − ē j(t)) ≥ m(−
n∑

i=1

δ̄i, j(t)exi(t−νi, j(t))exn+ j(t)), (3.10)

hence,

m(αM
j exn+ j(t) − β̄L

j e
2xn+ j(t) − ēL

j ) ≥ m(−
n∑

i=1

δ̄M
i, je

xM
i exn+ j(t)),

then,

m(β̄L
j e

2xn+ j(t) − (αM
j +

n∑
i=1

δ̄M
i, je

xM
i )exn+ j(t) + ēL

j ) ≤ 0.

We assert that there exist ξn+ j, j = 1, ...m, such that

(αM
j +

∑n
i=1 δ̄

M
i, je

xM
i )−

√
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )2−4β̄L

j ēL
j

4β̄L
j

≤ exn+ j(ξn+ j),

exn+ j(ξn+ j) ≤
3(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )+

√
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )2−4β̄L

j ēL
j

4β̄L
j

,
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then

|xn+ j(ξn+ j)| ≤ | ln
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )−

√
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )2−4β̄L

j ēL
j

4β̄L
j

|

+| ln
3(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )+

√
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )2−4β̄L

j ēL
j

4β̄L
j

|.

Similarly, for any t ∈ R, j = 1, ...,m, we have

|xn+ j(t)| ≤ |xn+ j(ξn+ j)| + 1 + 2
∫ ξn+ j+l

ξn+ j

|x′n+ j(s)|ds

≤ |xn+ j(ξn+ j)| + 1 + 2
∫ ξn+ j+l

ξn+ j

|α j(s) +

n∑
i=1

δ̄i, j(s)exM
i |ds

≤ 3 + 3l(αM
j +

n∑
i=1

δ̄M
i, je

xM
i )

+| ln
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i ) −

√
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )2 − 4β̄L

j ē
L
j

4β̄L
j

|

+| ln
3(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i ) +

√
(αM

j +
∑n

i=1 δ̄
M
i, je

xM
i )2 − 4β̄L

j ē
L
j

4β̄L
j

| , xM
n+ j. (3.11)

Taking Ω = {x ∈ X, ‖x‖ ≤ 2 max{xM
1 , ..., x

M
n+m}}, combining Lemma 2.6 in [9] and condition (H3), it is

easy to prove that that Ω satisfies all the requirements in Lemma 2.6, hence system (3.2) has at least
one almost periodic solution in Ω. The proof of the theorem is complete. �

From Lemma 3.7, we know that system (3.1) has at least one strictly positive almost periodic
solution in Ω. It follows from Lemma 3.2 that:

Theorem 3.8. If (H1)–(H3) are all satisfied, then Eq (1.2) has at least one strictly positive almost
periodic solution.

Remark 3.9. (1) In order to obtain the existence of almost periodic solutions of Eq (1.2), Li and Ye [19]
transformed Eq (1.2) into Eq (3.1) in [19]. Unfortunately, Eq (3.1) in [19] was not correct. Besides,
They acquiesced that the almost periodic solution of Eq (3.1) in [19] belonged to C1, which was also an
important condition to get the existence of almost periodic solutions of Eq (1.2). However, obviously,
the solution of Eq (3.1) in [19] don’t belong to C1.

(2) Compared this paper with [10], Eq (1.2) is more general. Moreover, it is more realistic to study
almost periodic solution for a model than periodic solution. The sufficient conditions for the existence
of almost periodic solutions are more easier verification. Therefore, this paper corrects and generalizes
the previous results.

(3) The aim of this paper is to apply coincidence degree to study the existence of almost periodic
solution of system (1.2). we set new functional space Z1, and use the Favard’s theorem of AP function
to realize our purpose. Our method used in this paper can be applied to study the existence of almost
periodic solution of impulsive differential equations with linear impulsive perturbations.
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4. Example

In this section, we present an example to demonstrate Theorem 3.8 obtained in previous section.
Consider the following impulsive Lotka-Volterra predator-prey system (4.1) with harvesting terms:


N′1(t) = N1(t)[(5 + sin t) − 1+cos πt

2 N1(t) − d1,1(t)N2(t) − d1,2(t)N3(t)] − 1+sin πt
2 , t , tk,

N′2(t) = N2(t)[(5 + sin 2t) − 1+cos 2πt
2 N2(t) − γ2,1(t)N3(t) + δ1,1(t)N1(t)] − 1+sin 2πt

2 , t , tk,

N′3(t) = N3(t)[(5 + sin 3t) − 1+cos 3πt
2 N3(t) − γ1,2(t)N2(t) + δ1,2(t)N1(t)] − 1+sin 4πt

2 , t , tk,

Nh(t+
k ) = (1 + ρhk)Nh(tk), h = 1, 2, 3,

where, d1,1(t) = 0.1, d1,2(t) = 0.04, γ1,2(t) = 0.04, γ2,1(t) = 0.15, δ1,1(t) = 0.6, δ1,2(t) = 0.8, tk =

{1, 2, 3, ...}, ρhk = {−1
2 , 1,−

1
2 , 1,−

1
2 , 1, ...}, h = 1, 2, 3.

Obviously, condition (H1) is satisfied. Moreover,
∏

0<tk<t(1 + ρik) are positive piecewise continuous
periodic functions, inft∈R

∏
0<tk<t |(1 + ρi,k)| = 1

2 > 0, i = 1, 2, 3. Hence, condition (H2) holds. Besides,
we have

m(a1) = m(α1) = m(α2) = 5,

m(b̄1) = m(β̄1) = m(β̄2) = m(ē1) = m(ē2) =
3
8
,

m(h̄i) =
3
8

+
3π
2
.

Hence, condition (H3) holds. It follows from Theorem 3.8 that system (4.1) has at least one strictly
positive almost periodic solution. By matlab, we can give the simulation of Eq (4.1), see Figure 1.
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Figure 1. The existence of almost periodic solution for system (4.1).
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5. Conclusions

Based on the Mawhins continuation theorem, the existence of almost periodic solutions of impulsive
non-autonomous Lotka-Volterra predator prey system with harvesting terms was obtained. An example
and some remarks are given to illustrate the advantage of this paper.
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