

AIMS Mathematics, 6(9): 10192–10206. DOI: 10.3934/math.2021590 Received: 02 April 2021 Accepted: 18 June 2021 Published: 09 July 2021

http://www.aimspress.com/journal/Math

Research article

$\alpha\text{-}\mathbf{Admissible}$ mapping in $C^*\text{-}\mathbf{algebra-valued}$ b-metric spaces and fixed point theorems

Saleh Omran¹ and Ibtisam Masmali^{2,*}

- ¹ Department of Mathematics, South Valley University, Qena 83523, Egypt
- ² Department of Mathematics, College of Science, Jazan University, New Campus, Post Box 2097, Jazan, Saudi Arabia
- * Correspondence: Email: iamasmali@jazanu.edu.sa.

Abstract: In the present paper, for a unital C^* -algebra A, we introduce a version of α_A -admissible on C^* -algebra-valued b-metric space, we proved some Banach and common fixed point theorems using α_A -admissible. Also, we give some non-trivial examples and an application to illustrate our results.

Keywords: C^* -algebra-valued b-metric space; fixed point theorem; α -admissible **Mathematics Subject Classification:** 47H10, 46L07

1. Introduction

In 2014, Ma et al [18] introduced the concept of C^* -algebra-valued metric spaces by replacing the range of \mathbb{R} with an unital C^* -algebra. Later in 2015, Ma et al [19] introduced the nation of C^* -algebra-valued metric spaces as a generalization of C^* -algebra-valued metric space. They proved some Banach fixed point theorems. Several research are obtained some results in Banach and common fixed point theorems in C^* -algebra-valued metric spaces (see [2,3,7,10,13,14,25,26,31,34]. The notion of C^* -algebra-valued partial metric space and C^* -algebra-valued partial b-metric spaces are introduced in [8,22] and proved fixed point results as analogous of Banach contraction principle.

In [27] introduced the study of fixed point for the α -admissibility of mappings and generalized several known results of metric spaces see also [28]. Later on, many authors proved α -admissible mappings theorems with various contraction condition see [1,5,9,12,17,20,21,30,32,33,35,36]. The aim of this paper is generalizing some results of metric spaces and *C**-algebra b-valued metric spaces.

We start with some definition and results about C^* -algebra b-valued metric spaces. Suppose that A is a unital C^* -algebra with a unit I. Set $A_h = \{x \in A : x = x^*\}$. An element $x \in A$ is a positive element, if $x = x^*$ and $\sigma(x) \subset \mathbb{R}^+$ is the spectrum of x. We define a partial ordering \leq on A_h as $x \leq y$ if $0_A \leq y - x$, where 0_A means the zero element in A and we let A^+ denote the $\{x \in A : x \geq 0_A\}$ and $|x| = (x^*x)^{\frac{1}{2}}$.

On the other hand, [27] introduced the study of fixed point for the α -admissibility of mappings and generalized several know results of metric spaces.

Throughout this paper, we use the concept of α -admissibility of mappings defined on C^* -algebra b-valued metric spaces and we defined the generalized Lipschitz contractions on such spaces. The aim of this paper is generalizing some results of metric space and C^* -algebra b-valued metric spaces.

Lemma 1.1. Suppose that A is a unital C*-algebra with unit I_A . The following are holds. (1) If $a \in A$, with $||a|| < \frac{1}{2}$, then 1 - a is invertible and $||a(1 - a)^{-1}|| < 1$. (2) For any $x \in A$ and $a, b \in A^+$, such that $a \leq b$, we have x^*ax and x^*bx are positive element and

(2) For any $x \in A$ and $a, b \in A^+$, such that $a \leq b$, we have x^*ax and x^*bx are positive element and $x^*ax \leq x^*bx$.

(3) If $0_A \le a \le b$ then $||a|| \le ||b||$.

(4) If $a, b \in A^+$ and ab = ba, then $a.b \ge 0_A$.

(5) Let A' denote the set $\{a \in A : ab = ba \forall b \in A\}$ and let $a \in A'$, if $b, c \in A$ with $b \ge c \ge 0_A$ and $1 - a \in (A')^+$ is an invertible element, then $(I_A - a)^{-1}b < (I_A - a)^{-1}c$. We refer [24] for more C*algebra details.

Definition 1.2. Let X be a non-empty set and $b \ge I_A$, $b \in A'$, suppose the mapping

 $d_A: X \times X \to A$, satisfies: (1) $d_A(x, y) \ge 0_A$ for all $x, y \in X$ and $d_A(x, y) = 0_A \Leftrightarrow x = y$. (2) $d_A(x, y) = d_A(y, x)$ for all $x, y \in X$. (3) $d_A(x, z) \le b[d_A(x, y) + d_A(y, z)]$ for all $x, y, z \in X$, where 0_A is zero.

(3) $d_A(x, z) \leq b[d_A(x, y) + d_A(y, z)]$ for all $x, y, z \in X$, where 0_A is zero-element in A and I_A is the unit element in A. Then d_A is called a C^{*}-algebra valued b-metric on X and (X, A, d_A) is called C^{*}-algebra-valued b-metric space.

Example 1.3. Let X be a Banach space, $d_A : X \times X \to A$ given by $d_A(x, y) = ||x - y||^p \cdot a$, for all $x, y \in X$, $a \in A^+$, $a \ge 0$ and p > 1.

Its easy to variety that (X, A, d_A) is a C^* -algebra -valued b-metric space. Using the inequality $(a + b)^p \le 2^p (a^p + b^p)$ for all $a, b \ge 0, p > 1$, we have

$$||x - z||^{p} \le 2^{p}(||x - y||^{p} + ||y - z||^{p})$$

for $x, y, z \in X$, which implies that

$$d_A(x,z) \le 2^p (d_A(x,y) + d_A(y,z))$$

In the next we give a counter example, show that in general, a C^* -algebra valued b-metric space in not necessary a C^* -algebra valued metric space.

Example 1.4. Let $X = \mathbb{R}$ and $A = M_2(\mathbb{R})$. Define

$$d_A(x, y) = \begin{pmatrix} |x - y|^2 & 0\\ 0 & k|x - y|^2 \end{pmatrix}$$

 $x, y \in \mathbb{R}, k > 0$, it is clear that (X, A, d_A) is a C^{*}-algebra valued b-metric space by using the same argument in example 1.3 when p = 2

AIMS Mathematics

Now, $d_A(0, 1) = \begin{pmatrix} 1 & 0 \\ 0 & k.1 \end{pmatrix}$, $d_A(1, 2) = \begin{pmatrix} 1 & 0 \\ 0 & k.1 \end{pmatrix}$, $d_A(0, 2) = \begin{pmatrix} 4 & 0 \\ 0 & k.4 \end{pmatrix}$. Its obvious that $d_A(0, 2) \ge d_A(0, 1) + d_A(1, 2)$.

So (X, A, d_A) is not a C^{*}-algebra valued metric space

Definition 1.5. Let (X, A, d_A) be a C^* -algebra- valued b-metric space, $x \in X$, and $\{x_n\}_{n=1}^{\infty}$ be a sequence in X, then

(i) $\{x_n\}_{n=1}^{\infty}$ convergent to x whenever, for every $c \in A$ with $c > 0_A$, there is a natural number $N \in \mathbb{N}$ such that

$$d_A(x_n, x) \prec c,$$

for all n > N. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to +\infty$.

(ii) $\{x_n\}_{n=1}^{\infty}$ is said to be a Cauchy sequence whenever, for every $c \in A$ with $c > 0_A$, there is a natural number $N \in \mathbb{N}$ such that

$$d_A(x_n, x_m) \prec c$$

for all n, m > N.

Lemma 1.6. (*i*) $\{x_n\}_{n=1}^{\infty}$ is a convergence in *X*. If for any element $\epsilon > 0$ there is $N \in \mathbb{N}$ such that for all n > N, $||d(x_n, x)|| \le \epsilon$.

(ii) $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in X, for any $\epsilon > 0$ there $N \in \mathbb{N}$ such that

 $||d_A(x_n, x_m)|| \le \epsilon$, for all n, m > N. We say that (X, A, d_A) is a complete C^{*}-algebra- valued b-metric space if every Cauchy sequence is convergent with respect to A.

Example 1.7. Let $X = \mathbb{R}$ and $A = M_n(\mathbb{R})$ the set of all $n \times n$ -matrices with entries in \mathbb{R} . Define

$$d_A(a,b) = \begin{pmatrix} \lambda_{1|a_{ii}-b_{ii}|^p} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_{n|a_{nn}-b_{nn}|^p} \end{pmatrix}$$

where $a = (a_{ij})_{i,j=1}^n$, $b = (b_{ij})_{i,j=1}^n$ are two $n \times n$ -matrices, $a_{ij}, b_{ij} \in \mathbb{R}$ for all i, j = 1, ..., n, $\lambda_i \ge 0$ for i = 1, ..., n are positive real numbers.

One can define a partial ordering on $(\leq_{M_n(\mathbb{R})})$ on $M_n(\mathbb{R})$ as following $a \leq_{M_n(\mathbb{R})} b$ if and only if $a_{ij} \leq b_{ij} \forall i, j = 1, ..., n$. And an element $a \geq_{M_n(\mathbb{R})} 0$ is positive in $M_n(\mathbb{R})$ if and only if $a_{ij} \geq 0$ for all i, j = 1, ..., n. $(X, M_n(\mathbb{R}), d_{M_n(\mathbb{R})})$ is C^* -algebra- valued b-metric space. One can prove that

$$d_A(a,c) \leq_{M_n(\mathbb{R})} 2^p (d_A(a,b) + d_A(b,c)),$$

for all $a, b, c \in M_n(\mathbb{R})$. We need only to use the following inequality in \mathbb{R}

$$|x - z|^p \le 2^p (|x - y|^p + |y - z|^p)$$

where $b = 2^p I_{M_n(\mathbb{R})} \ge I_{M_n(\mathbb{R})} \forall p \ge 1$, where $I_{M_n(\mathbb{R})}$ is the unit element in $M_n(\mathbb{R})$.

Remark 1.8. In the above example the inequality $|x-z|^p \le |x-y|^p + |y-z|^p$ it is impossible for x > y > z. Then the (X, A, d) is not a C^{*}-algebra valued metric space.

AIMS Mathematics

It is useful to discuss the relation between C^* -algebra valued metric spaces and lattices-valued metric spaces. To classify C^* -algebra-valued-metric spaces and its relation with lattices, we have to discuss the concept of quantale which introduced by Mulvey [23]. A quantale Q is a complete lattice together with an associative multiplication $\circledast : Q \times Q \rightarrow Q$ such that $a \circledast (\lor_i b_i) = \lor_i (a \circledast b_i)$, and $\lor_i (a_i) \circledast b = \lor_i (a_i \circledast b)$ for all $a_i, b_i, a, b \in Q, i \in I, I$ is an index set the quantale is said to be unit, if it has a unital 'e' satisfy $a \circledast e = e \circledast a$ for all $a \in Q$. And Q is called an involuative quantale with relation $\ast : Q \rightarrow Q$ satisfy $(a^*)^* = a, (a \circledast b)^* = b^* \circledast a^*$ and $(\lor_i a_i)^* = \lor_i a_i^*$ for all $a_i, b_i, a \in Q$.

The top element of Q is denoted by 1 and the bottom element denoted by 0. A typical example of quantale is given by End(S), the set of all sublattices of Endomorphisms of the complete lattices S is a unital quantale with join calculated by point wise $(\lor_i f_i)(x) = \lor_i f_i(x)$ and multiplication as composition $(f \otimes g)(x) = (f \circ y)(x)$.

And it is unit identity is Id_s . An element $a \in Q$ is said to be right-sided if $a \circledast 1 \le a$, for all $a \in Q$, denote by R(Q) the set of all right-sided elements. Similarly, an element $a \in Q$ is said to be left-side if $1 \circledast a \le a$ for all $a \in Q$, L(Q) denote the set of left-sided elements. If $a \in Q$ is right-sided elements and left-sided elements it is said to be 2-sided elements and the set of 2-sided-elements denoted by I(Q). Any two sided-elements a is distributive in the sense that $a \land \lor_i b_i = \lor_i (a \land b_i)$.

A quantale is commutative if it is commutative under the multiplication. If the quntale is commutative then $Q \cong I(Q)$. If *A* is a *C*^{*}-algebra and *R*(*A*) is the lattice of all closed right ideals of *A*, then *R*(*A*) is a quantale and the multiplication of closed right ideals obtained by taking the topological closure of the usual product of ideals, simply, $I \circledast J = \overline{IJ}$ for any two ideals $I, J \in R(A)$.

By Gelfand duality theorem [11]. Any commutative C^* -algebra is isomorphic to the set of all continuous functions of the compact Hausdorf topological space. So, in this case R(A) is isomorphic to the lattice $O(\widehat{A})$ of all open sublattices of \widehat{A} , where \widehat{A} is the topological space determined by A, the spectrum of A. Therefore, commutative C^* -algebra classify by commutative quantales as given in [6]. A is a commutative C^* -algebra if and only if R(A) is commutative quantale.

On the other hand 'Sherman [29]' show that if A_{sa} is the space of self-.adjoint elements of a C^* algebra A with the canonical order \leq given by $a \leq b$ if and only if $b - a \geq 0$ is positive. Then A_{sa} is a lattice ordered if and only if A is commutative. Therefore, the C^* -algebra valued metric space in commutative case coinside with the commutative quantale -valued-metric space, with a suitable metric For a non-commutative C^* -algebra A with unit, by MaxA is meant. The set of all subspace of A together with the multiplication defined by $M \otimes N = \overline{MN}$ to be the closure of product liner subspace, for each $M, N \in MaxA$, and the join " \lor " defined by $\lor_i M_i = \sum_i \overline{M_i}$, and the involution $M^* = \{a^* : a \in M\}$ and the unit of MaxA is given by the identity. So, MaxA is defined A unital involutive quantale. In the case the non-commutative C^* -algebra is classify by MaxA, following [15,16]. If A and B are two unital C^* -algebras. Then A and B are isomorphic if and only if MaxA and MaxB are isomorphic as a unital involutive quantale . So, C^* -algebra valued metric spaces are classify by the unital involutive quantale-valued metric space.

2. Main results

In 2012 Samet et al [27], introduced the concept of α -admissible mapping as follows.

Definition 2.1. Let $T : X \to X$ be self map and $\alpha : X \times X \to [0, +\infty)$. Then T is called α -admissible if for all $x, y \in X$ with $\alpha(x, y) \ge 1$ implies $\alpha(Tx, Ty) \ge 1$.

Next, we introduced an analogue definition of α -admissible for a unital C^{*}-algebra.

Definition 2.2. Let X be a non-empty set and $\alpha_A : X \times X \to (A')^+$ be a function, we say that the self map T is α_A - admissible if $(x, y) \in X \times X$, $\alpha_A(x, y) \ge I_A \Rightarrow \alpha_A(Tx, Ty) \ge I_A$, where I_A the unity of A.

Definition 2.3. Let (X, A, d) be a complete C^* -algebra- valued b-metric space, the mapping $T : X \to X$ is said to be generalised Lipschitz condition if there exist $a \in A$ such that ||a|| < 1 and

$$d_A(Tx, Ty) \le a^* d_A(x, y)a, \tag{2.1}$$

for all $x, y \in X$ with $\alpha_A(x, y) \geq I_A$.

Example 2.4. Let $X = \mathbb{R}$ and $A = M_n(\mathbb{R})$ as given in example (1.7), define $T : X \to X$, by $Tx = \frac{x}{2}$, and $\alpha_{M_n(\mathbb{R})} : X \times X \to M_n(\mathbb{R})^+$, given by $\alpha_{M_n(\mathbb{R})}(x, y) = I_{M_n(\mathbb{R})}$ and $\alpha_{M_n(\mathbb{R})}(Tx, Ty) = \alpha_{M_n(\mathbb{R})}(\frac{x}{2}, \frac{y}{2}) = I_{M_n(\mathbb{R})}$ thus T is $\alpha_{M_n(\mathbb{R})}$ -admissible, where $M_n(\mathbb{R})^+$ is the set of all positive elements

$$\alpha_{M_n(\mathbb{R})}(x,y)d_{M_n(\mathbb{R})}(Tx,Ty) \leq_{M_n(\mathbb{R})} I_{M_n(\mathbb{R})} \begin{pmatrix} \lambda_{1|\frac{x}{2}} - \frac{y}{2}|^p & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_{n|\frac{x}{2}} - \frac{y}{2}|^p \end{pmatrix} \leq_{M_n(\mathbb{R})} \frac{I_{M_n(\mathbb{R})}}{(2)^p} d_{M_n(\mathbb{R})}(x,y),$$

and $a = \frac{I_{M_n(\mathbb{R})}}{(\sqrt{2})^p}$, $a^* = \frac{I_{M_n(\mathbb{R})}}{(\sqrt{2})^p}$, so *T* satisfy the generalised Lipschitz condition.

Theorem 2.5. Let (X, A, d_A) be a complete C^* -algebra- valued b-metric space, with $b \ge I_A$, $b \in A'$, $||b||||a||^2 < 1$ suppose that $T : X \to X$, be a generalised Lipschitz contraction satisfies the following conditions:

(i) T is α_A -admissible. (ii) There exists $x_0 \in X$ such that $\alpha_A(x_0, Tx_0) \geq I_A$. (iii) T is continuous. Then T has a fixed point.

Proof: let $x_0 \in X$ such that $\alpha_A(x_0, Tx_0) \ge I_A$ and define a sequence $\{x_n\}_{n=0}^{\infty} \subseteq X$ such that $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$. If $x_n = x_{n+1}$ for some $n \in \mathbb{N}$, then $x = x_n$ is a fixed point for T. Assume that $x_n \ne x_{n+1}$ for all $n \in \mathbb{N}$, since T is α_A -admissible, we have

$$\alpha_A(x_0, x_1) = \alpha_A(x_0, Tx_0) \ge I_A \Longrightarrow$$
$$\alpha_A(Tx_0, T^2x_0) = \alpha(x_1, x_2) \ge I_A.$$

By induction we get

$$\alpha_A(x_n, x_{n+1}) \ge I_A. \tag{2.2}$$

Since T is generalised Lipschitz condition, then

$$d_A(x_n, x_{n+1}) = d_A(Tx_{n-1}, Tx_n) \le a^* d_A(x_{n-1}, x_n) a$$

$$\le (a^*)^2 d_A(x_{n-2}, x_{n-1}) a^2$$

AIMS Mathematics

 $\begin{array}{l} \cdot \\ \cdot \\ \leq & (a^*)^n d_A(x_o, x_1) a^n \\ \leq & (a^*)^n d_0 a^n. \end{array}$

.

Denote that $d_0 := d_A(x_0, x_1)$ in *A*, notice that in *C*^{*}-algebra, if $a, b \in A^+$ and $0_A \le a \le b$, then for any $x \in A$ both x^*ax and x^*bx are positive elements and

$$0_A \leq x^* a x \leq x^* b x.$$

Now, for $m \ge 1$, $p \ge 1$ it following that

$$\begin{split} d_{A}(x_{m}, x_{m+p}) &\leq b[d_{A}(x_{m}, x_{m+1}) + d_{A}(x_{m+1}, x_{m+p})] \\ &\leq bd_{A}(x_{m}, x_{m+1}) + b^{2}d_{A}(x_{m+1}, x_{m+2}) + \dots \\ &+ b^{p-1}d_{A}(x_{m+p-2}, x_{m+p-1}) + b^{p-1}d_{A}(x_{m+p-1}, x_{m+p}) \\ &\leq b((a^{*})^{m}d_{0}a^{m}) + b^{2}((a^{*})^{m+1}d_{0}a^{m+1}) + \dots \\ &+ b^{p-1}((a^{*})^{m+p-2}d_{0}a^{m+p-2}) + b^{p-1}((a^{*})^{m+p-1}d_{0}a^{m+p-1}) \\ &= \sum_{k=1}^{p-1} b^{k}((a^{*})^{m+k-1} d_{0} a^{m+k-1}) + b^{p-1}(a^{*})^{m+p-1}d_{0} a^{m+p-1} \\ &= \sum_{k=1}^{p-1} b^{k}((a^{*})^{m+k-1} d_{0}^{\frac{1}{2}}d_{0}^{\frac{1}{2}} b^{\frac{k}{2}} a^{m+k-1}) + (b^{\frac{p-1}{2}}(a^{*})^{m+p-1}d_{0} a^{m+p-1}) \\ &= \sum_{k=1}^{p-1} ((a^{*})^{m+k-1} b^{\frac{k}{2}}d_{0}^{\frac{1}{2}})(d_{0}^{\frac{1}{2}} b^{\frac{k}{2}} a^{m+k-1}) + (b^{\frac{p-1}{2}}(a^{*})^{m+p-1}d_{0}^{\frac{1}{2}} d_{0}^{\frac{1}{2}} b^{\frac{p-1}{2}}(a^{*})^{m+p-1}) \\ &= \sum_{k=1}^{p-1} (d_{0}^{\frac{1}{2}} b^{\frac{k}{2}} a^{m+k-1})^{*}(d_{0}^{\frac{1}{2}} b^{\frac{k}{2}} a^{m+k-1}) + (d_{0}^{\frac{1}{2}} b^{\frac{p-1}{2}} a^{m+p-1})^{*}(d_{0}^{\frac{1}{2}} b^{\frac{p-1}{2}} a^{m+p-1}) \\ &= \sum_{k=1}^{p-1} |d_{0}^{\frac{1}{2}} b^{\frac{k}{2}} a^{m+k-1}|^{2} + |d_{0}^{\frac{1}{2}} b^{\frac{p-1}{2}} a^{m+p-1}|^{2} \\ &\leq \sum_{k=1}^{p-1} ||d_{0}^{\frac{1}{2}} b^{\frac{k}{2}} a^{m+k-1}|^{2} \cdot I_{A} + ||d_{0}^{\frac{1}{2}} b^{\frac{p-1}{2}} a^{m+p-1}|^{2} \cdot I_{A} \\ &= ||d_{0}|| [||b||||a||^{2m}(\frac{1-(||b||||a||^{2})^{p-1}}{1-||b||||a||^{2})^{p-1}} \cdot]I_{A} + ||d_{0}|||b||^{p-1} \cdot ||a||^{2(m+p-1)} \cdot I_{A} \\ &= ||d_{0}|| [||b||||a||^{2m}(\frac{(||b||||a||^{2})^{p-1}}{1-||b||||a||^{2})^{p-1}} \cdot]I_{A} + ||d_{0}|||b||^{p-1} \cdot ||a||^{2(m+p-1)} \to 0_{A}, \end{split}$$

with the condition $||b||||a||^2 < 1$ and at $m \to +\infty$.

AIMS Mathematics

It implies that $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence. By completeness of X that exists $x \in X$ such that $x_n \to x$ as $n \to +\infty$.

Since *T* is continuous and the lim is unique it follows $x_{n+1} = Tx_n \rightarrow Tx$ as $n \rightarrow +\infty$ such that $x = \lim x_{n+1} = \lim Tx_n = Tx$, so, Tx = x is a fixed point for T.

Now, we replace the assumption of continuoity of T in the above theorem by another condition.

Theorem 2.6. Let (X, A, d_A) be a complete C^* -algebra- valued b-metric space, with $b \ge I_A$. Let $T : X \to X$ be generalized Lipschitz condition as in (2.5) and the following conditions are satisfies: (i) T is α_A -admissible.

(*ii*) There exists $x_0 \in X$ such that $\alpha_A(x_0, Tx_0) \geq I_A$.

(iii) If $\{x_n\}_{n=0}^{\infty}$ is a sequence in X such that $\alpha_A(x_n, x_{n+1} \ge I_A \text{ for all } n \in \mathbb{N} \text{ and } x_n \to x \in X, \text{ as } n \to +\infty,$ then $\alpha_A(x_n, x) \ge I_A$ for all $n \in \mathbb{N}$. Then T has a fixed point in X.

Proof: From theorem 2.5, we Know that $\{x_n\}_{n=0}^{\infty}$ is a Couchy sequence in (X, A, d_A) , then there exists $x \in X$ such that $x_n \to x$ as $n \to +\infty$.

On the other hand from equation (3.1) and by hypothesis (iii), we have $d_A(x_n, x) \ge I_A$, for all $n \in \mathbb{N}$, since *T* is generalized Lipschitz Contraction using 2.2 we get

$$d_A(x, Tx) \leq b[d_A(x, x_{n+1}) + d_A(x_{n+1}, Tx) \\ = b[d_A(x, x_{n+1}) + d_A(Tx_n, Tx) \\ \leq b[d_A(x, x_{n+1}) + a^*(d(x_n, x)a] \\ \to 0_A \text{ as } n \to +\infty.$$

$$d_A(x, Tx) = 0_A \Rightarrow Tx = x.$$

To prove the uniqueness of the fixed point of generalized Lipschitz mapping we have to consider the following property.

(H): For all $x, y \in X$, there exists $z \in X$ such that $d_A(x, z) \ge I_A$ and $d_A(y, z) \ge I_A$.

Theorem 2.7. Adding condition (H) to the hypothesis of theorem (2.5) we obtain the uniqueness of the fixed point of T.

Proof: Suppose that x and y are two fixed points of T from (H), there exists $z \in X$ such that

$$\alpha_A(x,z) \ge I_A \quad and \quad \alpha_A(y,z) \ge I_A.$$
 (2.3)

Since T is α_A -admissible, from (2.2) we have

$$\alpha_A(x, T^n z)) \ge I_A \text{ and } \alpha_A(y, T^n z)) \ge I_A.$$
(2.4)

Since T is generalized Lipschitz contraction, so by using (2.4), we have

$$d_A(x, T^n z) = d_A(Tx, T(T^{n-1}z))$$

$$\leq a^* d_A(x, T^{n-1}z)a$$

$$\leq (a^*)^n d_A(x,z)a \text{ for all } n \in \mathbb{N}$$

$$||d_A(x,T^nz)|| \leq ||a||^{2n} ||d_A(x,z)||.$$

Since $||b||||a||^2 < 1$, ||a|| < 1, we have $||a||^{2n} \to 0_A$ as $n \to +\infty$ and $d_A(x, T^n z) \to 0_A$, $T^n z = x$ as $n \to +\infty$.

Similarly we get $T^n z = y$ as $n \to +\infty$, there for by uniqueness of the limit, we obtain x = y. This complete the proof.

3. Common fixed point theorems

Now, we give a common fixed point theorems for two mappings satisfy a common α_A -admissible.

Definition 3.1. *let* $(T, S) : X \to X$ *be a continuous self mappings on* X*.* $\alpha_A : X \times X \to A^+$ *.* (T, S) *are said to be common* α_A *-admissible if for any* $x_0 \in X$ *,*

$$\alpha_A(x_0, y) \ge I_A \Rightarrow \alpha_A(Tx_0, Sy) \ge I_A \Rightarrow \alpha_A(T^2x_0, S^2y) \ge I_A.$$

Theorem 3.2. Let (X, A, d_A) be complete C^* -algebra- valued b-metric space and $T, S : X \to X$, such that

$$\alpha_A(x, y)d_A(Tx, Sy) \le a^* d_A(x, y)a, \tag{3.1}$$

and ||a|| < 1, $||b|| \cdot ||a||^2 < 1$ and the following conditions are satisfies: (i) (T, S) are common α_A -admissible. (ii) The exists $x_0 \in X$ such that

$$\alpha_A(x_0, y) \ge I_A \Rightarrow \alpha_A(Tx_0, Sy) \ge I_A$$

(iii) *T* and *S* are continuous and have a common fixed point in X.

Proof: Let $x_0 \in X$ and construct a sequence $\{x_n\} \subseteq X$ such that $Tx_{2n} = x_{2n+1}$, $Sx_{2n+1} = x_{2n+2}$ form (3.1), we get

$$\alpha_A(x_0, x_1) = \alpha_A(Tx_0, Sx_1) \ge I_A$$

$$\Rightarrow \alpha_A(T^2x_0, S^2x_1) \ge I_A$$

$$\Rightarrow \alpha_A(x_2, x_3) \ge I_A,$$

by induction, we have $\alpha_A(x_{2n}, x_{2n+1}) \ge I_A$, for all $n \in \mathbb{N}$.

$$d_A(x_{2n+1}, x_{2n+2}) = d_A(Tx_{2n}, Sx_{2n+1})$$

$$\leq \alpha_A(x_{2n}, x_{2n+1})d_A(Tx_{2n}, Sx_{2n+1})$$

$$\leq a^*d_A(x_{2n}, x_{2n+1})a,$$

by induction, we obtain

$$d_A(x_{2n+1}, x_{2n+2}) \le (a^*)^{2n+1} d_A(x_0, x_1) a^{2n+1}$$

AIMS Mathematics

Similarly,

$$d_A(x_{2n}, x_{2n+1}) \leq (a^*)^{2n} d_A(x_0, x_1) a^{2n}.$$

Now, we can obtain for any $n \in \mathbb{N}$

$$d_A(x_n, x_{n+1}) \le (a^*)^n d_A(x_0, x_1) a^n$$

Then for $p \in \mathbb{N}$, $p \ge 1$, $m \ge 1$, and applying the triangle inequality, we have

$$\begin{aligned} d_A(x_m, x_{m+p}) &\leq b[d_A(x_m, x_{m+1}) + b^2 d_A(x_{m+1}, x_{m+2}) + \dots \\ &+ b^{p-2} d_A(x_{m+p-2}, x_{m+p-1}) + b^{p-1} d_A(x_{m+p-1}, x_{m+p}) \\ &\leq \sum_{k=1}^{p-1} b^k((a^*)^{m+k-1} d_0 a^{m+k-1}) + b^{p-1}(a^*)^{m+p-1} d_0 a^{m+p-1}, \end{aligned}$$

by similar calculation as theorem (2.5), we get

$$d_A(x_m, x_{m+p}) \le ||d_0||^{\lceil} ||b||||a||^{2m} (\frac{1 - (||b||||a||^2)^{p-1}}{1 - ||b||||a||^2}) I_A + ||d_0|||b||^{p-1} ||a||^{2(m+p-1)} I_A \to 0_A,$$

as $n \to +\infty$, where I_A is the unitary in A, $d_0 := d_A(x_0, x_1)$, $b \in (A^+)'$. So, $\{x_n\}$ is a Cauchy sequence in X.

The completion of (X, A, d_A) implies that there exists $x \in X$ such that $\lim_{n \to \infty} x_n = x$ Now, we using triangle inequality and (3.1), we set

$$\begin{aligned} d_A(x, S x) &\leq b[d_A(x, x_{2n+1}) + d_A(x_{2n+1}, S x)] \\ &\leq b[d_A(x, x_{2n+1}) + d_A(T x_{2n}, S x)] \\ ∧ & \alpha_A(x_{2n}, x) \geq I_A, we get \\ d_A(x, S x) &\leq b[d_A(x, x_{2n+1}) + a^* d_A(x_{2n}, x)a] \\ &\|d_A(x, S x)\| &\leq \|b\| \| |d_A(x, x_{2n+1})\| + \|b\| \| |a\|^2 \| d_A(x_{2n}, x)\| \\ &\|d_A(x, S x)\| &\leq \|d_A(x, x_{2n+1})\| \| \|b\| \| \|a\|^2). \end{aligned}$$

Since ||a|| < 1, we have a contradiction $\Rightarrow d_A(x, Sx) = 0_A \Rightarrow Sx = x$, similarly, we get Tx = x, so, *S* and *T* have a common fixed point.

In the following, we will show that the uniquely of common fixed point in *X*, for that assume that is another fixed point $y \in X$ such that Ty = y = y.

Since x satisfy property H, and (T, S) are α_A -admissible, we have

$$d_A(x, S^n z) = d_A(Tx, S^n z)$$

$$\leq a^* d_A(Tx, S^{n-1} z) a$$

$$\cdot$$

$$\cdot$$

$$\leq (a^*)^n d_A(x, z) a^n$$

AIMS Mathematics

$$||d_A(x, S^n z)|| \le ||a||^{2n} ||d_A(x, z)|| \to 0 \text{ as } n \to +\infty.$$

So, $d_A(x, S^n z) = 0_A$ this implies that $S^n z = x$.

Similarly, we get $S^n z = y$ Thus x is a unique common fixed point.

Theorem 3.3. Let (X, A, d_A) be a complete C^* -algebra- valued b-metric space, suppose that two mappings $T, S : X \to X$, satisfy

$$\alpha(x, y)d_A(Tx, Ty) \le a^* d_A(Sx, Sy)a \text{ for any } x, y \in X,$$
(3.2)

where $a \in A$, with $||b||||a||^2 < 1$ and ||a|| < 1.

If $R(T) \subseteq R(S)$ and R(S) is complete in X, T and S are weakly compatible, such that the following holds (i) (T, S) are common α_A -admissible.

(*ii*) There is $x_0 \in X$ such that $\alpha_A(x_0, y) \geq I_A \Rightarrow \alpha_A(Tx_0, Sy) \geq I_A$.

(iii) T and S are continuous.

(iv) X has a property (H), they T and S have a unique common fixed point in X.

Proof: Let $x_0 \in X$, choose $x_1 \in X$, such that $Sx_1 = Sx_0$, which can be done since $R(T) \subseteq R(S)$. Let $x_0 \in X$ such that $Sx_2 = Tx_1$.

Repeating the process, we have a sequence $\{S x_n\}_{n=1}^{\infty}$ in X satisfying $S x_n = T x_{n-1}$. Then, since (T, S) are α_A -admissible, we get

$$\begin{array}{rcl} \alpha_A(S\,x_1,S\,x_2) &=& \alpha_A(T\,x_0,T\,x_1) \geq I_A \\ \Rightarrow & \alpha_A(T^2x_0,T^2x_1) \geq I_A \\ \Rightarrow & \alpha_A(S\,x_2,S\,x_3) \geq I_A \\ & \cdot \\ & \cdot \\ & \cdot \\ & \vdots \\ & \Rightarrow & \alpha_A(S\,x_n,S\,x_{n+1}) \geq I_A. \end{array}$$

Now,

$$d_{A}(S x_{n}, S x_{n+1}) = d_{A}(T x_{n-1}, T x_{n})$$

$$\leq a^{*} d_{A}(S x_{n-1}, S x_{n})a$$

$$\cdot$$

$$\cdot$$

$$\leq (a^{*})^{n} d_{A}(S x_{0}, S x_{1})a^{n}.$$

For $m \ge 1$, $p \ge 1$.

$$d_A(S x_m, S x_{m+p}) \leq bd_A(S x_m, S x_{m+1}) + b^2 d_A(S x_{m+1}, S x_{m+2}) + \dots + b^{p-1} d_A(S x_{m+p-2}, S x_{m+p+1}) + b^{p-1} d_A(S x_{m+p-1}, S x_{m+p})$$

AIMS Mathematics

$$\leq \sum_{k=1}^{p-1} b^k (a^*)^{m+k-1} d_0(a)^{m+k-1} + \dots + b^{p-1} (a^*)^{m+p-1} d_0(a)^{m+p-1}.$$

Using similar calculation as in theorem 2.5, we get

$$\begin{aligned} d_A(S \, x_m, S \, x_{m+p}) &\leq & ||d_0|| \frac{[||b||||a||^{2m} (||b||||a||^2)^{p-1} - 1]}{||b||||a||^2 - 1} \ I_A \\ &+ & ||d_0||||b||^{p-1} ||a||^{2(m+p+1)} I_A \to 0_A \ as \ m \to +\infty. \end{aligned}$$

Where $d_0 = d_A(S x_0, S x_1)$.

So, $\{S x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in R(S) and is complete in X, there exists $x \in X$ such that $\lim_{n \to +\infty} S x_n = S x$.

Also,

$$d_A(S x_n, T x) = d_A(T x_{n-1}, T x)$$

$$\leq a^* d_A(S x_n, x) a \to 0_A, \ as \ n \to +\infty.$$

So, $Sx_n \to Tx$ as $n \to +\infty$. Hens $Sx_n = Tx = Sx$, so x is coincidence common fixed point in X. Moreovere of y is another common fixed point such that Ty = Sy = y, so

$$d_A(Sx, Sy) = d_A(Tx, Ty) \le a^* d_A(Sx, Sy)a$$

$$||d_A(Sx, Sy)|| \le ||a||^2 ||d_A(Sx, Sy)||.$$

Since ||a|| < 1, so we yet $d_A(Sx, Sy) = 0_A \Rightarrow Sx = Sy$. So *S*, *T* have coincidence fixed point is unique Sx = Tx = x. Since $\{Sx_n\}_{n=1}^{\infty}$ is a sequence in X, convergent to *Sx* and *Sy* respectively, $Sx = \lim_{n \to +\infty} Sx_n = Tx$, since the lim is unique, so Tx = Sx = x, so *S* and *T* have a common fixed point in X.

Since X has a property (H) and (S, T) are α_A -admissible, we get

$$d_A(x, T^n x) = d_A(T x_1, T^n z) = d_A(T x, T^{n-1} z)$$

$$\leq a^* d_A(S x, S(T^{n-1} z_n))a$$

$$\vdots$$

$$\leq (a^*)^n d_A(S x, S z)a^n$$

$$||d_A(x, T^n z)|| \leq ||a||^{2n} ||d_A(S x, S z)|| \to 0 \text{ as } n \to +\infty.$$

$$\Rightarrow d_A(x, T^n z) = 0_A \Rightarrow T^n z = x.$$

Similarly $T^n z = y$, so x = y and this complete the proof.

AIMS Mathematics

4. Application

 $\alpha_A($

We introduce a non-trivial example satisfy the theorem 2.5.

Example 4.1. Let X = [0, 1], $A = M_2(\mathbb{R})$, p > 1 and k > 0 is a constant, we define $d_A = X \times X \rightarrow A$ as $d_A(x, y) = \begin{pmatrix} |x - y|^p & 0\\ 0 & k|x - y|^p \end{pmatrix}$ for all $x, y \in X$. Then (X, A, d_A) is C*-algebra valued b-metric space. Define $T: X \to X$ as $Tx = x^2$, then

$$\begin{aligned} d_A(Tx,Ty) &= \begin{pmatrix} |x^2 - y^2|^p & 0\\ 0 & k|x^2 - y^2|^p \end{pmatrix} = \begin{pmatrix} |x - y|^p|x + y|^p & 0\\ 0 & k|x - y|^p|x + y|^p \end{pmatrix} \\ &\leq 2^p . I \begin{pmatrix} |x - y|^p & 0\\ 0 & k|x - y|^p \end{pmatrix} \\ Define, \, \alpha_A : X \times X \to A, \, by \, \alpha_A(x,y) = \begin{cases} \begin{pmatrix} x & 0\\ 0 & y \end{pmatrix} & \text{if } x = y = 1\\ 0 & \text{otherwise,} \end{cases} \\ it \, is \, clear \, that \, \alpha_A(x,y) = \begin{cases} I_{M_2(\mathbb{R})} & \text{if } x = y, \\ 0 & \text{otherwise,} \end{cases} \\ \alpha_A(Tx,Ty) = \begin{cases} \begin{pmatrix} x^2 & 0\\ 0 & y^2 \end{pmatrix} & \text{if } x = y = 1\\ 0 & \text{otherwise,} \end{cases} \end{aligned}$$

 $\alpha_A(x, y) = I_{M_2(\mathbb{R})} \Rightarrow \alpha_A(Tx, Ty) = I_{M_2(\mathbb{R})}$ So, $\alpha_A(x, y)d_A(Tx, Ty) \leq (\sqrt{2})^p d_A(x, y)(\sqrt{2})^p$. So, it is satisfy the conditions of theorem 2.5, and then *T* has a fixed point $0 \in X$.

As an application, we use the C^* -algebra-valued b-metric space to study the existence and uniqueness of the system of matrix equations in [4] by using theorem 2.5.

Example 4.2. Application: Suppose that $M_n(\mathbb{C})$ the set of all $m \times n$ matrices with complex entries. $M_n(\mathbb{C})$ is a C^* -algebra with the operator norm. Let $B_1, B_2,...,B_n \in M_n(\mathbb{C})$ are diagonal matrices which satisfy $\sum_{k=1}^{n} |B_k|^2 < 1.$

Let $A = (a_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{C})$ and $C = (c_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{C})^+$, where $M_n(\mathbb{C})^+$ denote the set of all positive definite matrices "hermitian and the eigenvalues are non-negative". Then the matrix equations

$$A - \sum_{k=1}^{n} B_k^* A B_k = C,$$
(4.1)

has a unique solution.

Proof: Set $\alpha = \sum_{k=1}^{n} |B_k|^2$, clear if $\alpha = 0$, then the equations has a unique solution in $M_n(\mathbb{C})$. Without loss of generality, suppose that $\alpha > 0$. For $A, D \in M_n(\mathbb{C})$ and $p \ge 1$, define $d_{M_n(\mathbb{C})}: M_n(\mathbb{C}) \times M_n(\mathbb{C}) \to M_n(\mathbb{C})^+$ as

 $d_{M_n(\mathbb{C})}(A, D) = diag(\lambda_1|a_{11} - d_{11}, ..., \lambda_n|a_{nn} - d_{nn}|^p)$, $\lambda_1, ..., \lambda_n > 0$, then $(M_n(\mathbb{C}), d_{M_n(\mathbb{C})})$ is a C*algebra valued b-metric space and is complete since the set $M_n(\mathbb{C})$ is complete (the proof is given in the example 1.7). Consider the map $T = (T_{ii}) : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ defined by

$$\begin{split} T_{ii}(a_{ij})_{1\leq i,j\leq n} &= \sum_{k=1}^{n} B_{k}^{*}(a_{ii})B_{k} + c_{ii}. \ Define \ \alpha_{M_{n}(\mathbb{C})} : M_{n}(\mathbb{C}) \times M_{n}(\mathbb{C}) \to M_{n}(\mathbb{C})^{+}, \\ \alpha_{M_{n}(\mathbb{C})}(A,B) &= I_{M_{n}(\mathbb{C})}, \ clear \ that \ T \ is \ \alpha_{M_{2}(\mathbb{C})} \ admissible. \ Then \end{split}$$

$$\begin{aligned} d_{M_n(\mathbb{C})}(TA, TD) &= diag(\lambda_1 | (\sum_{k=1}^n B_k^* a_{11} B_k + c_{11}) - (\sum_{k=1}^n B_k^* d_{11} B_k + c_{11}), ..., \lambda_n | (\sum_{k=1}^n B_k^* a_{nn} B_k \\ &+ c_{nn}) - (\sum_{k=1}^n B_k^* d_{nn} B_k + c_{nn}) |^p) \\ &= diag(\lambda_1 | (\sum_{k=1}^n B_k^* (a_{11} - d_{11}) B_k |^p, ..., \lambda_n | (\sum_{k=1}^n B_k^* (a_{nn} - d_{nn}) B_k |^p) \\ &= diag(\lambda_1 (\sum_{k=1}^n |B_k|^2)^p |a_{11} - d_{11} |^p, ..., \lambda_n (\sum_{k=1}^n |B_k|^2)^p |a_{nn} - d_{nn} |^p) \\ &= diag(\sum_{k=1}^n |B_k|^2)^p (\lambda_1 |a_{11} - d_{11} |^p, ..., \lambda_n |a_{nn} - d_{nn} |^p) = \alpha^p d_{M_n(\mathbb{C})}(A, D). \end{aligned}$$

Therefore, T satisfy the condition of theorem 2.5 and has a fixed point. So the matrix equations (4.1) has a solution on $M_n(\mathbb{C})$. Moreover $\alpha_{M_n(\mathbb{C})}$ is satisfy the condition (H), so the system of matrix equations have a unique hermitian matrix solution A.

5. Conclusions

In this paper, we define a new version of α_A -admissible in the case of self map $T : A \to A$ and α_A -admissible in two self mappings (T, S). We prove the principal Banach fixed point theorem and two common fixed point theorems in the C^* -algebra- valued b-metric space, which generalized the given results in [18,19,26,27]. Moreover, we introduced an application to show that the useful of C^* -algebra-valued b-metric space to study the existence and unique of system matrix equations.

Acknowledgments

The first author thanks the south valley university, Egypt, for partially supporting the study. The second author thanks the Jazan university, Saudi Arabia, for supporting the study.

Conflict of interest

The authors of this current research declaring that this study has been done without any competing intersts.

References

- 1. G. Abd-Elhamed, Fixed point results for (β, α) -implicit contractions in two generalized b-metric spaces, *J. Nonlinear Sci. Appl.*, **14** (2021), 39–47.
- 2. A. Abdou, Y. Cho, R. Saadati, Distance type and common fixed point theorems in Menger probabilistic metric type spaces, *Appl. Math. Comput.*, **265** (2015), 1145–1154.
- 3. H. H. Alsulami, R. P. Agarwal, E. Karapinar, F. Khojaseh, A short note on C*-valued contraction mappings, J. Inequalities Appl., **2016** (2016), 50.
- 4. C. M. R. Andre, C. B. R. Martine, A fixed point theorem in partially ordered sets and some applications to matrix equations, *Proc. Arn. Math. Soc*, **132** (2003), 1435–1443.
- 5. S. Antal, U. C. Gairola, Generalized Suzuki type *α Z*-contraction in b-metric space, *J. Nonlinear Sci. Appl.*, **13** (2020), 212–222.
- F. Borceux, J. Rosicky, G. Van den Bossche, Quantales and C*-algebras, J. London Math. Soc., 40 (1989), 398–404.
- 7. R. Chaharpashlou, D. O'Regan, C. Park, R. Saadati, *C**-Algebra valued fuzzy normed spaces with application of Hyers–Ulam stability of a random integral equation, *Adv. Diff. Equ-Ny*, **326** (2020).
- 8. S. Chandok, D. Kumar, C. Park, C*-Algebra-valued partial metric spaces and fixed point theorems, *Proc. Indian Acad. Sci. (Math. Sci.)*, **129** (2019), 37.
- 9. l. Ciric, V. Paraneh, N. Hussain, Fixed point results for weakly α -Admissible pairs, *Filomat*, **30** (2016), 3697–3713.
- 10. M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-Simulation functions, *Iranian J. Math. Sci. Inf.*, **11** (2016), 123.
- 11. I. Gelfand, On the embedding of normed rings into the ring of operators in Hilbert space, *Math. Sb.*, **12** (1943), 197–213.
- 12. N. Hussain, A. M. Al-Solami, M. A. Kutbi, Fixed points *α*-Admissible mapping in cone b-metric space over Bansch algebra, *J. Math. Anal.*, (2017), 89–97.
- 13. Z. Kadelburg, S. Radenovic, Fixed point result in C*-algebra-valued metric space are direct consequences of their standard metric counterparts, *Fixed Point Theory Appl.*, **2016** (2016), 53.
- C. Kongban, Po. Kumam, Quadruple random common fixed point results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras, *J. Nonlinear Sci. Appl.*, **11** (2018), 131– 149.
- 15. D. Kruml, J. W. Pelletier, P. Resende, J. Rosicky, On quantales and spectra of *C**-algebras, *Appl. Categ. Structures*, **11** (2003), 543–560.
- D. Kruml, P. Resende, On quantales that classify C*-algebras, Cah. Topol. Geom. Differ. Categ., 45 (2004), 287–296.
- 17. P. Lohawech, A. Kaewcharoen, Fixed point theorems for generalized JS-quasi contractions in complete partial b-metric spaces, *J. Nonlinear Sci. Appl.*, **12** (2019), 728–739.
- 18. Z. Ma, L. Jiang, H. Sun, *C**-algebra-valued metric space and related fixed point theorems, *Fixed Point Theory Appl.*, **2014** (2014), 206.

10205

- 19. Z. Ma, L. Jiang, C*-algebra-valued b-metric space and related fixed point theorems, *Fixed Point Theory Appl.*, **2015** (2015), 222.
- 20. S. K. Malhotra, J. B. Sharma, S. Shukla, Fixed point of α admissible mapping in cone metric spaces with Banach algebra, *Int. J. Anal. Appl.*, **9** (2015), 9–18.
- L. Mishra, V. Dewangan, V. Mishra, S. Karateke, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, *J. Math. Comput. Sci.*, 22 (2021), 97–109.
- 22. N. Mlaiki, M. Asim, M. Imdad, C*-algebra valued partial metric spaces and fixed point results with an application, *Mathematics*, **8** (2020),1381.
- 23. C. J. Mulvey, Suppl. Rend. Circ. Mat. Palermo Ser., 12 (1986), 99-104.
- 24. G. J. Murphy, C*-algebras and operator theory, Academic press, Inc, Boston, MA, 1990.
- 25. R. Mustafa, S. Omran, Q. N. Nguyen, Fixed point theory using ψ contractive mapping in algebra valued b-metric space, *Mathematics*, **9** (2021), 92.
- 26. O. Ozer, S. Omran, Common fixed point in C*-algebra-b-valued metric space, AIP conference proceeding, **1773** (2015), 05000.
- 27. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha \psi$ -contractive type mappings, *Nonlinear Anal.*, **75** (2012), 2154–2165.
- 28. B. Samet, The class of (α, ψ) -type contractions in b-metric space and fixed point theorems, *Fixed Point Theory Appl.*, **2015** (2015), 92.
- 29. S. Sherman, Order in operator algebra, Amer. J. Math, 73 (1951), 227–232.
- 30. T, Suzuki, Fixed point theorems for single- and set-valued F-contractions in b-metric spaces, *J. Fixed Point Theory Appl.*, **20** (2018), 35.
- 31. T, Suzuki, Basic inequality on a b-metric space and its applications, *Suzuki J. Inequalities Appl.*, **2017** (2017), 256.
- J. Vujakovic, S. Mitrovic, Z. Mitrovic, S. Radenovic, On F-Contractions for Weak Admissible Mappings in Metric-Like Spaces, *Mathematics*, 8 (2020), 1629.
- 33. Xi. Wu, L. Zhao, Fixed point theorems for generalized $\alpha \psi$ type contractive mappings in b-metric spaces and applications, *J. Math. Computer Sci.*, **18** (2018), 49–62.
- 34. Q. Xin, L. Jiang, Z. Ma, Common fixed point theorems in C*-algebra-valued metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4617–4627.
- 35. H. Yan, B. Yi-duo, S. Chang-ji, Some new theorems of α -admissible mappings on c-distance in cone metric spaces over Banach algebras, *IOP Conf.*, **563** (2019), 052021.
- 36. L. Ye, C. Shen, Weakly (s, r)-contractive multi-valued operators on b-metric space, *J. Nonlinear Sci. Appl.*, **11** (2018), 358–367.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics