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1. Introduction

In 2014, Ma et al [18] introduced the concept of C∗-algebra-valued metric spaces by replacing the
range of R with an unital C∗-algebra. Later in 2015, Ma et al [19] introduced the nation of C∗-algebra-
valued metric spaces as a generalization of C∗-algebra-valued metric space. They proved some Banach
fixed point theorems. Several research are obtained some results in Banach and common fixed point
theorems in C∗-algebra-valued metric spaces (see [2,3,7,10,13,14,25,26,31,34]. The notion of C∗-
algebra-valued partial metric space and C∗-algebra-valued partial b-metric spaces are introduced in
[8,22] and proved fixed point results as analogous of Banach contraction principle.

In [27] introduced the study of fixed point for the α-admissibility of mappings and generalized
several known results of metric spaces see also [28]. Later on, many authors proved α-admissible
mappings theorems with various contraction condition see [1,5,9,12,17,20,21,30,32,33,35,36]. The
aim of this paper is generalizing some results of metric spaces and C∗-algebra b-valued metric spaces.

We start with some definition and results about C∗-algebra b-valued metric spaces. Suppose that A
is a unital C∗-algebra with a unit I. Set Ah = {x ∈ A : x = x∗}. An element x ∈ A is a positive element,
if x = x∗ and σ(x) ⊂ R+ is the spectrum of x. We define a partial ordering � on Ah as x � y if 0A � y− x,
where 0A means the zero element in A and we let A+ denote the {x ∈ A : x � 0A} and |x| = (x∗x)

1
2 .
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On the other hand, [27] introduced the study of fixed point for the α-admissibility of mappings and
generalized several know results of metric spaces.

Throughout this paper, we use the concept of α-admissibility of mappings defined on C∗-algebra
b-valued metric spaces and we defined the generalized Lipschitz contractions on such spaces. The aim
of this paper is generalizing some results of metric space and C∗-algebra b-valued metric spaces.

Lemma 1.1. Suppose that A is a unital C∗-algebra with unit IA. The following are holds.

(1) If a ∈ A, with ‖a‖ <
1
2

, then 1 − a is invertible and ‖a(1 − a)−1‖ < 1.
(2) For any x ∈ A and a, b ∈ A+, such that a � b, we have x∗ax and x∗bx are positive element and
x∗ax � x∗bx.
(3) If 0A � a � b then ‖a‖ ≤ ‖b‖.
(4) If a, b ∈ A+ and ab = ba, then a.b � 0A.
(5) Let A′ denote the set {a ∈ A : ab = ba ∀ b ∈ A} and let a ∈ A′, if b, c ∈ A with b � c � 0A and
1 − a ∈ (A′)+ is an invertible element, then (IA − a)−1b ≺ (IA − a)−1c.
We refer [24] for more C∗algebra details.

Definition 1.2. Let X be a non-empty set and b � IA, b ∈ A′,suppose the mapping
dA : X × X → A, satisfies:
(1) dA(x, y) � 0A for all x, y ∈ X and dA(x, y) = 0A ⇔ x = y.
(2) dA(x, y) = dA(y, x) for all x, y ∈ X.
(3) dA(x, z) � b[dA(x, y) + dA(y, z)] for all x, y, z ∈ X, where 0A is zero-element in A and IA is the unit
element in A. Then dA is called a C∗-algebra valued b-metric on X and (X, A, dA) is called C∗-algebra-
valued b-metric space.

Example 1.3. Let X be a Banach space, dA : X×X → A given by dA(x, y) = ‖x−y‖p ·a, for all x, y ∈ X,
a ∈ A+, a � 0 and p > 1.
Its easy to variety that (X, A, dA) is a C∗-algebra -valued b-metric space.
Using the inequality (a + b)p ≤ 2p(ap + bp) for all a, b ≥ 0, p > 1, we have

‖x − z‖p ≤ 2p(‖x − y‖p + ‖y − z‖p)

for x, y, z ∈ X, which implies that

dA(x, z) � 2p(dA(x, y) + dA(y, z))

In the next we give a counter example , show that in general, a C∗-algebra valued b-metric space in
not necessary a C∗-algebra valued metric space.

Example 1.4. Let X = R and A = M2(R). Define

dA(x, y) =
(
|x − y|2 0

0 k|x − y|2

)
x, y ∈ R, k > 0, it is clear that (X, A, dA) is a C∗-algebra valued b-metric space by using the same
argument in example 1.3 when p = 2
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Now, dA(0, 1) =
(
1 0
0 k.1

)
, dA(1, 2) =

(
1 0
0 k.1

)
, dA(0, 2) =

(
4 0
0 k.4

)
.

Its obvious that dA(0, 2) � dA(0, 1) + dA(1, 2).
So (X, A, dA) is not a C∗-algebra valued metric space

Definition 1.5. Let (X, A, dA) be a C∗-algebra- valued b-metric space, x ∈ X, and {xn}
∞
n=1 be a sequence

in X, then
(i) {xn}

∞
n=1 convergent to x whenever, for every c ∈ A with c � 0A, there is a natural number N ∈ N such

that
dA(xn, x) ≺ c,

for all n > N. We denote this by lim
n→∞

xn = x or xn → x as n→ +∞.
(ii) {xn}

∞
n=1 is said to be a Cauchy sequence whenever, for every c ∈ A with c � 0A, there is a natural

number N ∈ N such that
dA(xn, xm) ≺ c,

for all n,m > N.

Lemma 1.6. (i) {xn}
∞
n=1 is a convergence in X. If for any element ε > 0 there is N ∈ N such that for all

n > N, ‖d(xn, x)‖ ≤ ε.
(ii) {xn}

∞
n=1 is a Cauchy sequence in X, for any ε > 0 there N ∈ N such that

‖dA(xn, xm)‖ ≤ ε, for all n,m > N. We say that (X, A, dA) is a complete C∗-algebra- valued b-metric
space if every Cauchy sequence is convergent with respect to A.

Example 1.7. Let X = R and A = Mn(R) the set of all n × n-matrices with entries in R. Define

dA(a, b) =


λ1|aii−bii |p · · · 0

...
. . .

...

0 · · · λn|ann−bnn |p


where a = (ai j)n

i, j=1 , b = (bi j)n
i, j=1 are two n × n-matrices , ai j, bi j ∈ R for all i, j = 1, ..., n, λi ≥ 0 for

i = 1, ..., n are positive real numbers.
One can define a partial ordering on ( �Mn(R)) on Mn(R) as following a �Mn(R) b if and only if ai j ≤

bi j∀i, j = 1, ..., n. And an element a �Mn(R) 0 is positive in Mn(R) if and only if ai j ≥ 0 for all
i, j = 1, ..., n. (X,Mn(R), dMn(R)) is C∗-algebra- valued b-metric space.
One can prove that

dA(a, c) �Mn(R) 2p(dA(a, b) + dA(b, c)),

for all a, b, c ∈ Mn(R).
We need only to use the following inequality in R

|x − z|p ≤ 2p(|x − y|p + |y − z|p,

where b = 2pIMn(R) � IMn(R) ∀p ≥ 1, where IMn(R)is the unit element in Mn(R).

Remark 1.8. In the above example the inequality |x−z|p ≤ |x−y|p+ |y−z|p it is impossible for x > y > z.
Then the (X, A, d) is not a C∗-algebra valued metric space.
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It is useful to discuss the relation between C∗-algebra valued metric spaces and lattices-valued
metric spaces. To classify C∗-algebra-valued-metric spaces and its relation with lattices, we have to
discuss the concept of quantale which introduced by Mulvey [23]. A quantale Q is a complete lattice
together with an associative multiplication ~ : Q × Q → Q such that a ~ (∨ibi) = ∨i(a ~ bi), and
∨i(ai) ~ b = ∨i(ai ~ b) for all ai, bi, a, b ∈ Q, i ∈ I, I is an index set the quantale is said to be unit, if it
has a unital ’e’ satisfy a~ e = e~ a for all a ∈ Q. And Q is called an involuative quantale with relation
∗ : Q→ Q satisfy (a∗)∗ = a , (a ~ b)∗ = b∗ ~ a∗ and (∨iai)∗ = ∨ia∗i for all ai, bi, a ∈ Q.

The top element of Q is denoted by 1 and the bottom element denoted by 0. A typical example of
quantale is given by End(S ), the set of all sublattices of Endomorphisms of the complete lattices S is a
unital quantale with join calculated by point wise (∨i fi)(x) = ∨i fi(x) and multiplication as composition
( f ~ g)(x) = ( f ◦ y)(x).

And it is unit identity is IdS . An element a ∈ Q is said to be right-sided if a ~ 1 ≤ a, for all a ∈ Q,
denote by R(Q) the set of all right-sided elements. Similarly, an element a ∈ Q is said to be left- side if
1 ~ a ≤ a for all a ∈ Q, L(Q) denote the set of left-sided elements.if a ∈ Q is right-sided elements and
left-sided elements it is said to be 2-sided elements and the set of 2-sided-elements denoted by I(Q).
Any two sided-elements a is distributive in the sense that a ∧ ∨ibi = ∨i(a ∧ bi).

A quantale is commutative if it is commutative under the multiplication. If the quntale is
commutative then Q � I(Q). If A is a C∗-algebra and R(A) is the lattice of all closed right ideals of A,
then R(A) is a quantale and the multiplication of closed right ideals obtained by taking the topological
closure of the usual product of ideals, simply, I ~ J = IJ for any two ideals I, J ∈ R(A).
By Gelfand duality theorem [11]. Any commutative C∗-algebra is isomorphic to the set of all
continuous functions of the compact Hausdorf topological space. So, in this case R(A) is isomorphic
to the lattice O(Â) of all open sublattices of Â, where Â is the topological space determined by A, the
spectrum of A. Therefore, commutative C∗-algebra classify by commutative quantales as given in [6].
A is a commutative C∗-algebra if and only if R(A) is commutative quantale.

On the other hand ‘Sherman [29]’ show that if Asa is the space of self-.adjoint elements of a C∗-
algebra A with the canonical order � given by a � b if and only if b − a � 0 is positive. Then Asa

is a lattice ordered if and only if A is commutative. Therefore, the C∗-algebra valued metric space in
commutative case coinside with the commutative quantale -valued-metric space, with a suitable metric
For a non-commutative C∗-algebra A with unit, by MaxA is meant. The set of all subspace of A together
with the multiplication defined by M ~ N = MN to be the closure of product liner subspace, for each
M,N ∈ MaxA, and the join “∨′′ defined by ∨iMi =

∑
i

Mi, and the involution M∗ = {a∗ : a ∈ M}

and the unit of MaxA is given by the identity. So, MaxA is defined A unital involutive quantale. In
the case the non-commutative C∗-algebra is classify by MaxA, following [15,16]. If A and B are two
unital C∗-algebras. Then A and B are isomorphic if and only if MaxA and MaxB are isomorphic as
a unital involutive quantale . So, C∗-algebra valued metric spaces are classify by the unital involutive
quantale-valued metric space.

2. Main results

In 2012 Samet et al [27], introduced the concept of α-admissible mapping as follows.

Definition 2.1. Let T : X → X be self map and α : X × X → [0,+∞). Then T is called α-admissible if
for all x, y ∈ X with α(x, y) ≥ 1 implies α(T x,Ty) ≥ 1.
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Next, we introduced an analogue definition of α-admissible for a unital C∗-algebra.

Definition 2.2. Let X be a non-empty set and αA : X × X → (A′)+ be a function, we say that the self
map T is αA - admissible if (x, y) ∈ X × X, αA(x, y) � IA ⇒ αA(T x,Ty) � IA, where IA the unity of A.

Definition 2.3. Let (X, A, d) be a complete C∗-algebra- valued b-metric space, the mapping T : X → X
is said to be generalised Lipschitz condition if there exist a ∈ A such that ‖a‖ < 1 and

dA(T x,Ty) � a∗dA(x, y)a, (2.1)

for all x, y ∈ X with αA(x, y) � IA.

Example 2.4. Let X = R and A = Mn(R) as given in example (1.7), define T : X → X, by T x =
x
2

, and

αMn(R) : X × X → Mn(R)+, given by αMn(R)(x, y) = IMn(R) and αMn(R)(T x,Ty) = αMn(R)( x
2 ,

y
2 ) = IMn(R) thus

T is αMn(R)−admissible, where Mn(R)+ is the set of all positive elements

αMn(R)(x, y)dMn(R)(T x,Ty) �Mn(R) IMn(R).


λ1| x2 −

y
2 |

p · · · 0
...

. . .
...

0 · · · λn| x2 −
y
2 |

p

 �Mn(R)
IMn(R)

(2)p .dMn(R)(x, y),

and a =
IMn(R)

(
√

2)p
, a∗ =

IMn(R)

(
√

2)p
, so T satisfy the generalised Lipschitz condition.

Theorem 2.5. Let (X, A, dA) be a complete C∗-algebra- valued b-metric space, with b � IA, b ∈
A′,‖b‖‖a‖2 < 1 suppose that T : X → X, be a generalised Lipschitz contraction satisfies the following
conditions:
(i) T is αA-admissible.
(ii) There exists x0 ∈ X such that αA(x0,T x0) � IA.
(iii) T is continuous.
Then T has a fixed point.

Proof: let x0 ∈ X such that αA(x0,T x0) � IA and define a sequence {xn}
∞
n=0 ⊆ X such that xn = T xn−1

for all n ∈ N. If xn = xn+1 for some n ∈ N, then x = xn is a fixed point for T .
Assume that xn , xn+1 for all n ∈ N, since T is αA-admissible, we have

αA(x0, x1) = αA(x0,T x0) � IA ⇒

αA(T x0,T 2x0) = α(x1, x2) � IA.

By induction we get

αA(xn, xn+1) � IA. (2.2)

Since T is generalised Lipschitz condition , then

dA(xn, xn+1) = dA(T xn−1,T xn) � a∗dA(xn−1, xn)a
� (a∗)2dA(xn−2, xn−1)a2
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.

.

.

� (a∗)ndA(xo, x1)an

� (a∗)nd0an.

Denote that d0 := dA(x0, x1) in A, notice that in C∗-algebra, if a, b ∈ A+ and 0A � a � b, then for any
x ∈ A both x∗ax and x∗bx are positive elements and

0A � x∗ax � x∗bx.

Now, for m ≥ 1, p ≥ 1 it following that

dA(xm, xm+p) � b[dA(xm, xm+1) + dA(xm+1, xm+p)]
� bdA(xm, xm+1) + b2dA(xm+1, xm+2) + ...
+ bp−1dA(xm+p−2, xm+p−1) + bp−1dA(xm+p−1, xm+p)
� b((a∗)md0am) + b2((a∗)m+1d0am+1) + ...
+ bp−1((a∗)m+p−2d0am+p−2) + bp−1((a∗)m+p−1d0am+p−1)

=

p−1∑
k=1

bk((a∗)m+k−1 d0 am+k−1) + bp−1(a∗)m+p−1d0 am+p−1

=

p−1∑
k=1

bk((a∗)m+k−1 d
1
2
0 d

1
2
0 am+k−1) + bp−1(a∗)m+p−1d0 am+p−1

=

p−1∑
k=1

((a∗)m+k−1 b
k
2 d

1
2
0 )(d

1
2
0 b

k
2 am+k−1) + (b

p−1
2 (a∗)m+p−1d

1
2
0 d

1
2
0 b

p−1
2 (a∗)m+p−1)

=

p−1∑
k=1

(d
1
2
0 b

k
2 am+k−1)∗(d

1
2
0 b

k
2 am+k−1) + (d

1
2
0 b

p−1
2 am+p−1)∗(d

1
2
0 b

p−1
2 am+p−1)

=

p−1∑
k=1

|d
1
2
0 b

k
2 am+k−1|2 + |d

1
2
0 b

p−1
2 am+p−1|2

�

p−1∑
k=1

‖d
1
2
0 b

k
2 am+k−1‖2.IA + ‖d

1
2
0 b

p−1
2 am+p−1‖2.IA

� ‖d
1
2
0 ‖

2
p−1∑
k=1

‖ a‖2(m+k−1)‖b‖k.IA + ‖d
1
2
0 ‖

2‖b‖p−1 ‖a‖2(m+p−1).IA

= ‖d0‖
·[‖b‖‖a‖2m(

1 − (‖b‖‖a‖2)p−1

1 − ‖b‖‖a‖2
)].IA + ‖d0‖‖b‖p−1.‖a‖2(m+p−1).IA

= ‖d0‖[‖b‖‖a‖2m(
(‖b‖‖a‖2)p−1 − 1
‖b‖‖a‖2 − 1

)].IA + ‖d0‖‖b‖p−1.‖a‖2(m+p−1) → 0A,

with the condition ‖b‖‖a‖2 < 1 and at m→ +∞.
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It implies that {xn}
∞
n=0 is a Cauchy sequence. By completeness of X that exists x ∈ X such that

xn → x as n→ +∞.
Since T is continuous and the lim is unique it follows xn+1 = T xn → T x as n → +∞ such that
x = lim

n→∞
xn+1 = lim

n→∞
T xn = T x, so, T x = x is a fixed point for T.

Now, we replace the assumption of continuoity of T in the above theorem by another condition.

Theorem 2.6. Let (X, A, dA) be a complete C∗-algebra- valued b-metric space, with b � IA.
Let T : X → X be generalized Lipschitz condition as in (2.5) and the following conditions are satisfies:
(i) T is αA-admissible.
(ii) There exists x0 ∈ X such that αA(x0,T x0) � IA.
(iii) If {xn}

∞
n=0 is a sequence in X such that αA(xn, xn+1 � IA for all n ∈ N and xn → x ∈ X, as n → +∞,

then αA(xn, x) � IA for all n ∈ N. Then T has a fixed point in X.

Proof: From theorem 2.5, we Know that {xn}
∞
n=0 is a Couchy sequence in (X, A, dA), then there exists

x ∈ X such that xn → x as n→ +∞.
On the other hand from equation( 3.1) and by hypothesis (iii) , we have dA(xn, x) � IA, for all n ∈ N,
since T is generalized Lipschitz Contraction using 2.2 we get

dA(x,T x) � b[dA(x, xn+1) + dA(xn+1,T x)
= b[dA(x, xn+1) + dA(T xn,T x)
� b[dA(x, xn+1) + a∗(d(xn, x)a]
→ 0A as n→ +∞.

dA(x,T x) = 0A ⇒ T x = x.

To prove the uniqueness of the fixed point of generalized Lipschitz mapping we have to consider
the following property.
(H): For all x, y ∈ X, there exists z ∈ X such that dA(x, z) � IA and dA(y, z) � IA.

Theorem 2.7. Adding condition (H) to the hypothesis of theorem (2.5) we obtain the uniqueness of the
fixed point of T.

Proof: Suppose that x and y are two fixed points of T from (H), there exists z ∈ X such that

αA(x, z) � IA and αA(y, z) � IA. (2.3)

Since T is αA-admissible, from (2.2) we have

αA(x,T nz)) � IA and αA(y,T nz)) � IA. (2.4)

Since T is generalized Lipschitz contraction, so by using (2.4), we have

dA(x,T nz) = dA(T x,T (T n−1z))
� a∗dA(x,T n−1z)a
.

.

AIMS Mathematics Volume 6, Issue 9, 10192–10206.
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.

� (a∗)ndA(x, z)a f or all n ∈ N

‖dA(x,T nz)‖ ≤ ‖a‖2n‖dA(x, z)‖.

Since ‖b‖‖a‖2 < 1, ‖a‖ < 1, we have ‖a‖2n → 0A as n→ +∞ and dA(x,T nz)→ 0A,
T nz = x as n→ +∞.

Similarly we get T nz = y as n → +∞, there for by uniqueness of the limit, we obtain x = y. This
complete the proof.

3. Common fixed point theorems

Now, we give a common fixed point theorems for two mappings satisfy a common αA-admissible.

Definition 3.1. let (T, S ) : X → X be a continuous self mappings on X. αA : X × X → A+. (T, S ) are
said to be common αA-admissible if for any x0 ∈ X,

αA(x0, y) � IA ⇒ αA(T x0, S y) � IA ⇒ αA(T 2x0, S 2y) � IA.

Theorem 3.2. Let (X, A, dA) be complete C∗-algebra- valued b-metric space and
T, S : X → X, such that

αA(x, y)dA(T x, S y) � a∗dA(x, y)a, (3.1)

and ‖a‖ < 1, ‖b‖.‖a‖2 < 1 and the following conditions are satisfies:
(i) (T, S ) are common αA-admissible.
(ii) The exists x0 ∈ X such that

αA(x0, y) � IA ⇒ αA(T x0, S y) � IA.

(iii) T and S are continuous and have a common fixed point in X.

Proof: Let x0 ∈ X and construct a sequence {xn} ⊆ X such that T x2n = x2n+1 ,
S x2n+1 = x2n+2 form (3.1), we get

αA(x0, x1) = αA(T x0, S x1) � IA

⇒ αA(T 2x0, S 2x1) � IA

⇒ αA(x2, x3) � IA,

by induction, we have αA(x2n, x2n+1) � IA, for all n ∈ N.

dA(x2n+1, x2n+2) = dA(T x2n, S x2n+1)
� αA(x2n, x2n+1)dA(T x2n, S x2n+1)
� a∗dA(x2n, x2n+1)a,

by induction, we obtain
dA(x2n+1, x2n+2) � (a∗)2n+1dA(x0, x1)a2n+1.

AIMS Mathematics Volume 6, Issue 9, 10192–10206.
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Similarly,
dA(x2n, x2n+1) � (a∗)2ndA(x0, x1)a2n.

Now, we can obtain for any n ∈ N

dA(xn, xn+1) � (a∗)ndA(x0, x1)an.

Then for p ∈ N , p ≥ 1 , m ≥ 1, and applying the triangle inequality,
we have

dA(xm, xm+p) � b[dA(xm, xm+1) + b2dA(xm+1, xm+2) + ......
+ bp−2dA(xm+p−2, xm+p−1) + bp−1dA(xm+p−1, xm+p)

�

p−1∑
k=1

bk((a∗)m+k−1d0am+k−1) + bp−1(a∗)m+p−1d0am+p−1,

by similar calculation as theorem (2.5), we get

dA(xm, xm+p) � ‖d0‖
·[‖b‖‖a‖2m(

1 − (‖b‖‖a‖2)p−1

1 − ‖b‖‖a‖2
)]IA + ‖d0‖‖b‖p−1‖a‖2(m+p−1)IA → 0A,

as n→ +∞, where IA is the unitary in A, d0 := dA(x0, x1), b ∈ (A+)′.
So, {xn} is a Cauchy sequence in X.
The completion of (X, A, dA) implies that there exists x ∈ X such that lim

n→∞
xn = x

Now, we using triangle inequality and (3.1), we set

dA(x, S x) � b[dA(x, x2n+1) + dA(x2n+1, S x)]
� b[dA(x, x2n+1) + dA(T x2n, S x)]

and αA(x2n, x) � IA, we get

dA(x, S x) � b[dA(x, x2n+1) + a∗dA(x2n, x)a]
‖dA(x, S x)‖ ≤ ‖b‖‖dA(x, x2n+1)‖ + ‖b‖‖a‖2‖dA(x2n, x)‖
‖dA(x, S x)‖ ≤ ‖dA(x, x2n+1)‖(‖b‖ + ‖b‖‖a‖2).

Since ‖a‖ < 1, we have a contradiction⇒ dA(x, S x) = 0A ⇒ S x = x, similarly, we get T x = x, so, S
and T have a common fixed point .

In the following, we will show that the uniquely of common fixed point in X, for that assume that is
another fixed point y ∈ X such that Ty = y = y.
Since x satisfy property H, and (T, S ) are αA -admissible, we have

dA(x, S nz) = dA(T x, S nz)
� a∗dA(T x, S n−1z)a
.

.

.

� (a∗)ndA(x, z)an

AIMS Mathematics Volume 6, Issue 9, 10192–10206.



10201

‖dA(x, S nz)‖ ≤ ‖a‖2n‖dA(x, z)‖ → 0 as n→ +∞.

So, dA(x, S nz) = 0A this implies that S nz = x.
Similarly, we get S nz = y Thus x is a unique common fixed point.

Theorem 3.3. Let (X, A, dA) be a complete C∗-algebra- valued b-metric space, suppose that two
mappings T, S : X → X, satisfy

α(x, y)dA(T x,Ty) � a∗dA(S x, S y)a f or any x, y ∈ X, (3.2)

where a ∈ A, with ‖b‖‖a‖2 < 1 and ‖a‖ < 1.
If R(T ) ⊆ R(S ) and R(S ) is complete in X, T and S are weakly compatible, such that the following holds
(i) (T, S ) are common αA-admissible.
(ii) There is x0 ∈ X such that αA(x0, y) � IA ⇒ αA(T x0, S y) � IA.
(iii) T and S are continuous.
(iv) X has a property (H), they T and S have a unique common fixed point in X.

Proof: Let x0 ∈ X, choose x1 ∈ X, such that S x1 = S x0, which can be done since R(T ) ⊆ R(S ). Let
x0 ∈ X such that S x2 = T x1.
Repeating the process, we have a sequence {S xn}

∞
n=1 in X satisfying S xn = T xn−1.

Then, since (T, S ) are αA-admissible, we get

αA(S x1, S x2) = αA(T x0,T x1) � IA

⇒ αA(T 2x0,T 2x1) � IA

⇒ αA(S x2, S x3) � IA

.

.

.

⇒ αA(S xn, S xn+1) � IA.

Now,

dA(S xn, S xn+1) = dA(T xn−1,T xn)
� a∗dA(S xn−1, S xn)a
.

.

.

� (a∗)ndA(S x0, S x1)an.

For m ≥ 1, p ≥ 1.

dA(S xm, S xm+p) � bdA(S xm, S xm+1) + b2dA(S xm+1, S xm+2) + ... +
+ bp−1dA(S xm+p−2, S xm+p+1) + bp−1dA(S xm+p−1, S xm+p)
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�

p−1∑
k=1

bk(a∗)m+k−1d0(a)m+k−1 + ... + bp−1(a∗)m+p−1d0(a)m+p−1.

Using similar calculation as in theorem 2.5 , we get

dA(S xm, S xm+p) � ‖d0‖
[‖b‖‖a‖2m(‖b‖‖a‖2)p−1 − 1]

‖b‖‖a‖2 − 1
IA

+ ‖d0‖‖b‖p−1‖a‖2(m+p+1)IA → 0A as m→ +∞.

Where d0 = dA(S x0, S x1).
So, {S xn}

∞
n=1 is a Cauchy sequence in R(S ) and is complete in X, there exists x ∈ X such that lim

n→+∞
S xn =

S x.
Also,

dA(S xn,T x) = dA(T xn−1,T x)
� a∗dA(S xn, x)a→ 0A, as n→ +∞.

So, S xn → T x as n→ +∞. Hens S xn = T x = S x, so x is coincidence common fixed point in X.
Morovere of y is another common fixed point such that Ty = S y = y, so

dA(S x, S y) = dA(T x,Ty) � a∗dA(S x, S y)a

‖dA(S x, S y)‖ ≤ ‖a‖2‖dA(S x, S y)‖.

Since ‖a‖ < 1, so we yet dA(S x, S y) = 0A ⇒ S x = S y.
So S , T have coincidence fixed point is unique S x = T x = x.
Since {S xn}

∞
n=1 is a sequence in X, convergent to S x and S y respectively,

S x = lim
n→+∞

S xn = T x, since the lim is unique, so T x = S x = x, so S and T have a common fixed point
in X.
Since X has a property (H) and (S ,T ) are αA-admissible, we get

dA(x,T nx) = dA(T x1,T nz) = dA(T x,T n−1z)
� a∗dA(S x, S (T n−1zn))a
.

.

.

� (a∗)ndA(S x, S z)an

‖dA(x,T nz)‖ ≤ ‖a‖2n‖dA(S x, S z)‖ → 0 as n→ +∞.

⇒ dA(x,T nz) = 0A ⇒ T nz = x.

Similarly T nz = y, so x = y and this complete the proof.
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4. Application

We introduce a non-trivial example satisfy the theorem 2.5.

Example 4.1. Let X = [0, 1], A = M2(R) , p > 1 and k > 0 is a constant, we define dA = X × X → A

as dA(x, y) =
(
|x − y|p 0

0 k|x − y|p

)
for all x, y ∈ X. Then (X, A, dA) is C∗-algebra valued b-metric space.

Define T : X → X as T x = x2, then

dA(T x,Ty) =
(
|x2 − y2|p 0

0 k|x2 − y2|p

)
=

(
|x − y|p|x + y|p 0

0 k|x − y|p|x + y|p

)
≤ 2p.I

(
|x − y|p 0

0 k|x − y|p

)

Define, αA : X × X → A, by αA(x, y) =


(
x 0
0 y

)
if x = y = 1

0 otherwise,

it is clear that αA(x, y) =
{

IM2(R) if x = y,
0 otherwise,

αA(T x,Ty) =


(
x2 0
0 y2

)
if x = y = 1

0 otherwise,

αA(x, y) = IM2(R) ⇒ αA(T x,Ty) = IM2(R)

So, αA(x, y)dA(T x,Ty) ≤ (
√

2)p)dA(x, y)(
√

2)p. So, it is satisfy the conditions of theorem 2.5, and then
T has a fixed point 0 ∈ X.

As an application, we use the C∗-algebra-valued b-metric space to study the existence and
uniqueness of the system of matrix equations in [4] by using theorem 2.5.

Example 4.2. Application: Suppose that Mn(C) the set of all m × n matrices with complex entries.
Mn(C) is a C∗-algebra with the operator norm. Let B1, B2,...,Bn ∈ Mn(C) are diagonal matrices which

satisfy
n∑

k=1
|Bk|

2 < 1.

Let A = (ai j)1≤i, j≤n ∈ Mn(C) and C = (ci j)1≤i, j≤n ∈ Mn(C)+, where Mn(C)+ denote the set of all
positive definite matrices “hermitian and the eigenvalues are non-negative”. Then the matrix equations

A −
n∑

k=1

B∗kABk = C, (4.1)

has a unique solution.

Proof: Set α =
n∑

k=1
|Bk|

2, clear if α = 0, then the equations has a unique solution in Mn(C). Without

loss of generality, suppose that α > 0. For A,D ∈ Mn(C) and p ≥ 1,
define dMn(C) : Mn(C) × Mn(C)→ Mn(C)+ as
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dMn(C)(A,D) = diag(λ1|a11 − d11, ..., λn|ann − dnn|
p) , λ1, ..., λn > 0, then (Mn(C), dMn(C)) is a C∗-

algebra valued b-metric space and is complete since the set Mn(C) is complete (the proof is given in
the example 1.7). Consider the map T = (Tii) : Mn(C)→ Mn(C) defined by

Tii(ai j)1≤i, j≤n =
n∑

k=1
B∗k(aii)Bk + cii. Define αMn(C) : Mn(C) × Mn(C)→ Mn(C)+,

αMn(C)(A, B) = IMn(C), clear that T is αM2(C) admissible. Then

dMn(C)(T A,T D) = diag(λ1|(
n∑

k=1

B∗ka11Bk + c11) − (
n∑

k=1

B∗kd11Bk + c11), ..., λn|(
n∑

k=1

B∗kannBk

+ cnn) − (
n∑

k=1

B∗kdnnBk + cnn)|p)

= diag(λ1|(
n∑

k=1

B∗k(a11 − d11)Bk|
p, ..., λn|(

n∑
k=1

B∗k(ann − dnn)Bk|
p)

= diag(λ1(
n∑

k=1

|Bk|
2)p|a11 − d11|

p, ..., λn(
n∑

k=1

|Bk|
2)p|ann − dnn|

p)

= diag(
n∑

k=1

|Bk|
2)p(λ1|a11 − d11|

p, ..., λn|ann − dnn|
p) = αpdMn(C)(A,D).

Therefore, T satisfy the condition of theorem 2.5 and has a fixed point. So the matrix equations (4.1)
has a solution on Mn(C). Moreover αMn(C) is satisfy the condition (H), so the system of matrix equations
have a unique hermitian matrix solution A.

5. Conclusions

In this paper, we define a new version of αA-admissible in the case of self map T : A → A and αA-
admissible in two self mappings (T, S ). We prove the principal Banach fixed point theorem and two
common fixed point theorems in the C∗-algebra- valued b-metric space, which generalized the given
results in [18,19,26,27]. Moreover, we introduced an application to show that the useful of C∗-algebra-
valued b-metric space to study the existence and unique of system matrix equations.
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