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1. Introduction

In the present paper, the following Cauchy problem for a family of evolution-parabolic coupled
systems: 

utt + ∆2u − (−∆)σθ = 0, x ∈ Rn, t > 0,
θt − ∆θ + (−∆)σut = 0, x ∈ Rn, t > 0,
(u, ut, θ)(0, x) = (u0, u1, θ0)(x), x ∈ Rn,

(1.1)

is considered, where u = u(t, x) ∈ R and θ = θ(t, x) ∈ R describe the elongation of a plate and the
temperature difference to the equilibrium state respectively. Moreover, we assume the real parameter
σ ∈ [0,∞) in the fractional power operators (−∆)σ, which can be defined by using the
pseudo-differential operators with its symbol |ξ|. To be specific, we denote

(−∆)σ f := F −1
(
|ξ|2σF ( f )

)
,
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where F and F −1 stand for the Fourier transform and its inverse transform, respectively.
The abstract version of the coupled systems (1.1) has been considered recently by Dell’Oro-Muñoz

River-Pata [10]. The authors derived the decay properties of the exponential type or the polynomial
type from the point of view of the semigroup. However, the question of sharp decay properties of the
corresponding Cauchy problem in a framework of Lp − Lq is unknown. The purpose of this paper is to
answer this question by finding the thresholds to distinguish the regularity-loss type decay properties.

To begin with our paper, let us recall some results related to our model (1.1). In recent years, the
Cauchy problem for thermoelastic plate equations has attracted a lot of attentions. Let us consider the
classical thermoelastic plate equations, i.e. taking σ = 1 in the coupled systems (1.1), namely,

utt + ∆2u + ∆θ = 0, x ∈ Rn, t > 0,
θt − ∆θ − ∆ut = 0, x ∈ Rn, t > 0,
(u, ut, θ)(0, x) = (u0, u1, θ0)(x), x ∈ Rn.

(1.2)

The Cauchy problem was first considered by Said-Houari [35] and later by Racke-Ueda [31]. By
using energy method in the phase space, Said-Houari [35] proved energy estimates with additional
L1 regularity or even weighted L1 regularity for the Cauchy problem (1.2). In 2016, the L2 estimate
for thermoelastic plate equations was derived by Racke-Ueda [31]. To understand the optimality of the
derived L2 estimate, they calculated asymptotic expansion of eigenvalues for the Cauchy problem (1.2).
We have to remark that the decay estimates of the classical thermoelastic plate Eq (1.2) are polynomial
decay for small frequencies and exponential decay for large frequencies, which means that it does not
have regularity-loss decay properties. Other studies on the classical thermoelastic plate equations can
be found in [1, 4, 11–13, 18–22, 24, 27, 28, 32, 39] and reference therein.

On the other hand, we found that the evolution-parabolic coupled systems (1.1) is a special case of
the famous α − β coupled systems

utt +Au − γ1A
αθ = 0, x ∈ Rn, t > 0,

θt + γ2A
βθ + γ1A

αut = 0, x ∈ Rn, t > 0,
(u, ut, θ)(0, x) = (u0, u1, θ0)(x), x ∈ Rn,

(1.3)

providing that we takeA = (−∆)2, α = σ/2, β = 1/2 and γ1 = γ2 = 1 in the systems (1.3). Therefore,
this paper also will partly answer the regularity-loss threshold in the Cauchy problem for α − β
coupled systems. Concerning the regularity analysis for α− β coupled systems, we refer the interested
readers to [7–9, 11, 14–17, 25, 28] and the references therein. Let us turn to the main purpose of this
paper. By considering the fractional power operators in the thermoelastic plate equations, one may not
expect in general exponential stability. Therefore, it is interesting to discover some thresholds for
regularity-loss decay properties. In order to derive qualitative properties of solutions, we should firstly
obtain representation of solutions in the Fourier space. However, it is challenging to get the explicit
representation of solution due to the coupled structure of thermoelastic plate equation with non-local
operator (−∆)σ for σ ∈ [0,∞). To overcome this difficulty, we employ the so-called multi-step
diagonalization procedure, which has been developed in [26, 33, 34, 36, 38] even for the model with
the non-local operator [3, 5, 6, 23]. Recently, A few researchers have employed fractional power
nonlocal operators to describe the response of nonlocal plates. These practical applications should be
found in [2, 29, 30].
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Then, we apply WKB analysis to study the qualitative properties for solutions localized in small
frequencies zone and the large frequencies zone, respectively. We should underline that in different
range of parameter σ, we may observe the solutions have different behaviors in the Lp − Lq frame.
Here, p and q are not necessary on the conjugate line. Precisely, the regularity-loss decay properties
appear only when σ ∈ [0, 1/2) ∪ (3/2,∞). In other words, to estimate the solutions in the Lq norm
with q > 2, we need to require higher regular data, which means that the thresholds for regularity-loss
decay properties are σ = 1/2 and σ = 3/2.

The main contribution of this paper is to find two non-trivial thresholds (σ = 1/2 and σ = 3/2) for
the regularity-loss decay properties to this evolution-parabolic coupled system. To the best of authors’
knowledge, these crucial thresholds were not found in evolution-parabolic coupled system (1.1). This
phenomenon indicates that even coupling with parabolic-like equation (in some sense, general
Fourier’s law in physic), the exponential stability does not hold anymore if σ ∈ [0, 1/2) ∪ (3/2,∞).
Namely, this coupling is not sufficient to provide exponential decay for large frequencies.

To end this section, we give some notations to be used in this paper.
Notation 1. We denote the identity matrix of dimension 3 × 3 by I, i.e., I := diag(1, 1, 1).
Notation 2. f . g means that there exists a positive constant C such that f 6 Cg.
Notation 3. H s

p(Rn) and Ḣ s
p(Rn) with s > 0 and 1 6 p < ∞, denote Bessel and Riesz potential spaces

based on Lp(Rn), respectively. Here 〈D〉s and |D|s stand for the pseudo-differential operators with
symbols 〈ξ〉s and |ξ|s.
Notation 4. We divide the Fourier space into three parts

Zint(ε) := {ξ ∈ Rn : |ξ| < ε � 1} ,
Zmid(ε,N) := {ξ ∈ Rn : ε 6 |ξ| 6 N} ,

Zext(N) := {ξ ∈ Rn : |ξ| > N � 1} ,
(1.4)

for small, bounded and large frequencies. Furthermore, let us define χint(ξ), χmid(ξ), χext(ξ) ∈ C∞(Rn)
having their supports in Zint(ε), Zmid(ε/2, 2N) and Zext(N), respectively, fulfilling

χmid(ξ) = 1 − χint(ξ) − χext(ξ). (1.5)

2. Treatment by using multi-step diagonalization procedure

In this section, we will prepare representation of solutions in the Fourier space by applying multi-
step diagonalization procedure. Due to the fact that

F ((−∆)σ f ) (ξ) = |ξ|2σ f̂ (ξ), (2.1)

it give us an opportunity to discuss the non-local operator by considering |ξ|-dependent systems.
Moreover, because the arbitrary number σ appears in the systems, it seems that the approach of
asymptotic expansions of eigenvalues and corresponding eigenprojections does not work well.

To begin with, we apply the partial Fourier transformation with respect to spatial variables to (1.1)
to arrive at 

ûtt + |ξ|4û − |ξ|2σθ̂ = 0, ξ ∈ Rn, t > 0,
θ̂t + |ξ|2θ̂ + |ξ|2σût = 0, ξ ∈ Rn, t > 0,
(û, ût, θ̂)(0, ξ) = (û0, û1, θ̂0)(ξ), ξ ∈ Rn.

(2.2)
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Let us introduce the quantity v̂ = v̂(t, ξ) such that

v̂ :=
(
ût + |ξ|2û, ût − |ξ|

2, θ̂
)T
, (2.3)

which is the solution to the next first-order coupled system:v̂t +
(
A0|ξ|

2 + A1|ξ|
2σ

)
v̂ = 0, ξ ∈ Rn, t > 0,

v̂(0, ξ) = v̂0(ξ), ξ ∈ Rn,
(2.4)

where the coefficient matrices are given by

A0 =


0 −1 0
1 0 0
0 0 1

 and A1 =


0 0 −1
0 0 −1
1
2

1
2 0

 . (2.5)

We would like to remark that the choice of the quantity (2.3) is quite important to our approach,
which gives us a suitable structure of the coefficient matrices A0 and A1.

With the aim of studying the dominant part in the first step of multi-step diagonalization procedure,
we need to clarify between the next cases with respect to the value of parameter |ξ|:

• Case 2.1: We consider σ ∈ [0, 1) with ξ ∈ Zext(N), or σ ∈ (1,∞) with ξ ∈ Zint(ε).
• Case 2.2: We consider σ ∈ (1,∞) with ξ ∈ Zext(N), or σ ∈ [0, 1) with ξ ∈ Zint(ε).
• Case 2.3: We consider σ = 1 for all frequencies.
• Case 2.4: We consider σ , 1 with ξ ∈ Zmid(ε,N).

More precisely, we would like to employ multi-step diagonalization procedure to derive asymptotic
expansion of eigenvalues in Cases 2.1 and 2.2; the usual diagonalization to get explicit eigenvalues
in Case 2.3; contradiction argument to investigate exponential stability of eigenvalues in the last case.
Particularly, the case when σ = 1 stands for the classical thermoelastic plate equations.

2.1. Treatment for Case 2.1

In Case 2.1, we immediately find that the matrices A0|ξ|
2 has a dominant influence in the coefficient

matrix A(|ξ|;σ) = A0|ξ|
2 + A1|ξ|

2σ. So, we now have to start the diagonalization procedure with the
matrix A0|ξ|

2.
By introducing a new variable v̂(1) := L−1

1 v̂ with

L1 :=


0 1 1
0 −i i
1 0 0

 , (2.6)

we may get
v̂(1)

t + Λ0v̂(1) + A(0)
1 |ξ|

2σv̂(1) = 0, (2.7)

where the diagonal matrix is given by

Λ0 = |ξ|2diag(1, i,−i) (2.8)
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and the matrix A(0)
1 is defined by

A(0)
1 := L−1

1 A1L1 =


0 1−i

2
1+i
2

−1−i
2 0 0
−1+i

2 0 0

 . (2.9)

Next, we construct a helpful matrix

L2 := |ξ|2σ−2


0 −1

2 −1
2

− i
2 0 0

i
2 0 0

 . (2.10)

Then, by introducing a new variable v̂(2) := (I + L2(|ξ|))−1v̂(1), we derive

v̂(2)
t + Λ0v̂(2) + (I + L2)−1

(
A(0)

1 |ξ|
2σ − [L2,Λ0]

)
v̂(2) + (I + L2)−1A(0)

1 L2|ξ|
2σv̂(2) = 0. (2.11)

The choice of matrix L2 contributes to the next equality. Due to the fact that

A0
1|ξ|

2σ − [L2,Λ0] = 0, (2.12)

the following first-order system holds:

v̂(2)
t + Λ0v̂(2) + A0

1L2|ξ|
2σv̂(2) + Rv̂(2) = 0, (2.13)

where the remainder term was denoted by

R = (I + L2)−1L2A(0)
1 L2(|ξ|)|ξ|2σ. (2.14)

Similarly, we introduce v̂(3) := (I + L3)−1v̂(2) with

L3 := |ξ|4σ−4


0 0 0
0 0 −1+i

8
0 −1−i

8 0

 (2.15)

to obtain directly

v̂(3)
t + Λ0v̂(3) + (I + L3)−1

(
A(0)

1 L2|ξ|
2σ + [L3,Λ0]

)
v̂(3)

+ (I + L3)−1A(0)
1 L2L3|ξ|

2σv̂(3) + (I + L3)−1R(I + L3)v̂(3) = 0.
(2.16)

According to the simple calculation that

Λ1 = |ξ|4σ−2 diag
(
−

1
2
,

1 + i
4

,
1 − i

4

)
, (2.17)

we may have the final first-order coupled system

v̂(3)
t + (Λ0 + Λ1)v̂(3) + R̃v̂(3) = 0, (2.18)

where the new remainder should be of the form

R̃ = (I + L3)−1
(
A(0)

1 L2L3|ξ|
2σ − L3Λ1

)
+ (I + L3)−1R(I + L3). (2.19)

Summarizing the above diagonalization procedures, we obtain non-zero pairwise distinct
eigenvalues, where their first real values are positive. Thus, the following proposition for the
asymptotic behavior of eigenvalues and representation of solutions can be concluded.
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Proposition 2.1. When σ ∈ [0, 1) with ξ ∈ Zext(N), or σ ∈ (1,∞) with ξ ∈ Zint(ε), we have the results
that the eigenvalues λ j = λ j(|ξ|) of the coefficient matrix A(|ξ|;σ) from the Cauchy problem (2.2) can
be written as:

λ1(|ξ|) = |ξ|2 −
1
2
|ξ|4σ−2 + O

(
|ξ|6σ−4

)
,

λ2(|ξ|) = i|ξ|2 +
1 + i

4
|ξ|4σ−2 + O

(
|ξ|6σ−4

)
,

λ3(|ξ|) = −i|ξ|2 +
1 − i

4
|ξ|4σ−2 + O

(
|ξ|6σ−4

)
.

(2.20)

Furthermore, the solution in the Fourier space has the following representations:

• When σ ∈ [0, 1) with ξ ∈ Zext(N), the solution to the Cauchy problem (2.2) is

v̂(t, ξ) = Text(ξ) diag
(
e−λ1(|ξ|)t, e−λ2(|ξ|)t, e−λ3(|ξ|)t

)
T−1

ext(ξ)v̂0(ξ); (2.21)

• When σ ∈ (1,∞) with ξ ∈ Zint(ε), the solution to the Cauchy problem (2.2) is

v̂(t, ξ) = Tint(ξ) diag
(
e−λ1(|ξ|)t, e−λ2(|ξ|)t, e−λ3(|ξ|)t

)
T−1

int (ξ)v̂0(ξ); (2.22)

where Tint(ξ) = L1(I + L2)(I + L3) when σ ∈ (1,∞) with ξ ∈ Zint(ε), and Text(ξ) = L1(I + L2)(I + L3)
when σ ∈ [0, 1) with ξ ∈ Zext(N).

2.2. Treatment for Case 2.2

In this case, we observe that comparing the matrices A1|ξ|
2σ with A0|ξ|

2, the matrix A1|ξ|
2σ has a

dominant influence. Thus, we now begin diagonalization procedure with the matrix A1|ξ|
2σ.

Similarly, defining a new variable v̂(1) := L−1
4 v̂ with a matrix

L4 :=


1 i −i
−1 i −i
0 1 1

 , (2.23)

we may transfer our system to the following one:

v̂(1)
t + Λ1v̂(1) + A0

0|ξ|
2v̂(1) = 0 (2.24)

with the new coefficient matrices

Λ1 = |ξ|2σ diag(0, i,−i) and A0
0 = L−1

4 A0L4 =


0 −i i
− i

2
1
2

1
2

i
2

1
2

1
2

 . (2.25)

By introducing v̂(2) := (I + L5)−1v̂(1) and a suitable matrix

L5 = |ξ|2−2σ


0 −1 −1
1
2 0 i

4
1
2 − i

4 0

 , (2.26)
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we immediately obtain the first-order coupled system

v̂(2)
t + Λ1v̂(2) + (I + L5)−1

(
A0

0|ξ|
2 − [L5,Λ1]

)
v̂(2) + (I + L5)−1A0

0L5|ξ|
2v̂(2) = 0. (2.27)

In other words, making use of the structure of the suitable matrix L5, it leads to

v̂(2)
t + Λ1v̂(2) + Λ2v̂(2) − (I + L5)−1L5Λ2v̂(2) + (I + L5)−1A0

0L5|ξ|
2v̂(2) = 0 (2.28)

carrying the diagonal matrix

Λ2 = |ξ|2 diag
(
0,

1
2
,

1
2

)
(2.29)

or, equivalently,
v̂(2)

t + Λ1v̂(2) + Λ2v̂(2) + A1
0v̂(2) + R1v̂(2) = 0. (2.30)

In the above, we define

A1
0 = A0

0L5|ξ|
2 − L5Λ2 = |ξ|4−2σ


0 3

4
3
4

1
2

3i
8

i
2

1
2 − i

2 −3i
8

 (2.31)

and the remainder in this case is

R1 = −(I + L5)−1L5A1
0. (2.32)

Analogously, denoting v̂(3) := (I + L6)−1v̂(2) with

L6 = |ξ|4−4σ


0 −3i

4
3i
4

i
2 0 −1

4
− i

2 −1
4 0

 , (2.33)

we may immediately derive

v̂(3)
t + Λ1v̂(3) + Λ2v̂(3) + (I + L6)−1

(
A1

0 − [L6,Λ1]
)

v̂(3)

+ (I + L6)−1
(
A1

0L6 − [L6,Λ2]
)

v̂(3) + (I + L6)−1R1(I + L6)v̂(3) = 0.
(2.34)

It is obvious that the diagonal matrix is given by

Λ3 = A1
0 − [L6,Λ1] = |ξ|4−2σ diag

(
0,

3i
8
,−

3i
8

)
. (2.35)

Therefore, we may obtain the next system:

v̂(3)
t + Λ1v̂(3) + Λ2v̂(3) + Λ3v̂(3) + (I + L6)−1L6 ([L6,Λ2] − Λ3) v̂(3)

+ (I + L6)−1
(
A1

0L6 − [R1, L6]
)

v̂(3) + (I + L5)−1L5L5A1
0v̂(3) −

(
L5A1

0 + [L6,Λ2]
)

v̂(3) = 0,
(2.36)

which can be rewritten by

v̂(3)
t + Λ1v̂(3) + Λ2v̂(3) + Λ3v̂(3) + A2

0v̂(3) + R2v̂(3) = 0, (2.37)

AIMS Mathematics Volume 7, Issue 1, 260–275.



267

where we denoted the coefficient matrices by

A2
0 = −

(
L5A1

0 + [L6,Λ2]
)

= |ξ|6−4σ


1 i

4 − i
4

i
8 −1

2 −15
32

− i
8 −15

32 −1
2

 (2.38)

and

R2 = (I + L6)−1L6 ([L6,Λ2] − Λ3) + (I + L6)−1
(
A1

0L6 − [R1, L6]
)

+ (I + L5)−1L5L5A1
0. (2.39)

However, we now need to do one step more due to the zero value in the first position of the diagonal
element. Finally, we introduce v̂(4) := (I + L7)−1v̂(3) with

L7 = |ξ|6−6σ


0 1

4
1
4

−1
8 0 −15i

64
1
8

15i
64 0

 . (2.40)

In this way, the next system is derived:

v̂(4)
t + Λ1v̂(4) + Λ2v̂(4) + Λ3v̂(4) + Λ4v̂(4) + R3v̂(4) = 0, (2.41)

where

Λ4 = A2
0 − [L7,Λ1] = |ξ|6−4σ diag

(
1,−

1
2
,−

1
2

)
, (2.42)

R3 = (I + L7)−1R2(I + L7) + (I + L7)−1
(
A2

0L7 − L7Λ4

)
+ (I + L7)−1[Λ2, L7]

+ (I + L7)−1[Λ3, L7]. (2.43)

Considering all steps of diagonalization procedure in the above, we obtain non-zero pairwise
distinct eigenvalues, where their first real values are positive. Hence, the following proposition for the
asymptotic behavior of eigenvalues and representation of solutions can be concluded.

Proposition 2.2. When σ ∈ (1,∞) with ξ ∈ Zext(N), or σ ∈ [0, 1) with ξ ∈ Zint(ε) , the eigenvalues
λ j = λ j(|ξ|) of the coefficient matrix A(|ξ|;σ) from the Cauchy problem (2.2) can be written as:

λ1(|ξ|) = |ξ|6−4σ + O
(
|ξ|8−6σ

)
,

λ2(|ξ|) = i|ξ|2σ +
1
2
|ξ|2 +

3i
8
|ξ|4−2σ −

1
2
|ξ|6−4σ + O

(
|ξ|8−6σ

)
,

λ3(|ξ|) = −i|ξ|2σ +
1
2
|ξ|2 −

3i
8
|ξ|4−2σ −

1
2
|ξ|6−4σ + O

(
|ξ|8−6σ

)
.

(2.44)

Furthermore, the solution in the Fourier space has the following representations:

• When σ > 1 with ξ ∈ Zext(N), the solution to the Cauchy problem (2.2) is

v̂(t, ξ) = Text(ξ) diag
(
e−λ1(|ξ|)t, e−λ2(|ξ|)t, e−λ3(|ξ|)t

)
T−1

ext(ξ)v̂0(ξ); (2.45)

• When σ ∈ [0, 1) with ξ ∈ Zint(ε), the solution to the Cauchy problem (2.2) is

v̂(t, ξ) = Tint(ξ) diag
(
e−λ1(|ξ|)t, e−λ2(|ξ|)t, e−λ3(|ξ|)t

)
T−1

int (ξ)v̂0(ξ); (2.46)

where Text(ξ) = L4(I + L5)(I + L6)(I + L7) when σ ∈ (1,∞) with ξ ∈ Zext(N), and Tint(ξ) = L4(I + L5)(I +

L6)(I + L7) when σ ∈ [0, 1) with ξ ∈ Zint(ε).
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2.3. Treatment for Case 2.3

In this case, we only need to diagonalize the matrix (A0 + A1)|ξ|2 as a whole due to the fact that the
matrices A0|ξ|

2 and A1|ξ|
2σ have the same influence while σ = 1. Then, we have the following result.

Proposition 2.3. After one step of the diagonalization procedure, the starting Cauchy problem (2.4)
can be transformed to v̂(1)

t + (A0 + A1)|ξ|2v̂(1) = 0, ξ ∈ Rn, t > 0,
v̂(1)(0, ξ) = v̂(1)

0 (ξ), ξ ∈ Rn.
(2.47)

Proof. We directly calculate the eigenvalues of the matrix (A0 + A1)|ξ|2 to get

0 = det
(
(A0 + A1)|ξ|2 − λI

)
=

∣∣∣∣∣∣∣∣∣
−λ −|ξ|2 −|ξ|2

|ξ|2 −λ −|ξ|2

|ξ|2

2
|ξ|2

2 |ξ|2 − λ

∣∣∣∣∣∣∣∣∣ = −λ3 + λ2|ξ|2 − 2|ξ|4λ + |ξ|6. (2.48)

Then, the solutions of the above cubic equation are

λ j(|ξ|) = |ξ|2z j with j = 1, 2, 3, (2.49)

where the elements are

z1 =
1
3

1 +
3

√
11 + 3

√
69

2
+

3

√
11 − 3

√
69

2

 ,
z2 =

1
3

1 +
−1 +

√
3i

2

3

√
11 + 3

√
69

2
−

1 +
√

3i
2

3

√
11 − 3

√
69

2

 ,
z3 =

1
3

1 − 1 +
√

3i
2

3

√
11 + 3

√
69

2
+
−1 +

√
3i

2

3

√
11 − 3

√
69

2

 .
(2.50)

We point out that the constants z1 , z2 , z3 and Re z j < 0 for all j = 1, 2, 3, which means the
pairwise distinct eigenvalues with negative real parts are obtained. By introducing v̂(1) = T−1v̂, which
satisfies

v̂(1)
t + Λ1v̂(1) = 0 (2.51)

with the diagonal matrix

Λ1 = |ξ|2T−1(A0 + A1)T = |ξ|2 diag(z1, z2, z3), (2.52)

where the right matrix is denoted by

T =


2|ξ|4 − 3z1|ξ|

2 2|ξ|4 − 3z2|ξ|
2 2|ξ|4 − 3z3|ξ|

2

2|ξ|2 − 3z1|ξ|
2 2|ξ|2 − 3z2|ξ|

2 2|ξ|2 − 3z3|ξ|
2

z2
1 + z1|ξ|

2 z2
2 + z2|ξ|

2 z2
3 + z3|ξ|

2

 . (2.53)

As a consequence, we complete the proof immediately. �
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2.4. Treatment for Case 2.4

Finally, in Case 2.4, with the aim of guaranteeing the exponential stabilities of eigenvalues, we need
to derive the exponential decay results by obtaining a priori estimates for eigenvalues. We will give the
proof by using contraction argument.

Let us assume that there is a purely imaginary eigenvalue λ = ia with a ∈ R , 0 of the matrix
A0|ξ|

2 + A1|ξ|
σ for ξ ∈ Zmid(ε,N). The non-zero real number a fulfills the cubic equation

0 = det
(
A0|ξ|

2 + A1|ξ|
2σ − λI

)
=

∣∣∣∣∣∣∣∣∣
−λ −|ξ|2 −|ξ|2σ

|ξ|2 −λ −|ξ|2σ

|ξ|2σ

2
|ξ|2σ

2 |ξ|2 − λ

∣∣∣∣∣∣∣∣∣
= −λ3 + λ2|ξ|2 −

(
|ξ|4σ + |ξ|4

)
λ + |ξ|6

= ia3 − |ξ|2a2 −
(
|ξ|4σ + |ξ|4

)
ia + |ξ|6,

(2.54)

which implies the non-zero constant a should be the solution of the following equations:−|ξ|2a2 + |ξ|6 = 0,
ia3 −

(
|ξ|4σ + |ξ|4

)
ia = 0.

(2.55)

Then, we may obtain the solution of a2 such that a2 = |ξ|4 and a2 = |ξ|2 + |ξ|4σ. We can conclude
a contradiction immediately. Recalling Proposition 2.1 and Proposition 2.2, we find that the dominant
real parts of all eigenvalues are positive. In other words, according to the compactness of the zone, for
ξ ∈ Zmid(ε,N) the next estimates hold:

|v̂(t, ξ)| . e−ct|v̂0(ξ)| (2.56)

for t > 0 and c > 0.

3. Decay properties in the Lp − Lq frame

In this section, we will study Lp − Lq estimates away of the conjugate line, i.e. 1 6 p 6 2 6 q 6 ∞.
To do this, we first introduce a useful lemma. One may see, for example, [3, 37] recently by using
Hölder’s inequality and the Hausdorff-Young inequality.

Lemma 3.1. Let f ∈ S(Rn) and κ1 > 0, κ2 ∈ R, s > 0. Then, the next estimates hold:∥∥∥∥F −1
ξ→x

(
χint(ξ)|ξ|se−c|ξ|κ1 t f̂ (ξ)

)∥∥∥∥
Lq(Rn)
. (1 + t)−

s
κ1
− n
κ1

(
1
p−

1
q

)
‖ f ‖Lp(Rn), (3.1)

∥∥∥∥F −1
ξ→x

(
χext(ξ)|ξ|se−c|ξ|κ2 t f̂ (ξ)

)∥∥∥∥
Lq(Rn)
.

e−ct
∥∥∥〈D〉s+` f

∥∥∥
Lp(Rn)

if κ2 > 0,

(1 + t)
`
κ2
− n
κ2

(
1
r −

1
q

) ∥∥∥〈D〉s+` f
∥∥∥

Lr(Rn)
if κ2 < 0,

(3.2)

where c > 0, 1 6 p, r 6 2 6 q 6 ∞ and ` > n(1/p − 1/q).

It is well-known that the pointwise estimates in the Fourier space are useful for us to describe the
decay properties of solutions. Hence, summarizing the result in the last section, we may derive the
following pointwise estimates in the Fourier space, which is sharp since the application of
diagonalization procedure.
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Proposition 3.1. The solution v̂ = v̂(t, ξ) to the Cauchy problem (2.2) for σ ∈ [0,∞) satisfies the next
pointwise estimates for any ξ ∈ Rn and t > 0:

|v̂(t, ξ)| . exp (−cρ(|ξ|)t) |v̂0(ξ)|, (3.3)

where the function ρ(|ξ|) characterizing the decay properties can be represented by

ρ(|ξ|) =


|ξ|6−4σ

1 + |ξ|8−8σ if σ ∈ [0, 1],

|ξ|4σ−2

1 + |ξ|8σ−8 if σ ∈ (1,∞).
(3.4)

Let us now analyze the decay properties according to the pointwise estimates.

• We may observe that the decay property for small frequencies is changed from σ ∈ [0, 1] to
σ ∈ (1,∞), which implies the first threshold σ = 1. It will lead to the decay rate for Lp data
changing. We will show more detail in the forthcoming part.
• Concerning the decay property for large frequencies, we find that the solutions localized for large

frequencies decay exponentially if and only if σ ∈ [1/2, 3/2]. In other words, ρ(|ξ|) ≈ |ξ|2(2σ−1) for
σ ∈ [1/2, 1] and ρ(|ξ|) ≈ |ξ|2(3−2σ) for σ ∈ (1, 3/2]. In the remaining case σ ∈ [0, 1/2) ∪ (3/2,∞),
the decay property is regularity-loss type. By this way, one may expect the second and third
threshold for decay property are σ = 1/2 and σ = 3/2, respectively.

Let us state our main theorem on the decay estimates of solutions.

Theorem 3.1. Let us assume |D|2u0, u1, θ0 ∈ H s+`
p (Rn) with s > 0 and ` > n(1/p − 1/q). Then, the

following estimates for the solutions to the Cauchy problem (1.1) hold:

∥∥∥∥(|D|2u, ut, θ
)

(t, ·)
∥∥∥∥

(Ḣs
q(Rn))3

.



(1 + t)max
{
− s

6−4σ−
n

6−4σ

(
1
p−

1
q

)
, `

4σ−2−
n

4σ−2

(
1
p−

1
q

)} ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
Hs+`

p (Rn)

if σ ∈ [0, 1/2),

(1 + t)−
s

6−4σ−
n

6−4σ

(
1
p−

1
q

) ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Hs+`

p (Rn))3

if σ ∈ [1/2, 1],

(1 + t)−
s

4σ−2−
n

4σ−2

(
1
p−

1
q

) ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Hs+`

p (Rn))3

if σ ∈ (1, 3/2),

(1 + t)max
{
− s

4σ−2−
n

4σ−2

(
1
p−

1
q

)
, `

6−4σ−
n

6−4σ

(
1
p−

1
q

)} ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Hs+`

p (Rn))3

if σ ∈ [3/2,∞),
(3.5)

for any t > 0 and 1 6 p 6 2 6 q 6 ∞.

Proof. By using the pointwise estimates of solution for small frequencies and Lemma 3.1, we derive
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∥∥∥∥χint(D)|D|s
(
|D|2u, ut, θ

)
(t, ·)

∥∥∥∥
(Lq(Rn))3

.
∥∥∥∥F −1

ξ→x

(
χint(ξ)|ξ|se−cρ(|ξ|)tv̂0(ξ)

)
(t, ·)

∥∥∥∥
(Lq(Rn))3

(3.6)

.



(1 + t)−
s

6−4σ−
n

6−4σ

(
1
p−

1
q

) ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Lp(Rn))3

if σ ∈ [0, 1],

(1 + t)−
s

4σ−2−
n

4σ−2

(
1
p−

1
q

) ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Lp(Rn))3

if σ ∈ (1,∞),

(3.7)

for any s > 0 and 1 6 p 6 2 6 q 6 ∞.

Secondly, we consider the pointwise estimates for large frequencies to get∥∥∥∥χext(D)|D|s
(
|D|2u, ut, θ

)
(t, ·)

∥∥∥∥
(Lq(Rn))3

.
∥∥∥∥F −1

ξ→x

(
χext(ξ)|ξ|se−cρ(|ξ|)tv̂0(ξ)

)
(t, ·)

∥∥∥∥
(Lq(Rn))3

(3.8)

.



(1 + t)
`

4σ−2−
n

4σ−2

(
1
p−

1
q

) ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Hs+`

p (Rn))3

if σ ∈ [0, 1/2),

e−ct
∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Hs+`

p (Rn))3

if σ ∈ [1/2, 3/2],

(1 + t)
`

6−4σ−
n

6−4σ

(
1
p−

1
q

) ∥∥∥∥(|D|2u0, u1, θ0

)∥∥∥∥
(Hs+`

p (Rn))3

if σ ∈ (3/2,∞),

(3.9)

where we used Lemma 3.1. Here, we take s > 0, ` > n(1/p − 1/q) and 1 6 p 6 2 6 q 6 ∞.

Finally, due to the fact the exponential stability comes for ξ ∈ Zmid(ε,N), we may derive exponential
decay of solutions without asking additional regularity for initial data. The proof is completed. �

Remark 3.1. One also may derive L2 − L2 estimates with additional Lm regularities for m ∈ [1, 2) or
even weighted L1 regularities by following the approach of [3]. However, it is still open to derive the
estimates in the Lp − Lq frame carrying 1 6 p 6 q 6 2. The main difficulty stays at some oscillating
integrals in the L1 space.

Remark 3.2. As we mentioned in the previous part, the thresholds for decay properties are described
by the numbers σ = 1/2, σ = 1 and σ = 3/2, which are not trivial from the view of the model. This
discovery is the core of this paper.

Remark 3.3. Let us give some comments by comparing with the known results.

• In the last paper Dell’Oro-Muñoz River-Pata [10], the authors investigated two type decay
properties by some tools form semigroup. In Theorem 3.1, we derive some new decay estimates
of solutions in the whole space Rn. It provides a complement of the study for this evolution-plate
equations. Moreover, it also shows large-time behaviors of solutions under different value of σ.
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• In this work, we couple the plate-like equation with the parabolic-like equation, which shows
regularity-loss decay properties. However, Racke-Ueda [31] considered the coupling with
classical Fourier’s law, which derives exponential stability. In other words, a coupling with
parabolic-like equation will destroy the exponential stability that is a new effect from the
viewpoint of authors.
• The recent paper Chen [3] shows the fractional power operator (−∆)σ in the plate equation will

lead to some smoothing effects and change the decay rates. However, his work only presents small
changes by the fractional power operator in evolution-parabolic coupled system. In our work, the
fractional power operator appears in the parabolic equation, and brings a great change (from
exponential stability to polynomial stability). This phenomenon does not occur in Chen [3].

4. Conclusions

In this work, we investigated decay properties for a evolution-parabolic coupled system in the field
of thermoelastic plates by distinguishing regularity-loss type decay properties and no-loss behaviors,
which is mainly determined by the parameter σ in the coupling terms. This parameter actually may
influence on the type of model. Motivated by the recent researches in this field, we believe the study
for asymptotic profiles as t → ∞ is quite interesting. Benefit from our main tools (diagonalization
procedure and WKB analysis), we are able to observe the dominant part of the characteristic roots in
Propositions 2.1 and 2.2. Therefore, we conjecture that one may obtain asymptotic profiles of solutions
by following our approaches.
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