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1. Introduction and preliminaries

At the beginning of the 20th century, Banach gave a result in the context of metric spaces
(see [10]), which is now known as the famous “Banach Contraction Principle”. Since then, many
other generalizations of this theorem were proved.

Recently, different fixed point theorems for operators that satisfy a cyclic type contraction condition
were given. One of the first papers that introduced the fixed point theory for cyclic contractions is [24],
where some fixed point results for cyclic contractions are proved. The theorems are then generalized in
the paper [16], where the authors considered a generalization of the contraction condition. George et al.
in [31] gave some important fixed point results using various types of cyclic contractions. They studied
the existence and uniqueness of fixed points for the cyclic type operators. Other results considering the
cyclic type contractions and applications are given in [3, 32, 37, 38, 46, 47, 52].

Another direction of generalizing the “Banach Contraction Principle” is changing the working
space. Considering this direction, an usual space is that of b-metric space. This notion was given
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in 1989 by Bakhtin (see [8]) and formally defined in 1993 by Czerwik (see [13]). This notion was the
starting point for developing the fixed point theory in b-metric spaces (see [4, 25, 26, 36], etc).
Searching the differences between the concepts of metric and the b-metric, one of them is the fact that
the b-metric is not necessary continuous (see [34, 35]).

The purpose of the present paper is to prove some fixed point results for cyclic-type operators in
extended b-metric spaces. The considered operators are generalized ϕ-contractions and α-ϕ
contractions. The last section is devoted to applications to integral type equations and nonlinear
fractional differential equations using the Atangana-Băleanu fractional operator.

Throughout this paper, standard notations and terminologies of the nonlinear analysis are used. For
the convenience of the reader we recollect some well-known definitions and essential results.

We begin with the definition of extended b-metric space.

Definition 1.1. (Bakhtin [8], Czerwik [14]) Let X be a non-empty set and let s ≥ 1 be a given real
number. A function d : X × X → [0,+∞) is said to be a b-metric if the following conditions are
satisfied:

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ s[d(x, y) + d(y, z)],

for all x, y, z ∈ X. A pair (X, d) is called a b-metric space.

We notice that the notion reduces to that of a metric space if s = 1. Hence, this notion is a
generalization of that of the metric space.

In [23], Kamran et al. introduced the notion of an extended b-metric space as follows:

Definition 1.2. Let X be a nonempty set and θ : X × X → [1,+∞). The function dθ : X × X → [0,+∞)
is said to be an extended b-metric if the following conditions are satisfied:

(1) dθ(x, y) = 0 if and only if x = y;
(2) dθ(x, y) = dθ(y, x);
(3) dθ(x, z) ≤ θ(x, z)[dθ(x, y) + dθ(y, z)].

for all x, y, z ∈ X. A pair (X, dθ) is called an extended b-metric space.

As a remark, for θ(x, z) = s with s ≥ 1, the notion reduces to that of b-metric space. We must
emphasise the property of symmetry of the extended b-metric, which appears in the second axiom of
Definition 1.2.

Any other results and examples concerning the b-metric and extended b-metric are presented in
[4, 6, 8, 11, 14].

Kirk et al. [24] gave a new generalization of the Banach Contraction Principle using the notion of
cyclic representation. Then he introduced inductively the notion of cyclic operator as follows.

Definition 1.3. Let X be a nonempty set and Y =
p⋃

i=1
Ai ⊆ X, for p a positive integer, p ≥ 2. We say

that an operator T : Y → Y is a cyclic operator if

(i) Ai, i ∈ {1, 2, ...p} are nonempty subsets;
(ii) T (A1) ⊆ A2 ⊆ T (A2) ⊆ A3 ⊆ ... ⊆ T (Ap−1) ⊆ Ap,T (Ap) ⊆ A1.
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Connecting both notions: cyclic operator and extended b-metric space, we find interesting results
and applications in [22, 30].

Throughout this paper, for the mapping T : X → X and x0 ∈ X, O(x0) = {x0,T x0,T 2x0,T 3x0, ...}.

represents the orbit of x0.

A function ϕ : R+ → R+ which is increasing and satisfies the property lim
n→+∞

ϕn(t) = 0 for all t ≥ 0
is said to be a comparison function (see Matkowski [33]).

The notion of b-comparison function was first given by Berinde in [12]. Regarding this he stated
the following remark.

Remark 1.1. [12] Let (X, d) be a b-metric with s ≥ 1. A function ϕ : R+ → R+ is called a b-

comparison function if it is increasing and satisfies the property that
+∞∑
n=0

snϕn(t) converges for all t ∈ R+

and n ∈ N.

In [50] Samreen et al. extended the previous notion to the case of extended comparison function.
In what follows, we introduce the notion for a cyclic operator.

Definition 1.4. Let (X, dθ) be an extended b-metric space. We say that a function ϕ : R+ → R+ is an
extended comparison function if for all t ∈ R+;

(i) ϕ is monotone increasing;

(ii) there exists a cyclic operator T : Y ⊂ X → X, where Y =
p⋃

i=1
Ai such that for some x0 ∈ X,

O(x0) ⊂ Y, the sum
+∞∑
n=0

ϕn(t)
n∏

i=1
θ(xi, xm) converges for every m ∈ N. We notice that xn = T nx0 with

n = 1, 2, ....

Remark 1.2. By (i) and (ii) from Definition (1.4) it follows that ϕ(t) < t, for every t ∈ R+.

Remark 1.3. The following hold:

(i) For θ(x, y) = s ≥ 1, for every x, y ∈ X, the Definition 1.1 coincide with the Definition 1.4, for any
cyclic operator T on Y ⊂ X.

(ii) Since θ(x, y) ≥ 1 for every x, y ∈ X, then choosing s = inf
x,y∈X

θ(x, y) we have

+∞∑
n=0

snϕn(t) ≤
+∞∑
n=0

ϕn(t)
n∏

i=1

θ(xi, xm).

Then we conclude that every extended b-comparison function is also a b-comparison function for
some s ≥ 1.

The following lemma is first given in [50]. We present it for the case of cyclic operators.

Lemma 1.1. Let (X, dθ) be an extended b-metric space, Y =
p⋃

i=1
Ai ⊆ X, T : Y ⊂ X → X a cyclic

operator, x0 ∈ X and lim
n,m→+∞

θ(xn, xm) < 1
λ

where λ ∈ (0, 1) and xn = T nx0 for n = 1, 2, .... Assume that

ψ is a comparison function. Then ϕ(t) = λψ is an extended b-comparison function for T at x0.

Next we will give the definition of orbital lower semicontinuity with respect to a cyclic operator T .
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Definition 1.5. Let X a nonempty set and Y =
p⋃

i=1
Ai ⊆ X, T : Y → Y be a cyclic operator and for some

x0 ∈ X such that the orbit of x0, O(x0) ⊂ Y. A function S : X → R is T -orbitally lower semicontinuous
at t ∈ X if {xn} ⊂ O(x0) and xn → t implies S (t) ≤ lim

n→+∞
inf S (xn).

In the following the concepts of convergence, Cauchyness and completeness are considered in an
extended b-metric space (see [23]).

Definition 1.6. Let (X, dθ) be an extended b-metric space. Then a sequence {xn} in X is said to be:

(i) Convergent sequence if and only if there exists x ∈ X such that dθ(xn, x)→ 0 as n→ +∞ we write
lim

n→+∞
(xn) = x.

(ii) Cauchy sequence if and only if dθ(xn, xm)→ 0 as n,m→ +∞.

The extended b-metric space (X, dθ) is complete if every Cauchy sequence converges in X. We note
that the extended b-metric dθ is not a continuous function in general.

Remark 1.4. Let (X, dθ) be an extended b-metric space. Then every convergent sequence has a unique
limit.

2. Fixed point results

The first main result of this paper is the following.

Theorem 2.1. Let (X, dθ) be a complete extended b-metric space with dθ a continuous functional. Let

Y =
p⋃

i=1
Ai ⊆ X, where p is a positive integer, be the set of all nonempty closed subsets of X and suppose

T : Y → Y be a cyclic operator such that

(i) T (Ai) ⊆ Ai+1, for all i ∈ {1, 2, ...p};
(ii) dθ(T x,Ty) ≤ ϕ(dθ(x, y)) where ϕ is a b-extended comparison function for all x, y ∈ X.

Then T nx0 → x∗ ∈
p⋂

i=1
Ai, as n → +∞. Moreover, x∗ is a unique fixed point of T if and only if

S = dθ(x,T x) is T -orbitally lower semicontinuous at x∗.

Proof. Let x0 ∈ Y . Then there exists i ∈ {1, 2, ...p} such that x0 ∈ Ai.
From hypothesis (i) we have x1 = T x0 ∈ Ai+1.
Thus, we define a sequence {xn} by xn+1 = T xn for all n ≥ 0. We shall show that {xn} is a Cauchy

sequence.
If xn = xn+1 then xn is a fixed point of T . We suppose that xn , xn+1 for all n ≥ 0.
From hypothesis (ii) it follows

dθ(xn, xn+1) = dθ(T xn−1,T xn) ≤ ϕdθ(xn−1, xn).

Applying (ii) successively we get

dθ(xn, xn+1) ≤ ϕndθ(x0, x1). (2.1)
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Furthermore we assume that x0 is a non periodic point of T . If x0 = xn using (2) for any n ≥ 2 we
have

dθ(x0, x1) = dθ(x0,T x0) = dθ(xn,T xn).

Then dθ(x0, x1) = dθ(xn, xn+1). Then, dθ(x0, x1) ≤ ϕndθ(x0, x1). Since ϕ(t) < t we get a contradiction.
Therefore dθ(x0, x1) = 0 i.e., x0 = x1. Then x0 is a fixed point of T . Thus, we assume that xn , xm

for all n,m ∈ N with m , n.
For any m, n with m > n using the triangular inequality, we get

dθ(xn, xm) ≤ θ(xn, xm)ϕndθ(x0, x1) + θ(xn, xm)θ(xn+1, xm)ϕn+1(dθ(x0, x1)) (2.2)

+ · · · + θ(xn, xm)θ(xn+1, xm) + · · · θ(xm−1, xm)ϕm−1dθ(x0, x1)
≤ θ(x1, xm)θ(x2, xm) · · · θ(xn−1, xm)θ(xn, xm)ϕn(dθ(x0, x1))
+ θ(x1, xm)θ(x2, xm) · · · θ(xn, xm)θ(xn+1, xm)ϕn+1(dθ(x0, x1))
+ θ(x1, xm)θ(x2, xm) · · · θ(xn−1, xm)θ(xn, xm)θ(xn+1, xm)
· · · θ(xm−1, xm)ϕm−1(dθ(x0, x1))].

The series
+∞∑
n=1

ϕn
n∏

r=1
θ(xr, xm) converges by ratio test for each m ∈ N.

Let S =
+∞∑
n=1

ϕn
n∏

r=1
θ(xr, xm), Sn =

n∑
j=1
ϕ j

j∏
r=1
θ(xr, xm).

Thus for m > n, in (2.2) we have dθ(xn, xm) ≤ [Sm−1 −Sn].
Letting n→ +∞ we conclude that {xn} is a Cauchy sequence in the subspace Y. Since X is complete,

Y is complete too. Therefore there exists x∗ ∈ Y such that dθ(xn, x∗) → 0 as n → +∞. Then xn =

T nx0 → x∗. The sequence {xn} has an infinite number of terms in each Ai for all i ∈ {1, 2, ...p}.

Therefore x∗ ∈
p⋂

i=1
Ai. Since S = dθ(x,T x) is T -orbitally lower semicontinuous at x∗ ∈

p⋂
i=1

Ai we

obtain

dθ(x∗,T x∗) ≤ lim
n→+∞

inf dθ(xn, xn+1)

≤ lim
n→+∞

inf ϕn(dθ(x0, x1)) = 0.

Then dθ(x∗,T x∗) = 0; results x∗ = T x∗.
Inversely, let x∗ = T x∗ and xn ∈ O ⊆ Y with xn → x∗. Then we have

S (x∗) = dθ(x∗,T x∗) = 0 ≤ lim inf
n→+∞

dθ(T nx0,T n+1x0).

For the uniqueness of fixed point we suppose that there exists another fixed point τ = T (τ) ∈
p⋂

i=1
Ai.

By (ii) we get dθ(x∗, τ) = dθ(T x∗,Tτ) ≤ ϕ(dθ(x∗, τ)) < dθ(x∗, τ).
Therefore dθ(x∗, τ) = 0 which implies that x∗ = τ. �

Next let us give another general fixed point result.
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Theorem 2.2. Let (X, dθ) be a complete extended b-metric space with dθ a continuous functional. Let

Y =
p⋃

i=1
Ai ⊆ X, where p is a positive integer, be the set of all nonempty closed subsets of X and suppose

T : Y → Y be a cyclic operator such that

(i) T (Ai) ⊆ Ai+1, for all i ∈ {1, 2, ...p};
(ii) dθ(T x,Ty) ≤ ϕ(dθ(x, y)) where ϕ is a b-extended comparison function for all x, y ∈ X with ϕ(0) =

0.

Then T has a unique fixed point.

Proof. As in the proof of Theorem 2.1 we prove the existence of a Cauchy sequence {xn}. Since Y is a
complete subspace there exists x∗ ∈ Y such that dθ(xn, x∗)→ 0 as n→ +∞.

Since, the sequence {xn} has an infinite number of terms in each Ai for all i ∈ {1, 2, ...p} we have

x∗ ∈
p⋂

i=1
Ai .

We must show that x∗ is a fixed point for T . For any n ∈ N we have

dθ(T x∗, x∗) ≤ θ(T x∗, x∗)[dθ(T x∗, xn) + dθ(xn, x∗)]
≤ θ(T x∗, x∗)[dθ(T x∗,T xn−1) + dθ(xn, x∗)]
≤ θ(T x∗, x∗)[ϕ(dθ(x∗, xn−1)) + dθ(xn, x∗)].

Since ϕ(0) = 0 for n → +∞ we get that dθ(T x∗, x∗) = 0. This implies T x∗ = x∗, i.e., x∗ is a fixed
point of T .

For uniqueness we follow the same steps as in Theorem 2.1. �

Example 2.1. Let X = R+ endowed with dθ : X × X → R+ defined by dθ = |x − y|3 and let θ : X × X →
[1,+∞) defined by θ(x, y) = x + y + 1. It is easy to check that (X, dθ) is a complete extended b-metric
space.

Let A1 = [0, 1
2 ], A2 = [0, 1

3 ], A3 = [0, 1
5 ] be three subsets of X = R+.

Define T :
3⋃

i=1
Ai →

3⋃
i=1

Ai by T x = x
2 . Obviously T (A1) ⊆ A2,T (A2) ⊆ A3,T (A3) ⊆ A1. Then

3⋃
i=1

Ai is

a cyclic representation with respect to T.
Define ψ : R+ → R+ a comparison function by ϕ(t) = 1

2 t.
We verify the contraction condition.

dθ(T x,Ty) = |
x
2
−

y
2
|3 = |

1
2

(x − y)|3 ≤
1
8
|x − y|3 =

1
4
ψ(dθ(x, y)).

Taking into account that for each x ∈
3⋃

i=1
Ai, T nx = x

2n we get

lim
n,m→+∞

θ(xn, xm) = lim
n,m→+∞

θ(
x
2n ,

x
2m ) = lim

n,m→+∞
(

x
2n +

x
2m + 1) = 1 < 4.

Then dθ(T x,Ty) ≤ 1
4ψ(dθ(x, y)) ≤ ϕ(dθ(x, y)), where ϕ : R+ → R+, defined by ϕ = 1

4ψ, is a b-
extended comparison function. Therefore, all conditions of Theorem 2.1 (respectively Theorem 2.2)

are satisfied. Then 0 ∈
3⋂

i=1
Ai is the unique fixed point of T.
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The following definition was introduced by Samet et al. in [49] and is used to define the notion of
α-ϕ contraction.

Definition 2.1. Let α : X × X → [0,+∞). A self-map T : X → X is said to be α-admissible if

α(x, y) ≥ 1 implies α(T x,Ty) ≥ 1, for every x, y ∈ X.

Let us denote with Ψ the family of nondecreasing functions ψ : [0,+∞) → [0,+∞) such that
+∞∑
n=1

ψn(t) < +∞ for each t > 0, where ψn is the n-th iterate of ψ. Then we can recall the definition of

α-ϕ contraction as follows.

Definition 2.2. (Samet et al. [49]) Let (X, d) be a metric space and T : X → X be a given mapping. We
say that T is an α-ϕ-contractive mapping if there exist two functions α : X × X → [0,+∞) and ψ ∈ Ψ

such that
α(x, y)d(T x,Ty) ≤ ϕ(d(x, y)), for all x, y ∈ X. (2.3)

As a consequence of Theorem 2.1 let us give the following result.

Theorem 2.3. Let (X, dθ) be a complete extended b-metric space such that dθ be a continuous function
and ϕ : R+ → R+ be an extended b-comparison function. Let T : Y → Y be a cyclic operator where

Y =
p⋃

i=1
Ai ⊆ X, with p integer i = {1, 2, ..., p}, be the set of nonempty closed subsets of X, such that

(i) α(x, y)dθ(T x,Ty) ≤ ϕ(dθ(x, y)), for every x, y ∈ Y;
(ii) T is α-admissible;

(iii) there exists x0 ∈ X such that α(x0,T x0) ≥ 1.

Then x∗ is a fixed point of T.
Moreover, the fixed point x∗ is unique, provides that

(H) : for all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1.

Proof. By conditions (ii) and (iii) we obtain α(T nx0,T n+1x0) ≥ 1.
For n ∈ N using (i) we get

dθ(T nx0,T n+1x0) ≤ α(T nx0,T n+1x0)dθ(T nx0,T n+1x0) (2.4)

≤ ϕ(dθ(T n−1x0,T nx0)).

Since ϕ is an increasing function, we have that

dθ(T nx0,T n+1x0) ≤ ϕn(dθ(x0,T x0)). (2.5)

This inequality is equivalent with (2.1) in Theorem 2.2. Thus all the hypotheses of Theorem 2.2 are
satisfied. Thus there exists a fixed point.

In order to prove the uniqueness of the fixed point let us suppose that x∗ and y∗ are two fixed points
of T .
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From the hypothesis (H), there exists z ∈ X such that

α(x∗, z) ≥ 1 and α(y∗, z) ≥ 1. (2.6)

Since T is α-admissible, from (2.6), we obtain

α(x∗,T nz) ≥ 1 and α(y∗,T nz) ≥ 1. (2.7)

Using (2.7) and the hypothesis (i), we have

dθ(x∗,T nz) = dθ(T x∗,T (T n−1z)) ≤ α(x∗,T n−1z)dθ(T x∗,T (T n−1z)) ≤

≤ ψ(dθ(x∗,T n−1z)).

This implies that
dθ(x∗,T nz) ≤ ψn(dθ(x∗, z)), for all n ∈ N.

Then, letting n→ +∞, we have
T nz→ x∗. (2.8)

Similarly, using (2.7) and hypothesis (i), we obtain

T nz→ y∗ as n→ +∞. (2.9)

Using (2.8) and (2.9), the uniqueness of the limit gives us x∗ = y∗. The conclusion follows. �

The Ulam-Hyers stability, the well-posedness of the fixed point equation and the data dependence of
the fixed point can be proved using the previous theorem. We shall give first the following definitions.

Definition 2.3. Let (X, dθ) be an extended b-metric space. An operator T : X → X is a Picard operator
if the following conditions are satisfied:

(a) FixT = {x∗};
(b) (T xn)n∈N → x∗, as n→ +∞, for all x ∈ X.

Definition 2.4. Let (X, dθ) be an extended b-metric space and T : X → X be a singlevalued operator.
The fixed point equation

x = T x, (2.10)

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+ increasing, continuous
in 0 and ψ(0) = 0 such that for every ε > 0 and for every ε-solution of the fixed point Eq (2.10) w∗ ∈ X,
i.e., w∗ satisfies the inequality

dθ(w∗,Tw∗) ≤ ε, (2.11)

there exists a solution x∗ ∈ X of the previous Eq (2.10) such that

dθ(w∗, x∗) ≤ ψ(ε).

The fixed point Eq (2.10) is said to be Ulam-Hyers stable if there exists c > 0 such that ψ(t) = c · t,
for each t ∈ R+.
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For Ulam-Hyers stability results in the case of fixed point problems see Bota-Boriceanu and
Petruşel [9], Lazăr [28], Rus [42, 43].

Regarding the Ulam-Hyers stability problem, the ideas given in Petru, Petruşel and Yao [39] allow
us to give the following result.

Theorem 2.4. Let (X, dθ) be a complete extended b-metric space. Suppose that all hypotheses of
Theorem 2.3 hold and, in addition, there exists a real number M > 1 such that θ(x, y) < M, for all
(x, y) ∈ X × X and a function β : R+ → R+, β(r) := r − Mψ(r) strictly increasing and onto. Then

(a) the fixed point Eq (2.10) is generalized Ulam-Hyers stable.
(b) FixT = {x∗} and if xn ∈ X, n ∈ N are such that dθ(xn,T xn) → 0, as n → +∞, then xn → x∗, as

n→ +∞, i.e., the fixed point Eq (2.10) is well posed.
(c) If G : X → X is such that there exists η ∈ [0,+∞) with

dθ(G(x),T (x)) ≤ η, for all x ∈ X,

then
y∗ ∈ FixG implies dθ(x∗, y∗) ≤ β−1(M · η).

Proof. (a) Since T : X → X is a Picard operator, we have FixT = {x∗}.
Let ε > 0 and w∗ ∈ X be an approximate solution of (2.11), i.e.,

dθ(w∗,Tw∗) ≤ ε.

Since T is an α-ψ-contractive mapping and since x∗ ∈ FixT , there exists w∗ ∈ X such that
α(x∗,w∗) ≥ 1, we obtain:

dθ(x∗,w∗) = dθ(T x∗,w∗) ≤ θ(x∗,w∗)[dθ(T x∗,Tw∗) + dθ(Tw∗,w∗)]

≤ θ(x∗,w∗)[α(x∗,w∗)dθ(T x∗,Tw∗) + ε] ≤ θ(x∗,w∗)[ψ(dθ(x∗,w∗)) + ε].

Hence:

dθ(x∗,w∗) − θ(x∗,w∗) · ψ(dθ(x∗,w∗)) ≤ θ(x∗,w∗) · ε.

Therefore, taking into account that θ(x, y) < M for all x, y ∈ X we define the function β as follows:

β(dθ(x∗,w∗)) := dθ(x∗,w∗) − Mψ(dθ(x∗,w∗)) ≤ M · ε implies dθ(x∗,w∗) ≤ β−1(M · ε).

Consequently, the fixed point Eq (2.10) is β−1-generalized Ulam-Hyers stable.

(b) Since T is an α-ψ-contractive mapping and since x∗ ∈ FixT , from (H) there exists xn ∈ X such
that α(x∗, xn) ≥ 1, we obtain:

dθ(xn, x∗) ≤ θ(xn, x∗)[dθ(xn,T xn) + dθ(T xn, x∗)] = θ(xn, x∗)[dθ(xn,T xn) + dθ(T xn,T x∗)]

≤ θ(xn, x∗)[dθ(xn,T xn) + α(xn, x∗)dθ(T xn,T x∗)] ≤ θ(xn, x∗)[dθ(xn,T xn) + ψ(dθ(xn, x∗))].

Therefore, from the hypothesis that θ(x, y) < M for all x, y ∈ X we obtain

β(dθ(xn, x∗)) := dθ(xn, x∗) − Mψ(dθ(xn, x∗)) ≤ Mdθ(xn,T xn)→ 0 as n→ +∞
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implies dθ(xn, x∗)→ 0 as n→ +∞ implies xn → x∗, as n→ +∞.

So, the fixed point Eq (2.10) is well posed.

(c) Since x∗ ∈ FixT , from (H) there exists x ∈ X such that α(x∗, x) ≥ 1, we obtain:

dθ(x, x∗) ≤ θ(x, x∗)[dθ(x,T x) + dθ(T x, x∗)] = θ(x, x∗)[dθ(x,T x) + dθ(T x,T x∗)] ≤

≤ θ(x, x∗)[dθ(x,T x) + α(x, x∗)dθ(T x,T x∗)] ≤ θ(x, x∗)[dθ(x,T x) + ψ(dθ(x, x∗))].

Therefore, using the hypothesis that θ(x, y) < M for all x, y ∈ X we obtain

β(dθ(x, x∗)) := dθ(x, x∗) − Mψ(dθ(x, x∗)) ≤ M · dθ(x,T x).

So, we have the following estimation

dθ(x, x∗) ≤ β−1(M · dθ(x,T x)). (2.12)

Rewriting (2.12) for x := y∗ we get:

dθ(x∗, y∗) ≤ β−1(M · dθ(y∗,Ty∗)) = β−1(M · dθ(Gy∗,Ty∗)) implies dθ(x∗, y∗) ≤ β−1(M · η).

�

3. Applications to integral equations and nonlinear differential fractional equations

Further we shall establish the existence of a solution to the following integral equation

x(t) = p(t) +

t∫
0

P(t, u)g(u, x(u))du, t ∈ [0, 1], (3.1)

where g : [0, 1]×R→ R, p : [0, 1]→ R are two bounded continuous functions and P : [0, 1]×[0, 1]→
[0,+∞) is a function such that P(t, ·) ∈ L1([0, 1]) for all t ∈ [0, 1].

Consider the operator T : Y → Y , where Y =
p⋃

i=1
Ai ⊆ X, given by

T (x)(t) = p(t) +

t∫
0

P(t, u)g(u, x(u))du. (3.2)

Observe that each fixed point of T is a solution of integral Eq (3.1). Also, T is well defined since g
and p are two bounded continuous functions.

Then let us give the following theorem on the existence of a fixed point for (3.2), which in turn
reduces to the result for the existence of a solution to (3.1).

Theorem 3.1. Let T : Y → Y, where Y =
3⋃

i=1
Ai ⊆ X, be a cyclic integral operator given by (3.2).

Suppose that the following conditions hold:
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(i) for x, y ∈ Y and for every u ∈ [0, 1] we have

0 ≤ T (u, x(u)) − T (u, y(u)) ≤
1
2

√
e|x(u)−y(u)|2 .

(ii) for every u ∈ [0, 1] we have

‖

1∫
0

P(t, u)du‖+∞ < 1.

Then T has a fixed point.

Proof. Consider the space X = C([0, 1],R) of all continuous real valued functions defined on [0, 1].
Then (X, dθ) is a complete extended b-metric space with respect to

dθ(x, y) = ‖x − y‖+∞ = sup
t∈[ab]
|x(t) − y(t)|2,

where θ : X × X → [1,+∞) is defined by

θ(x, y) = |x(t)| + |y(t)| + 1.

Let A1 = A2 = A3 = X = C([0, 1],R) are non empty subsets of X. It is obvious A1, A2, A3 are closed
subsets of (X, dθ). Clearly T (A1) ⊂ A2,T (A2) ⊂ A3 and T (A3) ⊂ A1. Then T is a cyclic operator on
3⋃

i=1
Ai.

By condition (ii) we get for x ∈ Y =
3⋃

i=1
Ai

|T (x)(t) − T (y)(t)|2 = |

t∫
0

P(t, u)[g(u, x(u)) − g(u, y(u))]du|2

≤

t∫
0

|P(t, u)|2|g(u, x(u)) − g(u, y(u)|2du

≤
1
4

t∫
0

|P(t, u)|2e|x(u)−y(u)|2du

≤
1
4

e‖x(u)−y(u)‖+∞ .

Then we get

‖T x − Ty‖+∞ ≤
1
4

e‖x(u)−y(u)‖+∞ .

Hence dθ(T x,Ty) ≤ λϕ(dθ(x, y)) where ϕ(t) = 1
4et is a comparison function. For x ∈ Y ,

lim
n,m→+∞

θ(xn, xm) = 1 < 2. Then, by Lemma 1.1, we get that λϕ is an extended b-comparison function,

with λ = 1
4 .

Thus all the conditions of Theorem 2.2 are satisfied. Then the cyclic integral operator T has a fixed
point. �
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Theorem 3.2. Let T : Y → Y, where Y =
p⋃

i=1
Ai ⊆ X, be a cyclic integral operator given by

T (x)(t) = p(t) +

t∫
0

(t − u)α−1

Γ(α)
T (u, x(u))du, with t ∈ [0, 1] and α ∈ (0, 1)

where Γ is the Euler gamma function given by

Γ(α) =

+∞∫
0

tα−1e−tdu.

Suppose that for x ∈
3⋃

i=1
Ai we have

0 ≤ T (u, x(u)) − T (u, y(u)) ≤
Γ(α + 1)

4

√
e|x(u)−y(u)|2 f or every u ∈ [0, 1].

Then T has a fixed point.

The next point of this section is to give an application of our new fixed point results in the framework
of fractional differential equations. Let us recall some notions concerning Atangana-Băleanu fractional
operator, known in the related literature as the fractional operator with Mittag-Leffler kernel (see [1]).

Let x ∈ H1(a, b), a < b and q ∈ [0, 1]. The Caputo Atangana-Băleanu fractional derivative of x of
order q is defined by

(ABC
a Dqx)(t) =

B(q)
1 − q

∫ a

t
x′(β)Eq

[
−q

(t − β)q

1 − q

]
dβ, (3.3)

where Eq is Mittag-Leffler function defined by Eq(z) =
+∞∑
n=0

zn

Γ(nq+1) [21, 51] and B(q) is a normalizing

positive function satisfying B(0) = B(1) = 1.
The associated fractional integral is defined by

(AB
a Iqx)(t) =

1 − q
B(q)

x(t) +
q

B(q)
(aIqx)(t), (3.4)

where aIq is the left Riemann-Liouville fractional integral given as

(aIqx)(t) =
1

Γ(q)

∫ t

a
(t − β)q−1x(β)dβ. (3.5)

We consider the next differential equation

(ABC
0 Dqx)(t) = f (t, x(t)), (3.6)

with an initial condition
x(0) = x0, (3.7)

where f ∈ C[0, 1] such that f (0, x(0)) = 0, q ∈ (0, 1], t ∈ [0, 1] and x0 is a constant.
In [7] we find the following result (Proposition 3.5.).
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Remark 3.1. For 0 < q < 1, we conclude that

(ABIq ABC
b Dq

b) f (x) = f (x) − f (b). (3.8)

Let us consider X = C([0, 1],R) be the set of all continuous real functions on [0, 1]. Then (X, dθ) is
a complete extended b-metric space with respect to

dθ(x, y) = (‖x‖∞ + ‖y‖∞)2 ,

where ‖x‖∞ = sup
t∈[0,1]

|x(t)| and θ : X × X → [1,+∞) is defined by θ(x, y) = |x(t)| + 2|y(t)| + 1.

Theorem 3.3. Suppose that a >
√

2 such that

(| f (t, x(β)) | + | f (t, y(β)) |) ≤
B(q)Γ(q)

2a ((1 − q)Γ(q) + 1)
[
1 + sup

α∈[0,1]
|x(α)| + sup

α∈[0,1]
|y(α)|

]
× (|x(β)| + |y(β)|) ,

for all 0 ≤ t ≤ 1 and x, y ∈ C([0, 1],R). Then the initial value problem (3.6) and (3.7) has a unique
solution x(t) ∈ C([0, 1],R).

Proof. Applying Atangana-Băleanu integral to both sides of relation (3.6), by Remark 3.1 and
relation (3.7) we obtain

x(t) = x0 + AB
0 Iq f (t, x(t)).

Let A1 = A2 = X = C([0, 1],R) are non empty subsets of X. It is obvious A1, A2 are closed subsets

of (X, dθ). Let us define the operator T : Y → Y where Y =
2⋃

i=1
Ai ⊆ X as (T x)(t) = x0 + AB

0 Iq f (t, x(t)).

Clearly T (A1) ⊂ A2 and T (A2) ⊂ A1. Then T is a cyclic operator on
2⋃

i=1
Ai.

Clearly, if x∗ ∈
2⋂

i=1
Ai ⊂ C([0, 1],R) is a fixed point of T then x∗ is a solution of Eqs (3.6) and (3.7).

We shall prove there exists a fixed point of T if all hypothesis of Theorem 2.2 are satisfied.
For x, y ∈ Y ⊆ C([0, 1],R) we get

(|(T x)(t)| + |(Ty)(t)|)2 =
(

AB
0 Iq [

| f (β, x(β))| + | f (β, y(β))|
])2

=

{
1 − q
B(q)

[
| f (t, x(t)) | + | f (t, y(t)) |

]
+

q
B(q) 0Iq [

| f (β, x(β)) | + | f (β, y(β)) |
]}2

≤


B(q)Γ(q)

2a ((1 − q)Γ(q) + 1)
[
1 + sup

α∈[0,1]
|x(α)| + sup

α∈[0,1]
|y(α)|

]


2

×

{
1 − q
B(q)

+
q

B(q) 0Iq(1)
}

(|x(β)| + |y(β)|)2
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=


B(q)Γ(q)

2a ((1 − q)Γ(q) + 1)
[
1 + sup

α∈[0,1]
|x(α)| + sup

α∈[0,1]
|y(α)|

]


2

×

{
1 − q
B(q)

+
q

B(q)
1

qΓ(q)

}{√
(|x(β)| + |y(β)|)2

}2

≤


B(q)Γ(q)

2a ((1 − q)Γ(q) + 1)
[
1 + sup

α∈[0,1]
|x(α)| + sup

α∈[0,1]
|y(α)|

]


2

×

{
1 − q
B(q)

+
1

B(q)Γ(q)

}{√
(|x(β)| + |y(β)|)2

}2

.

Applying supremum on both sides and taking into consideration that 1
(2+2σ)2 <

1
(2+σ)2 <

1
22+σ2 <

1
2+σ2 ,

for every σ > 0, we get

sup
t∈[0,1]

(|(T x)(t)| + |(Ty)(t)|)2
≤

1

a2

[
2 + 2

(
sup
α∈[0,1]

|x(α)| + sup
α∈[0,1]

|y(α)|
)]2


√(

sup
β∈[0,1]

|x(β)| + sup
β∈[0,1]

|y(β)|
)2


2

≤
1

a2

2 +

(
sup
α∈[0,1]

|x(α)| + sup
α∈[0,1]

|y(α)|
)2


√(

sup
β∈[0,1]

|x(β)| + sup
β∈[0,1]

|y(β)|
)2


2

.

Then we can write

(‖(T x)(t)‖∞ + ‖(Ty)(t)‖∞)2
≤

1

a2
[
2 + (‖x(α)‖∞ + ‖y(α)‖∞)2

] (‖x(β)‖∞ + ‖y(β)‖∞)2 .

Then we get

dθ(T x,Ty) ≤
dθ(x, y)

a2(2 + dθ(x, y))
≤

1
a2 dθ(x, y).

Results dθ(T x,Ty) ≤ λϕ(dθ(x, y)), where ϕ(t) = 1
a2 t is a comparison function. It follows by

Lemma 1.1 that λϕ is an extended b-comparison function with λ = 1
a2 .

Furthermore, for x ∈ Y =
2⋃

i=1
Ai, lim

n,m→+∞
θ(xn, xm) = 1 < a2, where a >

√
2. Thus all the conditions

of Theorem 2.2 are satisfied. Then the cyclic integral operator T has a fixed point.
�

4. Conclusions

It is well known that for proving the existence and uniqueness of the solution of different type of
equations one can use the fixed point theory technique. One of the most researched areas of
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mathematics in the last years is the fractional differential calculus because of its utility in modelling
real world phenomena.

The aim of this paper is to combine both fields. First, we give some fixed point results for ϕ and α-ϕ
cyclic-type contractions in an extended b-metric space. The notion of cyclic operator has gained a lot
of attention recently, because of its applications in different fields such as: physics, computer science,
engineering. The last section, the one devoted to applications, studies the existence and uniqueness
of a solution of an integral type equation and of a nonlinear fractional differential equation using the
Atangana-Băleanu fractional operator.

Open questions

We can remark the interesting results regarding the notion of cyclic contraction obtained in [44–47].
The authors proved fixed point theorems in different metric spaces. These results can also be given in
the case of extended b-metric spaces.

Another open problem is the study of the uniquesness of the fixed point in the case of an extended
b-metric space where the functional dθ is not necessary continuous.
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