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1. Introduction, definitions and motivation

Let A denote the class of functions that are analytic in the open unit disc U = {z ∈ C : |z| < 1} and
let A0 be the subclass of A consisting of functions h with the normalization h(0) = h

′

(0) − 1 = 0 and
has the following series expansion,

h(z) = z +

∞∑
n=2

anzn. (1.1)

A continuous function f = u + iv is a complex valued harmonic function defined in U, where u and v
are real harmonic functions in U. We can write f (z) = h + g where h and g are analytic in U (see [2]).
We call h the analytic part and g the co-analytic part of f , where h ∈ A0 is given by (1.1) and g ∈ A
has the following power series expansion (see, for details, [4, 5, 10]):

g(z) =

∞∑
n=1

bnzn, |b1| < 1. (1.2)

A necessary and sufficient condition for f to be locally univalent and sense preserving in U is that∣∣∣h′(z)
∣∣∣ > ∣∣∣g′(z)

∣∣∣ in U.
We denote by S∗H the class of functions f = h+g, that are harmonic univalent and sense preserving

in U and satisfies the normalization conditions. For f = h + g ∈ S∗H , where h(z) and g(z) are given
in (1.1) and (1.2). Note that S∗H reduces to S∗, the class of normalized analytic univalent functions
if the co-analytic part of f = h + g is identically zero. Also, SH is the subclass of S∗H consisting of
functions f that map U = {z : |z| < 1} onto starlike domain (see [27]) .

The fractional q-calculus is the q-extension of the ordinary fractional calculus and dates back to
early 20th century. The theory of q-calculus operators are used in various areas of science such as
ordinary fractional calculus, optimal control, q-difference and q-integral equations, and also in the
Geometric Function Theory of complex analysis. Initially in 1908, Jackson [7] defined the q-analogue
of derivative and integral operator as well as provided some of their applications. Further in [6] Ismail
et al. gave the idea of q-extension of class of q-starlike functions after that Srivastava [28] studied
q-calculus in the context of univalent functions theory. Kanas and Raducanu [14] introduced the
q-analogue of Ruscheweyh differential operator and Srivastava in [30] studied q-starlike functions
related with generalized conic domain. By using the concept of convolution Srivastava et al. [31]
introduced q-analogue of Noor integral operator and studied some of its applications, also Srivastava
et al. also published a set of articles in which they concentrated class of q-starlike functions from
different aspects (see [32, 33, 35, 36]). Additionally, a recently published survey-cum-expository
review article by Srivastava [29] is potentially useful for researchers and scholars working on these
topics. For some more recent investigation about q-calculus we may refer to [20, 22, 23, 37–39].

The theory of symmetric q-calculus has been applied to many areas of mathematics and physics such
as fractional calculus and quantum physics. The symmetric q-calculus has proven to be valuable in a
few areas, specially in quantum mechanics [3, 24]. Recently in [13] Kanas et al. defined a symmetric
operator of q-derivative and introduced a new family of univalent functions. Furthermore Shahid et al.
[21] used the concepts of symmetric q-calculus operator theory and defined symmetric conic domains.
But research on symmetric q-calculus in connection with Geometric Function Theory and especially
harmonic univalent functions is fairly new and not much is published on this topic.
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Jahangiri in [9] applied certain q-calculus operators to complex harmonic functions, while Porwal
and Gupta discussed applications of q-calculus to harmonic univalent functions in [25]. Srivastava [34]
defined the q-analogue of derivative operator as well as provided some of its applications to complex
harmonic functions. In this article, first time we apply symmetric q-calculus theory in order to define
symmetric Salagean q-differential operator to complex harmonic functions and introduce a new class
of harmonic univalent functions.

For better understanding of the article, we recall some concept details and definitions of the
symmetric q-difference calculus. We suppose throughout in this paper that 0 < q < 1 and that

N = {1, 2, 3, ...} = N0\{0} (N0 = {0, 1, 2, 3, ...}) .

Definition 1.1. For n ∈ N, the symmetric q-number is defined by:

[̃n]q =
q−n − qn

q−1 − q
, [̃0]q = 0.

We note that the symmetric q-number do not reduce to the q-number, and frequently occurs in the
study of q-deformed quantum mechanical simple harmonic oscillator (see [1]).

Definition 1.2. For any n ∈ Z+ ∪ {0} , the symmetric q-number shift factorial is defined by:

[̃n]q! =


[̃n]q

˜[n − 1]q
˜[n − 2]q...[̃2]q[̃1]q, n ≥ 1,

1 n = 0.

Note That
lim

q→1−
[̃n]q! = n!.

Definition 1.3. The symmetric q-derivative (q-difference) operator of symmetric q-calculus operated
on the function h ( [12]) is defined by

∂̃qh(z) =
1
z

(
h(qz) − h(q−1z)

q − q−1

)
, z ∈ U, (1.3)

= 1 +

∞∑
n=1

[̃n]qanzn−1, (z , 0, q , 1) ,

and

∂̃qzn = [̃n]qzn−1, ∂̃q

 ∞∑
n=1

anzn

 =

∞∑
n=1

[̃n]qanzn−1.

We can observe that
lim

q→1−
∂̃qh(z) = h

′

(z).

A successive application of the symmetric q-derivative (q-difference) operator of symmetric
q-calculus as defined in (1.3) leads to symmetric Salagean q-differential operator which is define as:
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Definition 1.4. The symmetric Salagean q-differential operator of h is defined by

D̃0
qh(z) = h(z), D̃1

qh(z) = z∂̃qh(z) =
h(qz) − h(q−1z)

q − q−1 , ...,

D̃m
q h(z) = z∂̃qD̃m−1

q h(z) = h(z) ∗

z +

∞∑
n=2

[̃n]
m
q zn


= z +

∞∑
n=2

[̃n]
m
q anzn,

where m is a positive integer and the operator ∗ stands for the Hadamard product or convolution of two
analytic power series. The operator D̃m

q h(z) is called symmetric Salagean q-differential operator.

Note that

lim
q→1−

D̃m
q h(z) = z +

∞∑
n=2

nmanzn,

which is the famous Salagean operator defined in [26].
It is the aim of this article to define the symmetric q-derivative (q-difference) operator by using

symmetric q-calculus on the complex functions that are harmonic in U and obtain sharp coefficient
bounds, distortion theorems and covering results.

Definition 1.5. We define the symmetric Salagean q-differential operator for harmonic function f =

h + g as follows:
D̃m

q f (z) = D̃m
q h(z) + (−1)m D̃m

q g(z), (1.4)

where

D̃m
q h(z) = z +

∞∑
n=2

[̃n]
m
q anzn,

D̃m
q g(z) =

∞∑
n=1

[̃n]
m
q bnzn.

Remark 1.6. It is easy to see that, for q → 1−, we obtain symmetric Salagean differential operator for
harmonic functions f = h + g.

Definition 1.7. For 0 ≤ α < 1, let H̃m
q (α) denote the family of harmonic functions f = h + g which

satisfy the condition

<

 D̃m+1
q f (z)

D̃m
q f (z)

 ≥ α, (1.5)

where D̃
m
q f (z) is given by (1.4). Further, denote by H̃m

q (α) the subclass of H̃m
q (α) consisting of

harmonic functions f = h + g so that h and g are of the form

h(z) = z −
∞∑

n=2

anzn, and g(z) =

∞∑
n=1

bnzn, |b1| < 1. (1.6)

where an, bn ≥ 0.
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2. Main results

In the following theorem we shall determine coefficient bounds for harmonic functions belonging

to the classes H̃m
q (α) and H̃m

q (α).

Theorem 2.1. For 0 ≤ α < 1 and f = h + g, let

∞∑
n=2

[̃n]
m
q

(
[̃n]q − α

)
|an| +

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
|bn| ≤ 1 − α, (2.1)

where h and g are respectively given by (1.1) and (1.2). Then

(i) f is harmonic univalent in U and f ∈ H̃m
q (α) if the inequality (2.1) holds.

(ii) f is harmonic univalent in U and f ∈ H̃m
q (α) if and only if the inequality (2.1) holds.

The equality in (2.1) occurs for harmonic function

f (z) = z +

∞∑
n=2

1 − α

[̃n]
m
q

(
[̃n]q − α

) xnzn +

∞∑
n=1

1 − α

[̃n]
m
q

(
[̃n]q + α

)ynzn,

where
∞∑

n=2

|xn| +

∞∑
n=1

|yn| = 1.

Proof. For part (i): First we need to show that f = h + g is locally univalent and orientation-preserving
in U. It suffices to show that the second complex dilatation w of f satisfies |w| =

∣∣∣g′/h′ ∣∣∣ < 1 in U. This
is the case since for z = reiθ ∈ U. We have

∣∣∣∣̃∂qh(z)
∣∣∣∣ ≥ 1 −

∞∑
n=2

[̃n]q |an| rn−1 > 1 −
∞∑

n=2

[̃n]q |an| ≥ 1 −
∞∑

n=2

[̃n]
m
q

(
[̃n]q − α

)
1 − α

|an|

≥

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
1 − α

|bn| ≥

∞∑
n=1

[̃n]q |bn| ≥

∞∑
n=1

[̃n]q |bn| rn−1 ≥

∣∣∣∣̃∂qg(z)
∣∣∣∣

in U which implies as q → 1− that
∣∣∣h′(z)

∣∣∣ > ∣∣∣g′(z)
∣∣∣ in U that is the function f is locally univalent and

sense-preserving in U. To show that f = h + g is univalent in U we use an argument that is due to
author [8]. Suppose z1 and z2 are in U so that z1 , z2. Since U is simply connected and convex, we
have z(t) = (1 − t) z1 + tz2 ∈ U for 0 ≤ t ≤ 1. Then for z1 − z2 , 0, we can write

<
f (z2) − f (z1)

z2 − z1
>

1∫
0

(
<∂̃qh(z(t)) −

∣∣∣∣̃∂qg(z(t))
∣∣∣∣) dt.

On the other hand, we observe that

<
(
∂̃qh(z)

)
−

∣∣∣∣̃∂qg(z)
∣∣∣∣ ≥ <∂̃qh(z) −

∞∑
n=1

[̃n]q |bn| ≥ 1 −
∞∑

n=2

[̃n]q |an| −

∞∑
n=1

[̃n]q |bn|
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≥ 1 −
∞∑

n=2

[̃n]
m
q

(
[̃n]q − α

)
1 − α

|an| −

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
1 − α

|bn| ≥ 0.

Therefore, f = h + g is univalent in U. It remains to show that the inequality (1.5) holds if the
coefficients of the univalent harmonic function f = h + g satisfy the condition (2.1). In other words,
for 0 ≤ α < 1, we need to show that

<

 D̃m+1
q f (z)

D̃m
q f (z)

 = <

 D̃m+1
q h(z) + (−1)m+1 D̃m+1

q g(z)

D̃m
q h(z) + (−1)m D̃m

q g(z)

 ≥ α.
Using the fact that<(w) ≥ α if and only if |1 − α + w| ≥ |1 + α − w| , it suffices to show that∣∣∣D̃m+1

q f (z) + (1 − α) D̃m
q f (z)

∣∣∣ − ∣∣∣D̃m+1
q f (z) − (1 + α) D̃m

q f (z)
∣∣∣ ≥ 0. (2.2)

Substituting for

D̃m
q f (z) = z +

∞∑
n=2

[̃n]
m
q anzn + (−1)m

∞∑
n=1

[̃n]
m
q bnzn

and

D̃m+1
q f (z) = z +

∞∑
n=2

[̃n]
m+1
q anzn + (−1)m+1

∞∑
n=1

[̃n]
m+1
q bnzn.

In the left hand side of the inequality (2.2), we obtain∣∣∣D̃m+1
q f (z) + (1 − α) D̃m

q f (z)
∣∣∣ − ∣∣∣D̃m+1

q f (z) − (1 + α) D̃m
q f (z)

∣∣∣
≥ 2 (1 − α) |z|


1 −

∞∑
n=2

[̃n]
m
q ([̃n]q−α)

1−α |an| |z|n−1

−
∞∑

n=1

[̃n]
m
q ([̃n]q+α)

1−α |bn| |z|n−1


≥ 2 (1 − α)

1 −
∞∑

n=2

[̃n]
m
q

(
[̃n]q − α

)
1 − α

|an| −

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
1 − α

|bn|

 .
This last expression is non-negative by (2.1), and this completes the proof.

For part (ii): Since H̃m
q (α) is subset of H̃m

q (α), we only need to prove the “only if” part of the

theorem. Let f ∈ H̃m
q (α). Then by the required condition (1.5), we have

<


(1 − α) z −

∞∑
n=2

[̃n]
m
q

(
[̃n]q − α

)
anzn − (−1)2m

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
bnzn

z −
∞∑

n=2
[̃n]

m
q anzn + (−1)2m

∞∑
n=1

[̃n]
m
q bnzn

 ≥ 0.

This must hold for all values of z in U. So, upon choosing the values of z on the positive real axis
where 0 ≤ z = r < 1, we have

1 − α −
∞∑

n=2
[̃n]

m
q

(
[̃n]q − α

)
anrn−1 −

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
bnrn−1

1 −
∞∑

n=2
[̃n]

m
q anrn−1 +

∞∑
n=1

[̃n]
m
q bnrn−1

≥ 0. (2.3)
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If the condition (2.1) does not hold, then the numerator in (2.3) is negative for r sufficiently close to 1.
Hence there exists z0 = r0 in (0, 1) for which the left hand side of the inequality (2.3) is negative. This

contradicts the required condition that f ∈ H̃m
q (α) and so the proof is complete. �

Example 2.2. The function f = h + g given by

f (z) = z +

∞∑
n=2

Anzn +

∞∑
n=1

Bnzn,

where

An =
(2 + δ) (1 − α) εn

2 (n + δ) (n + 1 + δ) [̃n]
m
q

(
[̃n]q − α

) ,
Bn =

(1 + δ) (1 − α) εn

2 (n + δ) (n + 1 + δ) [̃n]
m
q

(
[̃n]q + α

) ,
belonging to the class H̃m

q (α) , for δ > −2, 0 ≤ α < 1, q ∈ (0, 1) , εn ∈ C, |εn| = 1. Because, we know
that

∞∑
n=2

[̃n]
m
q

(
[̃n]q − α

)
|An| +

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
|Bn|

≤

∞∑
n=2

(2 + δ) (1 − α)
2 (n + δ) (n + 1 + δ)

+

∞∑
n=1

(1 + δ) (1 − α)
2 (n + δ) (n + 1 + δ)

=
(2 + δ) (1 − α)

2

∞∑
n=2

1
(n + δ) (n + 1 + δ)

+
(1 + δ) (1 − α)

2

∞∑
n=1

1
(n + δ) (n + 1 + δ)

=
(2 + δ) (1 − α)

2

∞∑
n=2

(
1

(n + δ)
−

1
(n + 1 + δ)

)
+

(1 + δ) (1 − α)
2

∞∑
n=1

(
1

(n + δ)
−

1
(n + 1 + δ)

)
= 1 − α.

For q→ 1−, then Theorem 2.1 reduces to following known results ( [11, Theorems 1 and 2]).

Corollary 2.3. For 0 ≤ α < 1 and f = h + g, let

∞∑
n=2

nm (n − α) |an| +

∞∑
n=1

nm (n + α) |bn| ≤ 1 − α, (2.4)

where h and g are, respectively, given by (1.1) and (1.2). Then
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(i) f is harmonic univalent in U and f ∈ Hm (α) if the inequality (2.4) holds.
(ii) f is harmonic univalent in U and f ∈ Hm (α) if and only if the inequality (2.4) holds.
The equality in (2.4) occurs for harmonic functions

f (z) = z +

∞∑
n=2

1 − α
nm (n − α)

xnzn +

∞∑
n=1

1 − α
nm (n + α)

ynzn,

where
∞∑

n=2

|xn| +

∞∑
n=1

|yn| = 1.

The closed convex hull of H̃m
q (α) denoted by clcoH̃m

q (α), is the smallest closed set containing H̃m
q (α),

it is the intersection of all closed convex sets containg H̃m
q (α), In the next theorem we determine the

extreme points of the closed convex hull of H̃m
q (α) .

Theorem 2.4. If the functions f = h + g ∈ clcoH̃m
q (α) if and only if

f (z) =

∞∑
n=1

(
Xnhn (z) + Yngn (z)

)
,

h1 (z) = z,

hn (z) = z −
1 − α

[̃n]
m
q

(
[̃n]q − α

)zn, (n = 2, 3, ...) ,

gn (z) = z + (−1)m 1 − α

[̃n]
m
q

(
[̃n]q + α

)zn, (n = 1, 2, 3, ...) ,

∞∑
n=1

(Xn + Yn) = 1, Xn ≥ 0, Yn ≥ 0. (2.5)

In particular, the extreme points of H̃m
q (α) are hn and gn.

Proof. For the functions of the form (2.5), we have

f (z) =

∞∑
n=1

(Xn + Yn) z −
∞∑

n=2

1 − α

[̃n]
m
q

(
[̃n]q − α

)Xnzn

+ (−1)m
∞∑

n=1

1 − α

[̃n]
m
q

(
[̃n]q + α

)Ynzn.

This yields

∞∑
n=2

[̃n]
m
q

(
[̃n]q − α

)
1 − α

an +

∞∑
n=1

[̃n]
m
q

(
[̃n]q + α

)
1 − α

bn

AIMS Mathematics Volume 7, Issue 1, 667–680.



675

=

∞∑
n=2

Xn +

∞∑
n=1

Yn = 1 − X1 ≤ 1.

and so f = h + g ∈ clcoH̃m
q (α) . Conversely, let f = h + g ∈ clcoH̃m

q (α) . Then by setting

Xn =
[̃n]

m
q

(
[̃n]q − α

)
1 − α

an, (n = 2, 3, ...) ,

Yn =
[̃n]

m
q

(
[̃n]q + α

)
1 − α

bn, (n = 1, 2, 3, ...) ,

where
∞∑

n=1

(Xn + Yn) = 1.

We obtain the functions of the form (2.5) as required. �

Remark 2.5. For q→ 1−, then Theorem 2.4 reduces to the known results proved in [11].

Finally, we give the following distortion bounds which yields a covering result for H̃m
q (α).

Theorem 2.6. If f = h + g ∈ H̃m
q (α), then for |z| = r < 1, we have the distortion bounds

| f (z)| ≥ (1 − |b1|) r −
1

[̃2]
m
q

 1 − α

[̃2]q − α
−

1 + α

[̃2]q − α
|b1|

 r2, (2.6)

| f (z)| ≤ (1 + |b1|) r +
1

[̃2]
m
q

 1 − α

[̃2]q − α
−

1 + α

[̃2]q − α
|b1|

 r2. (2.7)

The bounds given in (2.6) and (2.7) for the function f (z) = h + g of the form (1.6) also hold for
functions of the form (1.1), (1.2), if the coefficient condition (2.1) is satisfied. Let the

f (z) = (1 + |b1|) z +
1

[̃2]
m
q

 1 − α

[̃2]q − α
−

1 + α

[̃2]q − α
|b1|

 z2

and

f (z) = (1 − |b1|) z −
1

[̃2]
m
q

 1 − α

[̃2]q − α
−

1 + α

[̃2]q − α
|b1|

 z2,

for
|b1| ≤

1 − α
1 + α

,

show that the bounds given in Theorem 2.6 are sharp.

Proof. We will only prove the inequality (2.7) of the Theorem 2.6. The arguments for the inequality

(2.6) is similar and so we omit it. Let f ∈ H̃m
q (α). Taking the absolute value of f (z), we obtain

| f (z)| ≤ (1 + |b1|) r +

∞∑
n=2

(|an| + |bn|) rn
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≤ (1 + |b1|) r +

∞∑
n=2

(|an| + |bn|) r2

≤ (1 + |b1|) r +
1 − α

[̃2]
m
q

(
[̃2]q − α

)
×

∞∑
n=2

 [̃2]
m
q

(
[̃2]q − α

)
1 − α

|an| +
[̃2]

m
q

(
[̃2]q + α

)
1 − α

|bn|

 r2

≤ (1 + |b1|) r +
1 − α

[̃2]
m
q

(
[̃2]q − α

)
×

∞∑
n=2

 [̃2]
m
q

(
[̃n]q − α

)
1 − α

|an| +
[̃2]

m
q

(
[̃n]q + α

)
1 − α

|bn|

 r2

≤ (1 + |b1|) r +
1 − α

[̃2]
m
q

(
[̃2]q − α

) ∞∑
n=2

(
1 −

1 + α

1 − α
|b1|

)
r2

≤ (1 + |b1|) r +
1

[̃2]
m
q

∞∑
n=2

 1 − α

[̃2]q − α
−

1 + α

[̃2]q − α
|b1|

 r2.

The following covering result follows the inequality (2.7) in Theorem (2.6). �

Theorem 2.7. If f ∈ H̃m
q (α), then for |z| = r < 1, we havew : |w| <

[̃2]
m
q

(
[̃2]q − α

)
− (1 − α)

[̃2]
m
q

(
[̃2]q − α

) −

{
[̃2]

m
q

(
[̃2]q − α

)
− (1 + α)

}
|b1|

[̃2]
m
q

(
[̃2]q − α

)
 ⊂ f (U).

Proof. Using the inequality (2.6) of Theorem 2.6 and letting r → 1, it follows that

(1 − |b1|) −
1

[̃2]
m
q

 1 − α

[̃2]q − α
−

1 + α

[̃2]q − α
|b1|


= (1 − |b1|) −

1

[̃2]
m
q

(
[̃2]q − α

) {1 − α − (1 + α) |b1|}

=
(1 − |b1|) [̃2]

m
q

(
[̃2]q − α

)
− (1 − α) + (1 + α) |b1|

[̃2]
m
q

(
[̃2]q − α

)
=

[̃2]
m
q

(
[̃2]q − α

)
− (1 − α)

[̃2]
m
q

(
[̃2]q − α

) −

{
[̃2]

m
q

(
[̃2]q − α

)
− (1 + α)

}
|b1|

[̃2]
m
q

(
[̃2]q − α

)
⊂ f (U).

�

AIMS Mathematics Volume 7, Issue 1, 667–680.



677

3. Conclusions

Research on symmetric q-calculus in connection with Geometric Function Theory and especially
harmonic univalent functions is fairly new and not much is published on this topic. In this paper we
have made use of the symmetric quantum (or q-) calculus to defined and investigated new classes of
harmonic univalent functions by using newly defined symmetric Salagean q-differential operator for
complex harmonic functions and obtained sharp coefficient bounds, distortion theorems and covering
results. Furthermore, we also highlighted some known consequence of our main results.

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric
functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse
areas (see, for example, [28, p.351–352] and [29, p.328]). Moreover, in this recently-published
survey-cum-expository review article by Srivastava [29], the so-called (p, q)-calculus was exposed to
be a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p
being redundant (see, for details, [29, p.340], see also [15–19]). This observation by Srivastava [29]
will indeed apply also to any attempt to produce the rather straightforward (p, q)-variations of the
results which we have presented in this paper.
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