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1. Introduction

Coronavirus (COVID-19) is a new phenomenon in recent days, which indulged the whole world
in an emergency situation. According to reports, it’s originated from Wuhan city of China [1]. In
December 2019, the first case of novel coronavirus was reported. The symptoms of coronavirus are
dry cough, fever, fatigue, and severe cases of acute respiratory syndrome that appears in 2-10 days
and further cause pneumonia, Kidney failure, and even death [2]. Between March and April,
coronavirus became a global phenomenon, and the whole globe faced an emergency situation. Initial
cases were reported in the wet seafood market in Wuhan, China [3]. That’s why some researchers
thought that it’s transmitted in humans through animals. This virus is transmitted from one person to
another through physical contact, droplets during sneezing and coughing [4]. Researchers of the field
of epidemiology and other fields of biology are trying hard to develop the cure based on ongoing
clinical trials, but different researching companies of different countries have developed the vaccine
of COVID-19. If we mention here, then China, the USA, England and Russia have developed the
vaccine. In most countries of the globe, people receiving doses of vaccines. According to WHO, at
4:53 pm CET, 18 March 2021, there were 120,915,219 confirmed cases reported globally, including
2,674,078 deaths and a total of 364,184,603 vaccine doses were administered [5]. Developed
countries like the USA, UK, Italy, Spain, and many others are affected very badly; most of the global
deaths are reported from these countries [6]. Some precautionary measures for COVID-19 are
wearing a face mask, maintaining a 6feet distance, coughing and sneezing in the elbow, and washing
your hands minimally 30 seconds. Almost all countries' governments have enforced non-medical
interventions such as social distancing, self-quarantine, isolation, wearing a face mask, protecting
gears for medical staff, and travel restrictions to control the spread of disease. Mathematical
modelling is used to understand the dynamics and behaviour of disease and then develop the
procedures for the treatment of disease. For this purpose, many researchers developed the COVID-19
models (see [7-10]). The reproductive number has a notable role in the analysis of mathematical
models. Reproductive number explains the behaviour of the simulation of COVID-19.

In Pakistan, 739,818 confirmed cases had been reported, including 15,872 deaths out of over
220 million population to date [11,12]. On 26 February 2020, the first case of COVID-19 was
reported in Karachi, Pakistan's economic hub. Nowadays, Pakistan has been facing the third wave of
COVID-19, which is at its peak. The government is not in the right of Strick lockdown because most
of the people are a daily wager; that's why the government has been implementing smart lockdown.
There are many mathematical models provided for more insight into how to control the spread of
Covid-19 to health authorities [13-15]. In three highly affected countries, the transmission pattern of
COVID-19 was studied by Fanelli and Piazza [16]. To explain the simulation of COVID-19
transmission [17,18] are used and explain the natural fact of fractional-order mathematical models in
a systematic way as in [19,20]. The fractional-order models are more effective than classical integer
models in analyzing the dynamics and behaviour of infectious diseases [21,22]. The fractional-order
models give better results to the real data. Some fractional operators are given in [23,24], and
applications of these fractional operators are given in [25,26]. The investigations of some other
infectious disease mathematical models have been studied in [27,28-31]. Studied the outcome of an
antiviral drug on the system to obstruct the contact between epithelial cells and SARS-CoV-2 to
restrict the COVID-19 disease in [37,38]. Results have good accuracy, and the method is valid for
the fuzzy system of fractional ODEs COVID-19. Also, the random COVID-19 model described by a
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system of random differential equations was presented in [39-43], and some application of fractional
order for the real-life problem was also given in [44-48].

In this paper, we proposed a fractional-order COVID-19 model with Atangana-Baleanu,
Atangan-Tufik scheme and fractal fractional-order derivative. In Section 1, we construct the
introduction with the literature review of COVID-19 and fractional calculus. Section 2 has some
basic definitions which are helpful for analysis and simulation if the model. In Section 3, the
mathematical model of COVID-19 is present with disuses the boundedness and positivity of the
model. In Section 4, using fixed point theory and an iterative method, the existence and uniqueness
of the system of solutions for the model have been made. In Sections 5 and 6, new numerical scheme
and fractal fractional-order derivative construct with Atanga-Tufik method for real data of Wuhan
China. In Section 7, we describe the numerical simulation of the proposed scheme with real data and
best-fitted parameter substitution. We give the conclusions and perspectives in Section 8.

2. Basic concepts of fractional operators
Definition 2.1. For a function y(t) € W;(0,1), b > aand © € [0,1], the definition of

Atangana-Baleanu derivative in the Caputo sense is given by

AB(0©)

ABEDRY (1) = 420

f;%y(r)M@ [—%(t—r)e] dr, n—1<0<n (1)
where

C)
AB(®)=1—@+@.

By using the Sumudu transform (ST) for (1), we obtain

sTieEoE 0o = £ oro + v (- 57| X STOW) 0L @

Definition 2.2. The Laplace transform of the Caputo fractional derivative of a function y(t) of
order © > 0 is defined as

L[EDZy(1)] = s°y(s) — X5=5 ¥ @ (0) s~ ©)

Definition 2.3. The Laplace transform of the function t®17'E, o (+ut®) is defined as

50-01

L[t®17 1 Eg o, (£ut®)] = (4)

sOFu’
where Ego, is the two-parameter Mittag-Leffler function with 6,6, > 0. Further, the
Mittag-Leffler function satisfies the following equation [32].

1
ro.)

E@,@1 f) = fE@,@+@1 )+ (5)

Definition 2.4. Suppose that y(t) is continuous on an open interval (a,b), then the
fractal-fractional integral of y(t) of order ® having Mittag-Leffler type kernel and given by
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FFM ;0,01 _ 00, t ©,-1 Y 0:(1-0)t®1 1y ()
0,t (y(t)) - AB(0)T(0) fO sot Y(S)(t S) ds + AB(©) . (6)

3. Formulation of COVID-19 model

This section considers the novel coronavirus (COVID-19) disease model developed by Yang
and Wang [33]. In this model total human population is divided into five classes, namely, susceptible
individuals are represented by S., E. represents exposed individuals, who are infected but not
infectious as yet, I. represents infected population, those individuals in which symptoms have
shown strongly and can spread infection by contact with susceptible individuals, R represents the
individuals who have no symptoms and they have recovered after receiving treatment and the
concentration of virus is represented by V..

dse
ar I, - IBECSCEC - ﬂlcsclc - ﬁVCSC‘/C — UeSe)

dE,

ar IBECSCEC + IBICSCIC + IBVCSCVC — (ac + u)E,,

dl,

P acE. — (we + v + udl, (7
dR

d_tc =Yelc — UcR,,

av,
ar = P1cEe + Yol — TV

In the above system parameters are defined as the influx of population is denoted by II., p.
represents natural death rate, (a.)~! represents quarantine period of the infected individuals, rate of
recovery is denoted by y., The exposed and infected people which contributing the coronavirus in
the surrounding is represented by yr,., P, respectively, disease induced death rate is represented
by w. and t. represents removal rate. Bg_ represents the rate of human to human transmission of
virus between exposed and susceptible people, The rate of human to human transmission between
infected and susceptible people are represented by B;. and By, denotes the rate of transmission due
to environmental contact to human. We suppose that given all functions Bg_, B, and By, are
non-negative and non-increasing. By applying Atangana-Baleanu fractional derivative (ABC) of
order ® and © € (0,1], then the system (7) becomes

ABng)SC =1l — ﬂECScEc - IBICSCIC - ﬂVCSch — UeSe)

ABth@Ec = .BECSCEC + lBICSCIC + :BVCSCVC - (ac + .uC)ECl

ABth@Ic =a.E. — (wc + Y+ .uc)lc' (8)
ABth@Rc = Yele — UcRe,

ABgDLch =Y1cEc + Yol — TV
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Initial conditions are
S.(0) = a4,E.(0) = a,,1.(0) = a3 R.(0) = a,and V.(0) = as. 9)
Equilibrium points
In this section, we will discuss the equilibrium points of the given COVID-19 model (8).
Equilibrium points have two types, namely disease-free equilibrium and endemic equilibrium. We

obtained these points by putting the Right-hand side of the system (7) is zero. We suppose that E°
represents disease free equilibrium and endemic equilibrium is represented by E*, we have

E® = (54(0), E¢(0), 1(0), Rc(0), V,(0)) = (Z— 0,0,00)

E* = (S;,E; R. IV, where

1 we + Y.+ u)l: I
5t = — (e = (@ + IED, R
I’l'C aC I’l'C
V* — 17010(000 + Ye + .uc) + aclrchI:
¢ (d+u+96) '
We obtain the basic reproductive number R, by [34], we have
_ IBECSC(O) + acﬁlcsc(o) + ((wc + Ye + ﬂc)lplc + aclpZC)IBVCSC(O)
O (@ H ) (we +ve + pe)(ac + pe) Te(we +ve + ue)(@c + 1)

We consider the following parameters values and initial conditions [34] for our simulations:

M, = 8859.23 X 10%, B, = 6.11 x 1078,, = 2.62 x 1078, B, = 3.03 x 1078, 1,

=3.01 X 1072, a, = 0.143,w, = 0.01,y, = 0.67,y,, = 1.30,1,. = 0.06,7, = 2.0.
Theorem 3.1. The solution of the proposed fractional-order model (8) along initial conditions (9) is
unique and bounded in R3.
Proof.
The existence and uniqueness of the solution of system (8) on the time interval (0, ) can be
obtained by the process discussed in the work of Lin [36]. Subsequently, we have to explain the
non-negative region R3 is positively invariant region. From model (8), we find

ABth@SC|SC=O =M. =0
ABth@EclEC=O = lBICSCIC + :BVCSCVC =0
ABth@Icllczo =ack, =0

ABSDt@RclRC=O =Yl =0
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ABSDt@Vc|VC=O =P1cEc + Pl = 0.

If  (Sc(0), Ec(0),1.(0),R.(0),V;(0)) € R}, the solution [S.(t), Ec(t), Ic(t), Rc(t), Ve ()]
cannot escape from the hyperplanes S, =0,E, =0,I. =0,R. =0and V. =0. Also, on each
hyperplane bounding the non-negative orthant, the vector field points into R3, i.e., the domain R3
IS a positively invariant set.

In the next theorem, we will show the boundedness of the solution to the proposed model (8).

Theorem 3.2. The region A = {(S.(t), E.(t),1.(t), R.(£),V.(£)) € R3|0 < S.(t) + E.(t) + I.(t) +
R.(t) +V.(t) < %} is a positive invariant set for system (8).
Proof. For the proof of the theorem, we have from system (8)
ABthQNc(t) = +Y1cEc + ol —wele — tVe — peNe

where

N.=S.+E.+1I,+R, .
Since Y,.Eq, W0l wol,., TV, are positive parameters, then

ABEDEN (1) < Tlg — N,

Applying the Laplace transform to above equation, we get
I,
S@ Nc(s) - S@_lNc(O) < T - .uch(S);

which further gives

-1 0-1

S
[I, + ——N_.(0).
SQ+IJ-C Cc SG+MC C()

N.(s) <

From Egs (3) and (4) we infer that if (S, Ec,, Ic,» Reyr Ve,) € R3, then

N(t) S T APEg g1 (—1act®) + Eg 1 (—pact®)
Q-9

C

<

(#ctQE@,@H(_dt@)) + Eg,1(—dt®)

m. 1 I,
<< <<
pe T'(1) ™ pe

This shows that the total population N(t), i.e., the subpopulations S(t), H(t),I(t) and Q(t),
are bounded. This proves the boundedness of the solution of system (8).

4. COVID-19 model with the Mittag-Leffler kernel

By using the Sumudu transform on the system (8), we get
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(@)6er(e+1) 1
IORTED My (— == VO) STLS(£) — Se(0)} = T[N, — Bg ScEe = i, Scle = By, ScVe — HeSe],

1-0

e)ere+1 1
UDOTED My (== V) STLE(E) — Ec(0)} = ST[Bg,ScEe + Bi,Scle + Br,ScVe — (@ + o) Ee],

q(@)er(e+1)
1-0

My (== V) STULO) — 1,00} = STlaeE, — (@ +¥e + oL, (10)

(0)er(o+1) 1
TESTED My (=5 V) STER(E) — Re(0)} = STyl — pcRe],

1-0

r
UDOTELD Mo (— V) ST{L(E) — Vo(0)} = ST[hscEc + hacle — eVl

1-0 1-6

Rearranging, we get

1-6
1
q(0)6T(9+1)Mg(-—5V®

ST(SC(t)) = SC(O) + ) X ST[HC - ﬁECScEc - lBICSCIC - :BVCSCVC - :ucSc]'

1-6
ST(Ec(t)) - Ec(o) + q(@)@F(@+1)M@(—$V@) X ST[ﬂECSCEc + ,BICSCIC + ﬂVCSch - (ac + .uc)Ec];
1-6
ST(I(t)) = 1.(0) + s@ereroMe[-Zve) ST[acE: — (we + ve + 1), (11)
1-6
ST(Re(8)) = Re(0) + q(@)er(e+1)Me(-—5v°) X STlyele = HeRcl,

1-6
q(©)6er(e+1)Mg (—ﬁv@)

ST(V.(8)) = V.(0) + X ST[W1cEc + WPacl — T V.

By using the inverse Sumudu transform of system (11), we have

1-0

S.(t) = S.(0) + ST !

q(e)or(e+1)Me(-—5v°) X ST[HC ~ BeScEc — Br.Scle — By, ScVe — “cSC]]'

1-0
q(@)@F(G+1)M@(—$V9)

)

Ec(t) = Ec(o) + ST_l X ST[,BECSCEC + ﬂICSclc + ,BVCScV;: - (ac + ﬂc)Ec]

1-06

_ -1 —
I.(t) = 1,(0) + ST PSP TN X ST[a E. — (we + ye + uc)lc]], (12)

AIMS Mathematics Volume 7, Issue 1, 756-783.



763

[ ]
1-0
Rc(t) = RC(O) +ST71 1 X ST[]/CIC - MCRC] )
lq(@)@[‘(@ + DM (- 7=5V°) j
N -0 l
Vc(t) = VC(O) + ST 1 1 X ST[wlcEc + 1702clc - TCVC] .
lq(@)@F(@ + DM, (- 1=5V°) J

Therefore the following recursive formula is obtained.

1-6
1
q(6)6T(0+1)Mg(-—5V®

Sepey ) = S, (0) + ST

) X ST[HC - :BECSancn - :BICScnIcn - ﬁVCSchcn -

)

teSe, |

1-6
q(@)@F(@+1)M@(—$V9)

E. ., (t) =E.(0)+ST™! X ST|Be,Se, Ec, + Bi,Sc,le, + By,Se, Ve, —

(ac + .uc)Ecn]

)

— -1 1-6 _
ley () = 16, (0) + ST | = =k ST|ac,Ec, — (wc +ve + uc)lcn]], (13)
— -1 1-6 _
Rensn (8) = Re, (0) + ST q(@)@F(@+1)M@(—$V@) X ST[VCnICn HCnRCn] ’
— -1 1-6 _
Vcn+1(t) - Vcn(o) + ST q(@)@F(@+1)M@(—$V9) X ST[ll’chn + ¢2clcn Tchn] '

And the solution of (13) is provided by

Sc(t) = limy,0 S, (£), Ec(t) = limy_e E¢, (t), I.(t) = limy I (t), R(t) = limy,o R, (£),

Ve(t) = limyoo Vi, (8).

AIMS Mathematics Volume 7, Issue 1, 756-783.



764

Stability analysis of model by using fixed-point theory

Theorem 4.1. Suppose that (Y,|.|) as a Banach space and H a self-map of Y satisfying
|H, — 2| < 6|y — H,|| +6lly —ll,

VyreY, and 0 <6 < 1. Assume that H is Picard H-Stable. Suppose that from system (10), we
have

1-6
q(0)or(e+1)Mg(-—5v)

(14)

Equation (14) is a Lagrange multiplier.
Proof. Suppose K as a self-map is given as

1-60
q(e)er(e+1)Me(-—5v°)

K[Sc,., (O] =S, (®) = S, (£) +ST™* x ST[M, — Bg,Se,

ﬁlc Cn cn .BVCSchcn - :ucScn] ’

K[E.,, (O] =E., () =E. (t) + ST}

1-0
Q(@)@F(@+1)M@(—$V@) . ST[’BECSC"EC” + BicSeple, +

ﬂVCSchcn - (ac + ﬂc)Ecn] ’

1-60
q(e)or(e+1)Me(-—5v°)

K[l ®]=1,, @ =1, () +ST™?

X ST[O(C Cn —(we+y:.+ nuc)lcn]]
(15)

1-6
q(@)@F(@+1)M@(

1

K[R.,, O] =R, (&) =R, (t) +ST? )

X ST[ndICn - 'uCnRCn] ’

1-6
q(0)6T(0+1)Mg(-—5V®)

K[Vcnﬂ (t)] cn+1 (t) = n(t) + ST_l X ST[ll’chn + lpZCICn - Tchn] '

By taking the norm and also using the triangular inequality, we obtain

1-6
q(©)6er(e+1)Mg (—ﬁv@)

1K[S...©] = K[So.. O] < [1Se.(®) = Su. (O] + ST [ X ST{TI, -
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ﬁEc”SCnECn - SCmECm” - ﬁlc”SCnICn - SCmICm” - ﬁVc”SCnVCn - SCmVCm” - ‘uC”SCn - Scm”} ’

1K [Ee, ®] = K[Ee,, O] <

1-0

_ -1
||ECn (t) ECm(t) || + ST q(@)@F(@+1)M@(—ﬁV@)

X ST{ﬁEc”SCnECn - SCmECm” + 'BICHSCTLICTL -

Senlenl + Bu5eu = S V| = e+ e, = oy}

1-6
q(©)6er(e+1)Mg (—ﬁv@)

||K[Icn(t)] - K[Icm(t)]” = ||Icn(t) - Icm(t)” + ST_l I X ST{aCn”Ecn -
Eey,|| = (e +ve + 0 |fe,, = Icmll}], (16)

1-0

TR, ©] = KR, @I < 12 © - Rey ] +57 % ST, -

q(0)6T(0+1)Mg(-—5V'®

ol = R, = e )

% [Ve, ] = K[ Ve, D]

<|v..®©)-Vv. @

1-06

4(6)0r(0 + )M, (- 1 1 5V°)

+ ST‘ll

X ST{II)lC”ECn - Ecm” + lpZC”ICn - Icm” - TC”VCn - ch”} '

Hence K satisfied all the conditions of Theorem (4.1) while
M = (O)O)O)O)O))M =
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(1156, = Se,, O X ||~ (Se () + Seru ) || + e = BelSe, B = SenEen | = BicllSenlen = Sl
~Brl1SenVen = SemVemll = HellSey, = Syl
X [|Ee, (8) = Ecy, ] % || = (Be, (©) + Ecpu ) || + BilISe, B, = SerEenll + BrcllSeulen = el
! +By 1S, Ve, = SeiVer || — (ac + uc)IIEcn —E, |
X ey (8 = Ie, O % [| = (16,0 + 16, )| + e, |Ee, = Eell = (@c + ¥e + ple, = Ly |
X ||Re, (®) = Re,, (O x || (ch(t) + Rcm(t))” +Yeulllen = el = HenlIRe, = Re |l
X Ve, (8) = Ve Ol % || = (Ve O + Ve, ©) || + WcllEe, = Byl + Waclle, = eyl = TellVe,, = Ve,

This shows that K is Picard K-Stable.
Theorem 4.2. Prove that system (8) has special unique solution.

Proof. Let Hilbert space H = L*((a,b) x (0,T)) which is given as

y:(a,b) X (0,T) -» R, jf ghdgdh < co.

Suppose that
Hc - .BECSCEC - lBICSCIC - .BVCSCVC - :ucSc'
lBECSCEC + .BICSCIC + :BVCSCVC - (ac + :uc)Ec'
M(0,0,0,0,0),M = aE. — (w. + v, + u)l,,
Ik )/clc - .ucRc'
wlcEc + lpZCIC - Tch-
We show that

p ((5011 - SC12’E021 - ECZZ’IC31 - 1032’RC41 - RC42’ VCS1 - Csz) (Wl WZ W3 W4 W5))

Where (SC11 —SeipEcyy —Ecyley, — Iy Re,, — Reyyo Ve, — CSZ) represents the special solutions

of system. We use the correspondence between norm and the inner product, we write the equation as
{HC - IBEc(SCn - 5012)(E021 - Esz) - ﬁlc(scn - SC12)(IC31 - 1032) - IBVc(SCn - SC12)(V;551 -
VCsz) - MC(SCM C12) Wl} =<1l ”Wlll - ﬁEc”SCn - SC12”||E021 - sz||”W1” ﬁlc”SCn -

SC12||||IC31 - IC32||”W1” - IBVc”SCn - SC12||”V;551 - V052||”W1” - MC”S(:ll - C12||”W1”

{'BEc(SCn - SC12)(E021 - Esz) + 'Blc(SCn - SC12)(IC31 - 1032) + 'BVc(SCn - SC12)(V051 - VCsz) -
(aC + MC)(ECM - Esz)’ WZ} = 'BEc”SCn - C12||||E021 - ECZZHHWZ” + :Blc”SCn - SC12”||IC31 -

1032””W2” + )BVC”SC11 - Sc12||||Vc51 - Vc52||”W2” - (ac + .uc)”Ech - ECZZHHWZH
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{ac(E(,'21 - Eczz) - (wc + Vet ﬂc)(lc31 (:32) W3} < ac”Ec - ECZZHHWB” - (wc +Y+

ﬂc)”lc31 - Ic32||”W3”
{yC(IC31 - 1032) - ‘uC(RC41 - RC42)’ W4} < yC||IC31 - IC32||”W4-” - fuC“RC41 - RC42||”W4-”

{lplc(ECm - Esz) + IPZC(ICM - IC32 - TC(VC51 - VCsz)’ W5}
< lplc”Ech - ECZZHHWS” + l/)2(:”1031 - Ic32||||W5” - Tc||Vc51 c52||||W5”

Due to large number of e,, e,, e3, e, and es, both solutions converge to the exact solution. Applying

the topological idea, we have the very small positive five parameters ()(el,)(ez,)(e3 Xe, and Xes)-

||SC - 5011”' ||SC 012” < Xe1 ”E Cz1|| ”E sz” = X_SZ’
||IC - IC31||' ”IC - IC32|| == Xe3 ||R C41||' “RC - RC42|| S )%'
”VC Csz” = %‘

Where

W= S(HC - IBEc”SCn - C12||||E6'21 - sz” ﬁlc”SCn - 5012””1031 - 1032” - ﬁVc”SCn -

SC12||||V(551 - VC52|| - 'uC”SCn - SC12”)”W1”

¢= S(ﬁEc”SCn - SC12||||E021 - Esz” + 'Blc”SCn - SC12||||1031 - IC32|| + 'BVc”SCn - SC12||||VCS1 -

Vc52|| - (ac + :uc)”Ecn - Eczzll)”Wz”

v =5(a||E,, — Ec,, || — (we + ve + #)||ley, — I, D IIW5I

€21

K= 5()/C||IC31 - 16'32” - ﬂC”RCzu - RC42||)”W4”

( = 5(¢1C”E021 - Esz” + ¢2C||IC31 - IC32|| - TC||VC51 C52||)||W5”

But, it is obvious that

(HC - ﬁEc”SCn - SC12”||E021 - sz” ﬁlc”SCn - SC12”||IC31 - ICsz” - 'BVc”SCn - SC12||||VC51 -
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VCSZ” - MC”SCll - C12||) #0

('BEc”SCn - C12||||E021 - E022” + 'Blc”'scn - 5012””1031 - IC32|| + ﬁVc”SCn - SC12||||VC51 - VCSz” -

(ac + .uc)”Ecu - sz”) #0
(aC”ECz1 - Esz” - (wC + Ye + MC)”1031 C32||) #0
(yC||IC31 - IC32|| - ‘uC”RC41 - RC42”) #0

(lplC”ECm - Esz” + 1/)20”1031 - 1032” - TC||VC51 - Csz”) #0

Where [|[Wll, W, W31, [IWA, IWs]| = 0
Therefore, we have

||SC11 - C12|| = 0 ||E021 - sz” = 0 ||IC31 - C32|| = 0 ||RC41 - C42|| = 0

Ve, — Vi

51 Cs2 ”

=0,

which yields that

Se.. =S¢, E I R |7

C51

C11 C12’ €21 = Esz’ C31 = IC32’ Ca1 = RC42’ = VCsz'

This shows that, the special solution is unique.
5. New numerical scheme

We define the Atanagana-Tufik proposed scheme for fractional derivative model (8) for the
COVID-19 epidemic [35]. For this purpose, we suppose that
ABC —
sDx(t) = g(t,x(®), a7
x(0) = x,.

We express the Eq (17) in the form of fractional integral equation by applying fundamental
theorem of fractional calculus.

(1-0)
ABC(0)

x(t) —x(0) =

g(tx@®) + f 9(t,x(D)(t — 1) dr. (18)

F(@)XABC(@)

At a given point t,.,n = 0,1,2,3, ..., the above equation is reformulated as

tnt1

1-0)
x(tn+1)—x(0)—( g(t ,x(ty)) + 9(t,x(D))(tn41 — DO dT

ABC(0)

0
(@) x ABC(6) jo

AIMS Mathematics Volume 7, Issue 1, 756-783.



769

(1-0)
= ABC(@)g(tn' x(tn)) + W f ]+lg(T x(T))(tn+1 - T)G 1dT (19)

Within the interval [t;,t;41], the function g(z,x(z)), using the two-steps Lagrange polynomial

interpolation, can be approximate as follows:

RO = =0 (5x(0)) ~ 0 (t0x(5))

zg(ti::(tj))(r_tj_l)_ (1 X ( 1))(1— )

SEGLAYCRPEN _M(T_t,.). (20)

h

The above approximation can therefore be included in Eq (19) to produce

_ (1-0) n g(t]-,xj) Civr (. _ 4 _\o-1 _

A28 115 (1 )0, )%t ). @

For simplicity, we let

tita o1
Yo 1= j (T - tj—l)(tn+1 —1)°7dr
t

J

and also
tita
Yo j2 = j (T - tj)(tn+1 —1)°dr
tj
L — KBO+1 P1D2—DP3P4
Yoji=h 0(6+1) (22)
©+1 P5—P3Pe
Ya] 2= =h 0(60+1) ) (23)
where
P1:(m+1_j)@ pp=(m—-j+2+0) p3=(TH—j)@

pa=(M—j+2+4+20) ps=m+1-j)°*"  ps=(m—-j+1+06).
By using Egs (22) and (23), we obtain

(1 hg(t;x;)) hOg(tj-1,%j-1) (
—— L (e —

— n (2298E%) _ -
Xn+1 = Xo F ABC(@)g(tn'x(tn)) WTEO) ABC(@) f=°( r(e+2) (P1p2 = P3pa) r(0+2)
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p3p6)> : (24)

We obtain the following for model (8).

(1-6) hor(tr5c;) h09(tj-15¢;.,)
Scn+1 = Sco + ABC(@)g(tn’S (tn)) +— ABC(G) ?:0 W(Pﬂ?z p3p4) - F(Tz)jl(ps -
P3Pe)

(1-0) nog(t;, Ec) n®g(t;- LEe; )
Eepy = Eoy + 3500 9 (b Ec(tn)) + 75005 2o |~z (PiP2 = P3Pa) = —rig (05 —
P3Pe)

(1-8) h g(f, Ic) h@g(tj_l,lc._ )
P3Pe) (25)

(1-0) h g(t]Rc) nog(t;_ LR, )
Rewen = Rey ¥ 2579 (b Re(t)) + 355 B0 | ~gry (PrP2 = Papa) = gy (ps =
P3Pe)

(1-0) h g(t] Vc) h@g(tj_l,VC._ )
Vcn.,.l = Vco + ABC(@)g(tn' c(tn)) +— ABC(@) ?:O W(Pﬂ?z p3p4) - I‘(Tz)ll (pS -
P3Pe)

6. Fractal fractional order model

We present the COVID-19 model (7) using fractal-fractional Atangana-Baleanu derivative. We
have the following model:

0,
FFDO,tQISC = I—[c - lBECSCEC - ﬁICSCIC - :BVCSCVC - :ucSc'
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Dy E, = Be,ScEe + BrScle + BrScVe — (ac + pe)Ee,
Dyt = acEe — (we + Ve + 1)l (26)
FDOC R, = Vele — ueRe,

FFD((;),%@”/;: = Y1cEc + Yol — TV

In order to present the numerical algorithm for the fractal-fractional COVID-19 model (26), we
first describe the general system and present the steps by considering the Cauchy problem below:

FEMD®1x(t) = & (t, x(t)). (27)
The following is obtained by integrating the above equation:

x(8) = x(0) = 52 0,£9 710 (£, x(8)) + s [y 70171 0(7, x(1)) (£ = )~ d, (30)

Let k(t,x(t)) = 0:t°71d(t,x(t)), then system (26) becomes

x(8) = x(0) = T2 k(£ x(0) +

f k(t,x(1))(t — 1)° dr, (28)

C(@)F(@)

At t,., = (n+ 1)At, we have

x(tnr1) = 2(0) = =2 (it x(6,)) + (1, 2(0)) (b — DM, (29)

c(o) C(@)r(@)
Also, we have

(1-0)
c(e)

x(tnr1) = 2(0) + 2k (6, X(t0) + g Eiea Jo 7 (2, 2(0)) (s — 1)°7"d. (30)

Approximating the function k(t,x(t)), using the Newton polynomial, we have

Pn(T) =

k(tn-1, (tn— ) —k(tn—2, (tn— )
k(tn—zlx(tn—z)) + (tng (=g )At CEEICE )(T —ty2) +
k(tnx(tn))—2k(tn_1,%(tn-1))+k(tn_2.x(tn_2)) (t—t, ) (T —ty_1) (31)

2(At)?

Using Eq (31) into system (30), we have
X"t =

(1 @)

k(tn,x(tn)) T zft]+1{k(tn 2 x(tn2)) + k(tn-1,%(tn-1))=k(tn—2x(tn—2)) (r—

C(@)I‘(@) At
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k(tnx(tn)) =2k (tn—1,2(tn—1)) +k (Enez, X (En—z) _
t-y) + LX) 2 ormax Ve lenoaxOnd) ()0~ 1, 0)} (bygy — D). (32)

Rearranging the above system, we have

A+l —
(1 @)
k(tn,x(tn)) +
0 n . j—2 j+1 _\e-1 n k(tj—l'xj )= k(t] 2%~ ?) Civif
c(e)r(e) Lj=2k (6-2% )f (tnsq —1)°7NdT + c(@)r(@) At f (r
__Ne-1 n k(tj,xl)—Zk(t]-_l,xf D+k(tj_px)™2) t]+1 _ _
ti—1) (tnsr — 1) 71dT. (33)

Now, calculating the integrals in system (33), we get
ti _ At)® . ,
JI™ (tnas = DN == [(m = + 1)° = (m = )°],

(At)@+1

’“(r = tj2)(tnsr — DTN = S Im =+ DO(m—j+3+20) = (m—j + 1)°(m -
j+3+30)],

i A . .
[ (0 = 42) (1 = 0) (b = DA = 280 [ =+ DO(20m — ) + (36 +

10)(m — ) + 2602 +960 + 12} — (m — )H)°{2(m — j)? + (50 + 10)(m — j) + 662 + 186 + 12}].

Inserting them into system (33), we get

K+ = 40 4 U @)k(tn, (t) + =—— o(n)® Yiok(tj_2x’ ) [(m—j+ 1)° — (m — )°] +

c(e)re+1)
s ale(t1, 20 ™) = k(g2 [ —  + DO (m = j + 3 +20) — (m—j +
1)°(m—j +3+360)] + ((‘j)(ﬁ(t;“) S [k (g, 67) = 2ke(t5-0, 297Y) + k(ty_p 2072) | [(m — j +

D2(m—)?+ BO+10)(m —j) + 262 + 96 + 12} — (m — ))°{2(m — )? + (50 + 10)(m —
j) + 667+ 186 + 12}]. (34)

Finally, we have the following approximation:

n+l _ 40 4 (170) 5 ,61-1 001(40° <  01-1 j—2 . 0 _
XM= 20+ 201t T (b, x () + i D2 6 P (G2 x ) [(m = + 1)

[¢] .
(m—j)9]+% n [@1 1CID( _,x)” 1) @1 1CID( 2,xf‘z)][(m—j+1)9(m—j+3+

, . 064 (At)® 0,-1 i 0,-1 -
20)—(m—j+1)°m—j+3+30)]+ m ot T o(t, x0) = 2672 T (g, xTTY) +

£ (g 2 72)|[(m — j + DO2(m — ) + (30 + 10)(m — j) + 2602 + 90 + 12} —
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(m—-)°{2(m—j)?+ (560 +10)(m —j) + 66% + 186 + 12}]. (35)
We obtain the following for system (26)

(1-e)
c()

- 00,(At)® - ,
01ty D (tn, Sc(t)) + o= T 7 (55, S 72 [(m — j + 1)° —

n+l __ 0
S¢ =S5. + ce)re+1)

. 00, (At)° 6,-1 1) _ ;011 j—2 . .
(m_])@]_}_m [/ [ (g 1,87 ) — 5 (65, ST [(m—j + 1)°(m —j +
3+20)—-(m—j+1)°(m—j+3+30)]+

00, (At)® 6,-1 j 6,-1 i—1 6,-1 i—2 .

oo Di=elt T @6, SI) = 22 (o, ST + 17 (1, S )|l - +
D2(m—)?+ BO+10)(m —)) + 262 + 96 + 12} — (m — ))°{2(m — ))? + (50 + 10)(m —
)+ 662+ 186 + 12}],

+1 (1-9) 01-1 00,(At)® (0171 o .
EM =E’+— o) Oatn’ D (tn, Ec(tn)) + m ot ®(ti_p ES72)[(m—j + 1)° —
. 00, (At)® i - i , .
(m _1)0] + c(@)ll“(@+2) }l= [ £ 1(1)( 1'EC] 1) o tjg—lz 1cI)(tj—Z'Ec] 2)][(7” -]t 1)°(m -]+

3+420)—-(m—j+1)°m—-j+3+30)]+

004 (At)° 0,-1 ' 6,-1 - 6,-1 — .
corern Di=lti T @t ES) — 262 0(t-, ESTY) + @72, g (82, B[ [0m — j +
D°2(m—)?+ (BO +10)(m —j) + 202+ 960 + 12} — (m — j)°{2(m — j)? + (50 + 10)(m —
)+ 662 + 186 + 12}],

+1 _ 70, (1-0) 0,-1 00,(At)° 0,—1 i .
Icn - Ic + c(o) @1tn1 Cb(tnilc(tn)) +mz;}=2 t]'_lz Cb(tj—z;lc] )[(m —J + 1)0 -

. 004 (AD)® 0,-1 i—1 01-1 i—2 . .
(m—)°]+ m =2 [ Ua(to,, 1T - t;, O(tj_p I 7)) [(m—j+1)°(m—j +
3+420)—-(m—j+1)°(m—j+3+30)]+

o B - ~ - .
C?S)lr((A@ti@ ?=2[t191 1(D(t"101) - Ztel 1(D( LT + tj@—lz 1(D(tj—2'lc] Alm—j +

D2(m—)?+ BO+10)(m —j) + 262 + 96 + 12} — (m — ))°{2(m — ))? + (50 + 10)(m —

)+ 662+ 186 + 12}], (36)
1 0o, (1-9) 01-1 00,(At)® 0,1 i_o .
ch+ =R, + c@) O:t," (D(tn' Rc(tn)) + m =2 t 1 (D( Z,RC] )[(m —Jj+ 1)@ —

. 00, (At)® - - i— , ,
(m = O] + e s [ (-0, R = 7% (50, R )] [Om = j + DO(m = +

3+420)—-(m—j+1)°m—j+3+30)]+

06, (A)® 6,-1 01-14, i— 6,-1 - .
c(@)ll"(@+3) }l=2[tj (b, Re ) -2t ®(tj-1,R) + 62 ®(tj, R )| [(m — j +
D°2(m—)?+ (BO +10)(m —j) + 202+ 960 + 12} — (m — j)°{2(m — j)? + (50 + 10)(m —

)+ 662+ 186 + 12}],
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(1-6)
VI =V gy Oatn T @t Ve(t)

00, (At)°
COIO+1) £

006, (At)° oi-1gy -
C(OL(O +2) Z[ V)

@rlcp( 2 V) =)+ 1)° = (m = )]

@1 1CD( z,ch_z)][(m_j +1)°(m—j+3+20)
_(m_j+1)@(m—j+3+39)]

006, (At)° _ , . -~
+C(@)F(@+3)Z[t@1 ‘(g V) - 22 (o, V)

@1 ST0(t_ 5, V)| [m = j + 1)°{2(m — j)? + (30 + 10)(m — ) + 26% + 96
+ 12} —(m—){2(m—j)?+ (560 + 10)(m — j) + 662 + 186 + 12}].

7. Result and discussion

To identify the potential effectiveness of Coronavirus disease transmission in the Community,
the COVID-19 fractional-order model in the case of Wuhan, China, is presented to analyze with
simulations. That’s why; we have used Atangana-Baleanu in Caputo sense with Mittag-Leffler law,
new Atangana Toufik scheme and fractal fractional derivative model of the COVID-19 in the case of
Wuhan China with the initial conditions are provided. Details of the parameters of real data
are II. = 8859.23 X 10*,Bg. = 6.11 x 1078,B,. = 2.62 x 1078, By. = 3.03 x 1078, p, = 3.01 X
1072, a, = 0.143, w, = 0.01, y. = 0.67, P;. = 0.06,T. = 2.0. The various numerical methods
identify the mechanical features of the fractional-order model with the time-fractional parameters.
The dynamics of the model has changed, and simulations have been divulged. The results of the
nonlinear system memory were also detected with the help of fractional values. Figures 1-5
represents the simulations obtained by ABC method and Figures 6-10 is obtained with fractal
fractional derivative. It is easily observed that in Figures 1-5, all compartments starts increasing by
decreasing the fractional values which converge to steady state. Similar behavior can be seen in
Figures 6-10 but converge rapidly. In Figures 1 and 3, we will see that the concentration of virus and
infection rate is directly proportional to each other in Figures 6 and 8. In Figures 1 and 5, we will see
that the concentration of the virus and the rate of susceptibility are inversely proportional to each
other. It has been shown that physical processes are better explained using the fractional-order
derivatives, which are the most notable and reliable component compared to the classical-order case.
Existing non-integer-order models are less profitable compared to those operators. The behaviors of
the dynamics found in the various fractional orders are shown in the form of numerical results that
have been reported.
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9 %108 Proposed Method
© a=0.83
- a=0.79| |
. a=0.73
< a=0.69

40 45 50

Figure 1. Simulation of S.(t) with ABC fractional derivative.
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2.5 T T T T T T T T T
- =083
. a=0.79
. a=0.73
2f - =069
15¢F i
t’o
w
1r s
05 i
0 4 1 1 1 1 1 1 1 1

Figure 2. Simulation of E.(t) with ABC fractional derivative.
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4% 10° Proposed Method
© =083
351 «  a=0.79| |
. a=0.73
© a=0.69
3r i
25r i
= 2r ]
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1r N
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Figure 3. Simulation of I.(t) with ABC fractional derivative.
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Figure 4. Simulation of R.(t) with ABC fractional derivative.
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Figure 5. Simulation of V.(t) with ABC fractional derivative.
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Figure 6. Simulation of S.(t) with fractal fractional derivative.
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05 X 106 Proposed Method

X0

Figure 7. Simulation of E.(t) with fractal fractional derivative.
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Figure 8. Simulation of I.(t) with fractal fractional derivative.
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Figure 9. Simulation of
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R.(t) with fractal fractional derivative.
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Figure 10. Simulation of V.(t) with fractal fractional derivative.
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8. Conclusions

In this paper, Atangana-Baleanu in Caputo sense, Atangana-Toufik and Fractal fractional
Atangana-Baleanu differential equation model for COVID-19 disease in case of Wuhan China has
been investigated. The uniqueness and stability results of the COVID-19 model are investigated by
applying the fixed point theory and the iterative method. The boundedness and positivity of the given
model also have been investigated. The arbitrary derivative of fractional order has been taken in the
Atangana-Baleanu Caputo sense and Fractal fractional Atangana-Baleanu with Mittag-Leffler kernel.
Non-linear fractional differential equations were raised from the derivative with the help of a
non-singular and non-local kernel within the fractional derivative framework. Atangana-Baleanu
with Smudu transform, Atangana-Toufik and Fractal fractional Atangana-Baleanu is used to obtain
the derived fraction order COVID-19 model results. Comparison has been made between
Atangana-Toufik and Fractal fractional Atangana-Baleanu to verify the efficiency of results. Some
theoretical results are also discussed for the fractional-order model. Simulations are carried out to
check the actual behaviour of COVID-19 in society. We observe that obtained results are effective
for the proposed fractional-order model, which will be helpful in future to analyze the COVID-19
and for control strategies. To control the transmission of COVID-19, stay at home and putting
COVID-19 positive individuals into quarantine.
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