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1. Introduction

We are interested in the extinction properties of the solutions to a p-Laplacian equation with gradient
source and singular potential

|x|−s ut = div(|∇u|p−2∇u) + λ |∇u|q , (x, t) ∈ Ω × (0,+∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞),
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, 1 < p < 2, s > 0, λ > 0,

q > 0, |x| =
√

x2
1 + · · · + x2

N for x = (x1, · · · , xN) ∈ Ω, u0 (x) is a non-negative and bounded function

with u0 ∈ W1,p
0 (Ω).

Problem (1.1) is encountered in many natural phenomena and physical contexts, such as the
compressible fluid flows in a homogeneous isotropic rigid porous medium, the physical theory of
growth and roughening of surfaces (see for instance [6, 17, 19] and the references therein, where a
more detailed physical background can be found). From a physical point of view, div(|∇u|p−2∇u) with
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p ∈ (1, 2) is called a fast diffusion term, which may cause the extinction phenomenon of the solution;
λ |∇u|q with λ > 0 is called a gradient source term, which may prevent the extinction phenomenon.

In the last twenty years, there has been a great deal of literature on the parabolic problems with
gradient reaction terms (see [4, 5, 8, 9, 11, 13–15, 22, 23]). In particular, Zhang and Li [21] considered
problem (1.1) with s = 0 and p > 2. They gave the conditions on the occurrence of the gradient
blow-up phenomenon (i.e., there is a T > 0 such that sup

Ω×[0,T )
|u| < ∞ and lim

t→T−
‖∇u‖L∞ = +∞). More

precisely, they pointed out that, when q > p, the gradient blow-up phenomenon will occur for suitably
large initial data, while the solution exists globally in W1,∞ norm for appropriately small initial data.
When q ≤ p, they claimed that all solutions are global in W1,∞ norm.

Later, Zhang [20] gave the gradient blow-up rate in one dimensional case. Mu and Liu [7] dealt
with the extinction behavior of the solution to problem (1.1) with s = 0 and p ∈ (1, 2). They concluded
that if p − 1 < q < p

2 , the solution will vanish in finite time for appropriately small initial data, while if
q < p− 1, the solution will not vanish in finite time for appropriately large λ. When q = p− 1, the size
of the parameter λ plays a crucial role in the occurrence of the extinction phenomenon.

As far as we know, there is no result for the case s , 0, especially the extinction results for s > 0
and p ∈ (1, 2). For these reasons, we consider the extinction behavior of the solution to problem (1.1)
under the assumptions s > 0 and p ∈ (1, 2). It is worth pointing out the solution of problem (1.1) is
global in L∞ norm. Our main attention will be focused on the roles that the singular potential |x|−s,
the competition between the fast diffusion term and the gradient source term play. In different ranges
of gradient reaction exponents, we give the complete classification of the L∞ norm global solutions
including extinction and non-extinction cases. Our main results are the following three theorems.

Theorem 1.1. Assume that 0 < p − 1 < q < p
2 < 1, 0 ≤ s < p and u0 (x) is appropriately small such

that (3.10) holds. Then the nonnegative weak solution of problem (1.1) vanishes in finite time.

Theorem 1.2. Assume that 0 < q < p− 1 < 1. Then for some suitable Ω, problem (1.1) at least admits
a non-extinction solution.

Theorem 1.3. Assume that 0 < p − 1 = q < 1 . Then the extinction phenomenon will occur for
appropriately small λ, while problem (1.1) at least exists a non-extinction solution for some suitable
Ω.

The rest of this article is organized as follows. In section 2, we give the definition of the weak
solution of problem (1.1) and collect some useful auxiliary lemmas. The last section is mainly
focused on the conditions on the occurrence of the extinction phenomenon of the solution. By using
Hardy-Littlewood-Sobolev inequality, the integral norm estimate method and some ordinary
differential inequalities, the proofs of the extinction results will be given. Based on super-solution and
sub-solution methods, the proofs of the non-extinction results will also be given in section 3.

2. Preliminaries

Since p ∈ (1, 2), problem (1.1) is singular at the point x ∈ Ω such that ∇u = 0. Firstly, we introduce
the definition of the weak solution of (1.1) as follows.

Definition 2.1. For some T > 0, a function u (x, t) defined in Ω × [0,T ) is called a weak sub- (super-)
solution of problem (1.1) if it satisfies the following assumptions
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• u ∈ C
(
Ω × [0,T )

)
∩ Lmax{p,q}

(
0,T ; W1,max{p,q}

0 (Ω)
)
, |x|−s ut ∈ L2 (Ω × (0,T )).

• For any 0 ≤ φ ∈ C
(
Ω × [0,T ]

)
∩ Lp

(
0,T ; W1,p

0 (Ω)
)
, one has

T∫
0

∫
Ω

(
|x|−sutφdx + |∇u|p−2

∇u · ∇φ
)

dxdt ≤ (≥)

T∫
0

∫
Ω

λ |∇u|q φdxdt. (2.1)

• u (x, t) ≤ (≥) 0 for (x, t) ∈ ∂Ω × (0,T ).
• u (x, 0) ≤ (≥) u0 (x) for x ∈ Ω.

A function u (x, t) is a weak solution of problem (1.1) if it is both a sub-solution and a super-solution
of problem (1.1).

The local existence of the weak solution to problem (1.1) can be obtained by using the standard
regularization method and approximation process, the reader may refer to [2, 22, 23] for more details.

Our goal is to find the conditions on the occurrence of the extinction singularity of the solution to
problem (1.1). To this aim, we need the following lemmas.

Lemma 2.1. (see [1, 3]) Suppose N ≥ 2, 1 < µ < N, 0 ≤ ϑ ≤ µ and σ =
µ(N−ϑ)

N−µ . Then, there is a
positive constant κ1 = κ1 (µ, ϑ,N) such that

∫
Ω

|u(x)|σ

|x|ϑ
dx ≤ κ1


∫
Ω

|∇u|µ dx


N−ϑ
N−µ

, (2.2)

holds for any u ∈ W1,µ
0 (Ω), where Ω ⊂ RN is a bounded domain.

Since Ω is a bounded domain in RN , then there is a ball B (0,R) ⊂ RN centered at 0 with radius

R = sup
x∈Ω

√
x2

1 + · · · + x2
N < +∞, (2.3)

such that Ω ⊆ B (0,R).

Lemma 2.2. (see [3, 10]) Suppose N > s and Ω ⊂ RN is a bounded domain. Then, one has

∫
Ω

|x|−sdx ≤
∫

B(0,R)

|x|−sdx =

R∫
0


∫

∂B(0,r)

|x|−sdS (x)

 dr

= ωN

R∫
0

r−srN−1dr =
ωN

N − s
RN−s def

= κ2 < +∞,

(2.4)

where

ωN =
Nπ

N
2

Γ
(

N
2 + 1

) ,
denotes the surface area of the unit sphere ∂B(0, 1) and Γ is the usual Gamma function.
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Lemma 2.3. (see [12]) Suppose 0 < θ < η ≤ 1. Let g (t) be a solution of the ordinary differential
inequality { dg

dt + γ1gθ ≤ γ2gη, t > 0,
g(0) = g0 > 0,

where γ1 > 0 and 0 < γ2 <
1
2γ1gθ−η0 . Then, there are two positive constants σ1, σ2 such that, for t ≥ 0,

0 ≤ g (t) ≤ σ1e−σ2t.

3. Proofs of the main results

In this section, we will give the proofs of the main results and the conditions on the occurrence of
the extinction phenomenon of the solution u (x, t).

Proof of Theorem 1.1. Taking

l > max
{

N(2 − p) + s(p − 1) − p
p − s

, 0
}
, (3.1)

multiplying (1.1) by ul and integrating by parts over Ω yield

1
l + 1

d
dt

∫
Ω

|x|−s ul+1dx +
lpp

(l + p − 1)p

∫
Ω

∣∣∣∣∇u
l+p−1

p

∣∣∣∣p dx = λ

∫
Ω

ul |∇u|q dx. (3.2)

Recalling that p − 1 < q < p
2 and using Young’s inequality lead to∫

Ω

ul |∇u|q dx =
pq

(l + p − 1)q

∫
Ω

u
pl−ql+q

p

∣∣∣∣∇u
l+p−1

p

∣∣∣∣q dx

≤
εpq

(l + p − 1)q

∫
Ω

∣∣∣∣∇u
l+p−1

p

∣∣∣∣p dx +
C (ε) pq

(l + p − 1)q

∫
Ω

u
l(p−q)+q

p−q dx,
(3.3)

where

ε ∈

(
0,

lpp−q

λ (l + p − 1)p−q

)
.

Substituting (3.3) into (3.2) tells us that

1
l + 1

d
dt

∫
Ω

|x|−s ul+1dx + C1

∫
Ω

|∇u
l+p−1

p |pdx ≤ C2

∫
Ω

u
l(p−q)+q

p−q dx, (3.4)

where
C1 =

lpp

(l + p − 1)p −
λεpq

(l + p − 1)q and C2 =
λC (ε) pq

(l + p − 1)q .

Setting

a =
N − p
θ (N − s)

,
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with θ =
l+p−1

l+1 ∈ (0, 1), noticing that 1 < p < 2 ≤ N and 0 ≤ s < p, then it follows from (3.1) that
a ∈ (0, 1). Hölder’s inequality, Lemmas 2.1 and 2.2 give us that∫

Ω

|x|−s ul+1dx =

∫
Ω

|x|−s(a+1−a)
(
u

l+p−1
p

) p
θ

dx

≤


∫
Ω

[
|x|−sa

(
u

l+p−1
p

) p
θ

] 1
a

dx


a 

∫
Ω

|x|−s(1−a) 1
1−a


1−a

≤ κ1−a
2


∫
Ω

|x|−s
(
u

l+p−1
p

) p(N−s)
N−p

dx


a

≤ κ1−a
2 κa

1


∫
Ω

∣∣∣∣∇u
l+p−1

p

∣∣∣∣p

θ

,

(3.5)

which implies that

∫
Ω

∣∣∣∣∇u
l+p−1

p

∣∣∣∣p dx ≥
(
κ−a

1 κ
a−1
2

)θ 
∫
Ω

|x|−s ul+1dx


θ

. (3.6)

On the other hand, denoting

η =
l (p − q) + q

(p − q) (l + 1)
∈ (0, 1) ,

and using Hölder’s inequality again, one has

∫
Ω

u
l(p−q)+q

p−q dx ≤ |Ω|1−η


∫
Ω

ul+1dx


η

= |Ω|1−η


∫
Ω

|x|−s
|x|s ul+1dx


η

≤ |Ω|1−η Rsη


∫
Ω

|x|−s ul+1dx


η

.

(3.7)

Denoting

g (t) =

∫
Ω

|x|−s ul+1dx,

and substituting (3.6) and (3.7) into (3.4) leads to

d
dt

g (t) + C3gθ (t) ≤ C4gη (t) , (3.8)
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which is equivalent to

d
dt

g (t) +
C3

2
gθ (t) ≤ gθ (t)

(
C4gη−θ (t) −

C3

2

)
, (3.9)

where
C3 = C1 (l + 1)

(
κ−a

1 κ
a−1
2

)θ
and C4 = C2 (l + 1) |Ω|1−η Rsη.

Since q > p − 1, one can verify that θ < η. If u0 (x) is suitably small satisfying

g0 = g (0) =

∫
Ω

|x|−s ul+1
0 dx <

(
C3

2C4

) 1
η−θ

, (3.10)

then Lemma 2.3 tells us that there are two positive constants σ1 and σ2 such that

0 ≤ g (t) ≤ σ1e−σ2t.

Choosing

T0 > max

0,−
1
σ2

ln

 1
σ1

(
C3

2C4

) 1
η−θ


 ,

then for any t ≥ T0, one can obtain that

d
dt

g (t) +
C3

2
gθ (t) ≤ gθ (t)

[
C4

(
σ1e−σ2t)η−θ − C3

2

]
≤ 0. (3.11)

And hence, one has
d
dt

g1−θ = (1 − θ) g−θ
d
dt

g ≤ −
C3 (1 − θ)

2
, t ≥ T0,

and
0 ≤ g1−θ (t) ≤ g1−θ

0 −
C3 (1 − θ)

2
t, t ≥ T0.

Therefore

g (t) ≡ 0 and u (x, t) ≡ 0 for t ≥ T1 = T0 +
2g1−θ

0

(1 − θ) C3
.

The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. Denote λ1 be the first eigenvalue of the following eigenvalue problem −div
(
|∇ψ|p−2

∇ψ
)

= λψ |ψ|p−2 , x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω,
(3.12)

and ψ(x) the corresponding eigenfunction. From Lemmas 2.3 and 2.4 in [16], one can know that ψ (x)
is positive in Ω and λ1 can be expressed as

λ1 = inf
ψ∈W1,p

0 (Ω),ψ,0

‖∇ψ‖p
p

‖ψ‖p
p
.
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Moreover, Theorem 9.2.1 in [18] tells us that ψ (x) ∈ W1,p
0 (Ω) ∩ C1+β

(
Ω
)

for some β ∈ (0, 1). For
the sake of convenience, we normalize ψ (x) in L∞ norm. Namely, max

x∈Ω
ψ (x) = 1. Define a function

f (t) as follows
f (t) = d

1
p−1−q (1 − e−ct)

1
1−q ,

where d ∈ (0, 1), and c ∈
(
0, (p − 1 − q) d

q−1
p−1−q

)
. Then it is easy to show that f (0) = 0 and f (t) ∈ (0, 1)

for t > 0, and we have
f ′ (t) + 1

d f p−1 − f q < 0. (3.13)

Let
υ (x, t) = f (t)ψ (x) .

A series of calculations show that, for 0 ≤ ξ (x, t) ∈ C
(
Ω × [0,T ]

)
∩ Lp

(
0,T ; W1,p

0 (Ω)
)
,

I =

T∫
0

∫
Ω

(
|x|−s υτξ + |∇υ|p−2

∇υ · ∇ξ − λ |∇υ|q ξ
)

dxdτ

=

T∫
0

∫
Ω

{[
|x|−s fτ (τ)ψ (x) − λ f q (τ) |∇ψ|q

]
ξ (x, τ) + f p−1 (τ) |∇ψ|p−2

∇ψ · ∇ξ
}

dxdτ

<

T∫
0

∫
Ω

[
|x|−s

(
f q −

1
d

f p−1
)
ψ (x) + λ1 f p−1 (τ)ψp−1 (x) − λ f q (τ) |∇ψ|q

]
ξ (x, τ) dxdτ

︸                                                                                                      ︷︷                                                                                                      ︸
J

.

If Ω does not contain coordinate origin, then by the Mean-Value Theorem, one can know that there
is a point

(
x?, τ?

)
∈ Ω × (0,T ) such that

J = T |Ω| ξ
(
x?, τ?

)
×

[∣∣∣x?∣∣∣−s
(

f q (
τ?

)
−

1
d

f p−1 (
τ?

))
ψ

(
x?

)
+ λ1 f p−1 (

τ?
)
ψp−1 (

x?
)
− λ f q (

τ?
)
|∇ψ|

q
x=x?

]
≤ T |Ω| ξ

(
x?, τ?

) [∣∣∣x?∣∣∣−s
(

f q (
τ?

)
−

1
d

f p−1 (
τ?

))
ψ

(
x?

)
+ λ1 f p−1 (

τ?
)
ψp−1 (

x?
)]
.

(3.14)

Furthermore, suppose Ω is a suitable domain such that the first eigenvalue λ1 of the eigenvalue
problem (3.12) satisfying

λ1 ≥
∣∣∣x?∣∣∣−s

ψ2−p (
x?

)
f q−p+1 (

τ?
)
.

By choosing d ∈
(
0,min

(
1, ψ

2−p(x?)
2λ1 |x? |s

))
, then (3.14) tells us that

J ≤ T |Ω| ξ
(
x?, τ?

)
ψ

(
x?

)
f q (

τ?
) [∣∣∣x?∣∣∣−s

− λ1ψ
p−2 (

x?
)

f p−1−q (
τ?

)]
< 0.

and then I < 0. So far, by Definition 2.1, one knows that, under some suitable restrictions on Ω,
υ (x, t) is a non-extinction weak sub-solution of problem (1.1). On the other hand, one can prove
that δ (x, t) = max {1, ‖u0 (x)‖L∞} is a non-extinction super-solution of problem (1.1). Then by an
iterated process, one can claim that problem (1.1) at least admits a non-extinction weak solution u (x, t)
satisfying υ (x, t) ≤ u (x, t) ≤ δ (x, t). The proof of Theorem 1.2 is complete. �
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Proof of Theorem 1.3. From (3.9), one has

d
dt

g (t) + C5gθ (t) ≤ 0, (3.15)

where
C5 = C3 −C4.

If λ is sufficiently small such that C5 is greater than zero, then (3.15) leads us to the extinction result
of the solution for the case q = p − 1.

On the other hand, for some suitable constants d ∈ (0, 1) and c ∈
(
0, (p−1)d

p−3
p−1

2

)
, repeating a similar

argument to that in the proof of Theorem 1.2, one can check that

ρ (x, t) = d
2

p−1
(
1 − e−ct

) 2
3−p
ψ (x) ,

is a non-extinction weak sub-solution of problem (1.1) for some suitable Ω. Meanwhile,

ω (x, t) = max {1, ‖u0 (x)‖L∞} ,

is a non-extinction super-solution of problem (1.1). Then by an iterated process, one can claim that
problem (1.1) at least admits a non-extinction weak solution u (x, t) satisfying ρ (x, t) ≤ u (x, t) ≤
ω (x, t). The proof of Theorem 1.3 is complete.

�

4. Conclusions

In this article, we analyzed the effects of the singular potential and the competition between the fast
diffusion term and the gradient source term on the occurrence of the extinction singularity of the weak
solution to a p-Laplacian equation. Using integral norm estimate method and constructing appropriate
weak sub-solution and super-solution, we obtained the sufficient conditions for the extinction and non-
extinction behaviors of the weak solution.
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