
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(9): 9397–9421.
DOI: 10.3934/math.2021546
Received: 01 March 2021
Accepted: 03 June 2021
Published: 23 June 2021

Research article

Generalizations of fractional Hermite-Hadamard-Mercer like inequalities
for convex functions

Miguel Vivas-Cortez1,*, Muhammad Aamir Ali2,*, Artion Kashuri3 and Hüseyin Budak4
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1. Introduction and Preliminaries

For a convex function f : I ⊆ R→ R on I with c, d ∈ I and c < d, the Hermite–Hadamard inequality
states that [1]:

f
(
c + d

2

)
≤

1
d − c

∫ d

c
f (t)dt ≤

f (c) + f (d)
2

. (1.1)

The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used
inequalities. The recently published papers [2–17] are focused on extending and generalizing the
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convexity, Hermite-Hadamard inequality, and other inequalities for convex functions.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and

significance throughout the previous five decades or so, due generally to its demonstrated applications
in numerous seemingly numerous and great fields of science and engineering [18–20].

Now, we recall the definitions of Riemann-Liouville (RL) and generalized Riemann–Liouville
(GRL) fractional integrals given by Sarikaya and Ertuğral.

Definition 1.1 ( [18–20]). Let f ∈ L1[c, d]. The Riemann–Liouville (RL) fractional integrals RLIνc+ f
and RLIνd− f of order ν > 0 with c ≥ 0 are respectively defined by

RLIνc+ f (x) =
1

Γ(ν)

∫ x

c
(x − t)ν−1 f (t)dt, c < x, (1.2)

and
RLIνd− f (x) =

1
Γ(ν)

∫ d

x
(t − x)ν−1 f (t)dt, x < d, (1.3)

with RLI0
c+ f (x) = RLI0

d− f (x) = f (x).

Definition 1.2 ( [21]). Assume that the function ~ : [0,+∞) → [0,+∞) satisfies the following
condition: ∫ 1

0

~ (t)
t

dt < +∞.

Then, the left sided and right sided generalized Riemann–Liouville (GRL) fractional integrals, denoted
by GRL

~Ic+ and GRL
~Id−, are defined as follows:

GRL
~Ic+ f (x) =

∫ x

c

~ (x − t)
x − t

f (t)dt, c < x, (1.4)

GRL
~Id− f (x) =

∫ d

x

~ (t − x)
t − x

f (t)dt, x < d. (1.5)

Remark 1.1. From the Definition 1.1 one can obtain some known definitions of fractional calculus as
special cases. That is,

• If ~(t) = tν
Γ(ν) , then Definition 1.2 reduces to Definition 1.1.

• If ~(t) = t
ν
k

kΓk(ν) , then the GRL fractional integrals reduce to k–RL fractional integrals [22].

• If ~(t) = t
ν

exp
(
−1−ν

ν
t
)
, then the GRL fractional integrals reduce to the fractional integrals with

exponential kernel [23].
• If ~ (t) = t (y − t)ν−1, then the GRL fractional integrals reduce to the conformable fractional

integrals [24].

With a huge application of RL fractional integration and Hermite–Hadamard inequality, many
researchers in the field of fractional calculus extended their research to the Hermite–Hadamard
inequality, including RL fractional integration rather than ordinary integration; for example see
[25–32].

On the one hand, it is well known that RL and GRL fractional integrals have the same importance
in theory of integral inequalities, and the GRL fractional integrals are more convenient for calculation.
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Therefore it is necessary to study the Hermite-Hadamard integral inequalities by using the GRL
fractional integrals while by using the RL fractional integrals. Fortunately, studying the Hermite-
Hadamard integral inequalities via the GRL fractional integrations can unify the research of ordinary
and fractional integrations. So it is necessary and meaningful to study Hermite-Hadamard integral
inequalities via the GRL fractional integrations (see for details [21, 33–36]).

In this paper, we consider the integral inequality of HHM type that depends on the Hermite-
Hadamard and Jensen–Mercer inequalities. For this reason, we recall the Jensen–Mercer inequality:
Let 0 < x1 ≤ x2 ≤ · · · ≤ xn and α = (α1, α2, . . . , αn) nonnegative weights such that

∑n
i=1 αi = 1. Then,

the Jensen inequality [37, 38] is as follows, for a convex function f on the interval [c, d], we have

f
( n∑

i=1

αixi

)
≤

n∑
i=1

αi f (xi), (1.6)

for all xi ∈ [c, d] and αi ∈ [0, 1], i = 1, 2, ..., n.

Theorem 1.1 ( [11, 38]). If f is convex function on [c, d], then

f

c + d −
n∑

i=1

αixi

 ≤ f (c) + f (d) −
n∑

i=1

αi f (xi), (1.7)

for each xi ∈ [c, d] and αi ∈ [0, 1], i = 1, 2, ..., n with
∑n

i=1 αi = 1.

For some results related to Jensen-Mercer inequality, see [39–41].
Based on the above observations and discussion, the primary purpose of this article is to establish

several inequalities of HHM type for convex functions by using the GRL fractional integrals.

2. Main Results

Throughout this attempt, we consider the following notations:

Λ (t) B
∫ t

0

~ ((y − x) u)
u

du < +∞ and ∆ (t) B
∫ t

0

~
((

y−x
2

)
u
)

u
du < +∞.

Theorem 2.1. For a convex function f : [c, d]→ R, we have the following inequalities for GRL:

f
(
c + d −

x + y
2

)
≤ f (c) + f (d) −

1
2Λ (1)

[
GRL
~Ix+ f (y) + GRL

~Iy− f (x)
]
≤ f (c) + f (d) − f

( x + y
2

)
, (2.1)

and

f
(
c + d −

x + y
2

)
≤

1
2Λ (1)

[
GRL
~I(c+d−y)+ f (c + d − x) + GRL

~I(c+d−x)− f (c + d − y)
]

≤
f (c + d − x) + f (c + d − y)

2
≤ f (c) + f (d) −

f (x) + f (y)
2

. (2.2)
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Proof. From Jensen-Mercer inequality, we have for u, v ∈ [c, d]:

f
(
c + d −

u + v
2

)
≤ f (c) + f (d) −

f (u) + f (v)
2

. (2.3)

Then, for u = tx + (1 − t) y and v = ty + (1 − t) x, it follows that

f
(
c + d −

x + y
2

)
≤ f (c) + f (d) −

f (tx + (1 − t) y) + f (ty + (1 − t) x)
2

, (2.4)

for each x, y ∈ [c, d] and t ∈ [0, 1]. By multiplying both sides of (2.4) by ~((y−x)t)
t and integrating the

result with respect to t over [0, 1], we can obtain

f
(
c + d −

x + y
2

)
Λ (1) ≤

[
f (c) + f (d)

]
Λ (1)

−
1
2

[∫ 1

0

~ ((y − x) t)
t

[
f (tx + (1 − t) y) + f (ty + (1 − t) x)

]
dt

]
=

[
f (c) + f (d)

] ∫ 1

0
Λ (1) −

1
2

[∫ 1

0

~ ((y − x) t)
t

f (tx + (1 − t) y) dt

+

∫ 1

0

~ ((y − x) t)
t

f (ty + (1 − t) x) dt
]

=
[
f (c) + f (d)

]
Λ (1) −

1
2

[∫ y

x

~ (y − w)
y − w

f (w) dw +

∫ y

x

~ (w − x)
w − x

f (w) dw
]

=
[
f (c) + f (d)

]
Λ (1) −

1
2

[
GRL
~Ix+ f (w) + GRL

~Iy− f (w)
]
.

This gives the first inequality in (2.1). To prove the second inequality in (2.1), first we have by the
convexity of f :

f
(u + v

2

)
≤

f (u) + f (v)
2

. (2.5)

By changing the variables u = tx + (1 − t) y and v = ty + (1 − t) x in (2.5), we have

f
( x + y

2

)
≤

f (tx + (1 − t) y) + f (ty + (1 − t) x)
2

, t ∈ [0, 1]. (2.6)

Multiplying both sides of (2.6) by ~((y−x)t)
t and integrating the result with respect to t over [0, 1], we get

f
( x + y

2

)
Λ (1) ≤

1
2

[∫ 1

0

~ ((y − x) t)
t

f (tx + (1 − t) y) dt +

∫ 1

0

~ ((y − x) t)
t

f (ty + (1 − t) x) dt
]

=
1
2

[∫ y

x

~ (y − w)
y − w

f (w) +

∫ y

x

~ (w − x)
w − x

f (w) dw
]

=
1
2

[
GRL
~Ix+ f (y) + GRL

~Iy− f (x)
]
,

which implies that

− f
( x + y

2

)
≥ −

1
2Λ (1)

[
GRL
~Ix+ f (y) + GRL

~Iy− f (x)
]
. (2.7)
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By adding f (c) + f (d) on both sides of (2.7), we can obtain the second inequality in (2.1).
Now we give the proof of inequalities (2.2). Since f is convex function, then for all u, v ∈ [c, d], we

have

f
(
c + d −

u + v
2

)
= f

(
c + d − u + c + d − v

2

)
≤

1
2

[
f (c + d − u) + f (c + d − v)

]
. (2.8)

Then, for c + d − u = t (c + d − x) + (1 − t) (c + d − y) and c + d − v = t (c + d − y) + (1 − t) (c + d − x),
it follows that

f
(
c + d −

u + v
2

)
≤

1
2

[
f (t (c + d − x) + (1 − t) (c + d − y))

+ f (t (c + d − y) + (1 − t) (c + d − x))
]
. (2.9)

for each x, y ∈ [c, d] and t ∈ [0, 1]. Now, by multiplying both sides of (2.9) by ~((y−x)t)
t and integrating

the obtaining inequality with respect to t over [0, 1], we obtain

f
(
c + d −

u + v
2

)
Λ (1) ≤

1
2

[∫ 1

0

~ ((y − x) t)
t

f (t (c + d − x) + (1 − t) (c + d − y)) dt

+

∫ 1

0

~ ((y − x) t)
t

f (t (c + d − y) + (1 − t) (c + d − x)) dt
]

=
1
2

[∫ c+d−x

c+d−y

~ (w − (c + d − y))
w − (c + d − y)

f (w) dw +

∫ c+d−x

c+d−y

~ ((c + d − x) − w)
(c + d − x) − w

f (w) dw
]

=
1
2

[
GRL
~I(c+d−y)+ f (c + d − x) + GRL

~I(c+d−x)− f (c + d − y)
]
,

and this completes the proof of the first inequality in (2.2). To prove the second inequality in (2.2), first
we use the convexity of f to get

f (t (c + d − x) + (1 − t) (c + d − y)) ≤ t f (c + d − x) + (1 − t) f (c + d − y) , (2.10)
f (t (c + d − y) + (1 − t) (c + d − x)) ≤ (1 − t) f (c + d − x) + t f (c + d − y) . (2.11)

Adding (2.10) and (2.11), we get

f (t (c + d − x) + (1 − t) (c + d − y)) + f (t (c + d − y) + (1 − t) (c + d − x))

≤ f (c + d − x) + f (c + d − y) ≤ 2
[
f (c) + f (d)

]
−

[
f (x) + f (y)

]
. (2.12)

Multiplying both sides of (2.12) by ~((y−x)t)
t and integrating the result with respect to t over [0, 1], we

obtain∫ 1

0

~ ((y − x) t)
t

f (t (c + d − x) + (1 − t) (c + d − y)) dt

+

∫ 1

0

~ ((y − x) t)
t

f (t (c + d − y) + (1 − t) (c + d − x)) dt

≤ Λ (1) f (c + d − x) + Λ (1) f (c + d − y)
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≤ 2Λ (1)
[
f (c) + f (d)

]
− Λ (1)

[
f (x) + f (y)

]
.

By using the change of variables of integration and then by multiplying the result by 1
2Λ(1) , we can

obtain the second and third inequalities in (2.2). This completes the proof of Theorem 2.1. �

Remark 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then,

• If ~ (t) = t, then Theorem 2.1 reduces to [42, Theorem 2.1].
• If ~ (t) = tν

Γ(ν) , then Theorem 2.1 reduces to [43, Theorem 2].
• If we set ~ (t) = t, x = c and y = d in (2.2), then (2.2) becomes (1.1).
• If ~ (t) = t

ν
k

kΓk(a) in Theorem 2.1 (Eq. (2.2)), we get

f
(
c + d −

x + y
2

)
≤

Γk (ν + k)

2 (y − x)
ν
k

[
RL
~I(c+d−y)+,k f (c + d − x) + RL

~I(c+d−x)−,k f (c + d − y)
]

≤
f (c + d − x) + f (c + d − y)

2
≤ f (c) + f (d) −

f (x) + f (y)
2

.

• If we set ~ (t) = tν
Γ(ν) , x = c and y = d in (2.2), then we have

f
(
c + d

2

)
≤

Γ (ν + 1)
2 (b − a)ν

[
RLIνc+ f (d) + RLIνd− f (c)

]
≤

f (c) + f (d)
2

,

which is derived in [25].
• If we set ~ (t) = t

ν
k

kΓk(ν) , x = c and y = d in (2.2), then we have

f
(
c + d

2

)
≤

Γk (ν + k)

2 (d − c)
ν
k

[
RLIνc+,k f (d) + RLIνd−,k f (c)

]
≤

f (c) + f (d)
2

,

which is derived in [44].
• If x = c and y = d, then inequalities (2.1) reduces to the following inequalities:

f
(
c + d

2

)
≤ f (c) + f (d) −

1
2Λ (1)

[
GRL
~Ic+ f (y) + GRL

~Id− f (x)
]
≤ f (c) + f (d) − f

(
c + d

2

)
.

• If x = c and y = d, then inequalities (2.2) reduces to [21, Theorem 5].

Corollary 2.1. For a convex function f : [c, d] → R, we have the following inequalities of HHM type
for conformable fractional integrals:

f
(
c + d −

x + y
2

)
≤ f (c) + f (d) −

ν

2 (yν − xν)

∫ y

x
f (t)dνt ≤ f (c) + f (d) − f

( x + y
2

)
, (2.13)

and

f
(
c + d −

x + y
2

)
≤

ν

(yν − xν)

∫ c+d−x

c+d−y
f (t)dνt ≤

f (c + d − x) + f (c + d − y)
2

≤ f (c) + f (d) −
f (x) + f (y)

2
. (2.14)
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Proof. By setting ~ (t) = t (y − t)ν−1 in Theorem 2.1, we can directly obtain the proof. �

Remark 2.2. If we set x = c and y = d in (2.14), then we have the well-known conformable fractional
HH integral inequality:

f
(
c + d

2

)
≤

ν

dν − cν

∫ d

c
f (t) dνt ≤

f (c) + f (d)
2

,

which is derived by Adil Khan et al. in [45].

Corollary 2.2. For a convex function f : [c, d] → R, we have the following inequalities of HHM type
for fractional integrals with exponential kernel:

f
(
c + d −

x + y
2

)
≤ f (c) + f (d) −

(ν − 1)

2
[

exp
(
−1−ν

ν
(y − x)

)
− 1

] [
expIνx+ f (y) + expIνy− f (x)

]
≤ f (c) + f (d) − f

( x + y
2

)
, (2.15)

and

f
(
c + d −

x + y
2

)
≤

(ν − 1)

2
[

exp
(
−1−ν

ν
(y − x)

)
− 1

] [
expIν(c+d−y)+ f (c + d − x) + expIν(c+d−x)− f (c + d − y)

]
≤

f (c + d − x) + f (c + d − y)
2

≤ f (c) + f (d) −
f (x) + f (y)

2
. (2.16)

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Theorem 2.1, we can easily obtain the proof of Corollary
2.2. �

Remark 2.3. If we set x = c and y = d in (2.16), then we have the HH inequalities for fractional
integrals with exponential kernel:

f
(
c + d

2

)
≤

(ν − 1)

2
[

exp
(
−1−ν

ν
(d − c)

)
− 1

] [expIνc+ f (d) + expIνd− f (c)
]
≤

f (c) + f (d)
2

,

which is derived by Ahmad et al. in [46].

Theorem 2.2. For a convex function f : [c, d]→ R, we have the following inequalities for GRL:

f
(
c + d −

x + y
2

)
≤

1
2∆ (1)

[
GRL
~I(c+d− x+y

2 )− f (c + d − y) + GRL
~I(c+d− x+y

2 )+ f (c + d − x)
]

≤ f (c) + f (d) −
f (x) + f (y)

2
. (2.17)

Proof. From the convexity of f , we have

f
(
c + d −

u + v
2

)
= f

(
c + d − u + c + d − v

2

)
≤

1
2

f (c + d − u) + f (c + d − v) . (2.18)
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By setting u = t
2 x + 2−t

2 y, v = 2−t
2 x + t

2y, it follows that

f
(
c + d −

x + y
2

)
≤

1
2

[
f
(
c + d −

(
t
2

x +
2 − t

2
y
))

+ f
(
c + d −

(
2 − t

2
x +

t
2

y
))]

, (2.19)

for all x, y ∈ [c, d] and t ∈ [0, 1]. Multiplying both sides of (2.19) by ~((
y−x

2 )t)
t and integrating its result

with respect to t over [0, 1], we get

f
(
c + d −

x + y
2

)
∆ (1) ≤

1
2

∫ 1

0

~
((

y−x
2

)
t
)

t
f
(
c + d −

(
t
2

x +
2 − t

2
y
))

dt

+

∫ 1

0

~
((

y−x
2

)
t
)

t
f
(
c + d −

(
2 − t

2
x +

t
2

y
))

dt


=

1
2

∫ c+d− x+y
2

c+d−y

~ (w − (c + d − y))
w − (c + d − y)

f (w) dw +

∫ c+d−x

c+d− x+y
2

~ ((c + d − x) − w)
(c + d − x) − w

f (w) dw


=

1
2

[
GRL
~I(c+d− x+y

2 )− f (c + d − y) + GRL
~I(c+d− x+y

2 )+ f (c + d − x)
]
.

Thus, the first inequality in (2.17) is proved. To prove the second inequality in (2.17), by using the
Jensen–Mercer inequality, we can deduce:

f
(
c + d −

(
t
2

x +
2 − t

2
y
))
≤ f (c) + f (d) −

[
t
2

f (x) +
2 − t

2
f (y)

]
(2.20)

f
(
c + d −

(
2 − t

2
x +

t
2

y
))
≤ f (c) + f (d) −

[
2 − t

2
f (x) +

t
2

f (y)
]
. (2.21)

By adding (2.20) and (2.21), we obtain

f
(
c + d −

(
t
2

x +
2 − t

2
y
))

+ f
(
c + d −

(
2 − t

2
x +

t
2

y
))
≤ 2

[
f (c) + f (d)

]
− f (x) + f (y) . (2.22)

Multiplying both sides of inequality (2.22) by ~((
y−x

2 )t)
t and integrating the result with respect to t over

[0, 1], we get

∫ 1

0

~
((

y−x
2

)
t
)

t
f
(
c + d −

(
t
2

x +
2 − t

2
y
))

dt +

∫ 1

0

~
((

y−x
2

)
t
)

t
f
(
c + d −

(
2 − t

2
x +

t
2

y
))

dt

≤ 2∆ (1)
[
f (c) + f (d)

]
− ∆ (1)

[
f (x) + f (y)

]
.

By using change of variables of integration and multiplying the result by 1
2∆(1) , we can easily obtain

second inequality in (2.17). �

Remark 2.4. Assume that the assumptions of Theorem 2.2 are satisfied.

• If ~ (t) = t, then inequalities (2.17) becomes inequalities [42, Theorem 2.1].
• If we put ~ (t) = t, x = c and y = d in Theorem 2.2, then inequalities (2.17) becomes inequalities

(1.1).
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• If ~ (t) = tν
Γ(ν) , then Theorem 2.2 reduces to [43, Theorem 3].

• If we put ~ (t) = tν
Γ(ν) , x = c and y = d in Theorem 2.2, then Theorem 2.2 reduces to [26, Theorem

4].
• If ~ (t) = t

ν
k

kΓk(ν) in Theorem 2.2, we get

f
(
c + d −

x + y
2

)
≤

2
ν
k−1Γk (ν + k)

(y − x)
ν
k

[
RL
~I(c+d− x+y

2 )−,k f (c + d − y) + RL
~I(c+d− x+y

2 )+,k f (c + d − x)
]

≤ f (c) + f (d) −
f (x) + f (y)

2
.

• If we put ~ (t) = t
ν
k

kΓk(ν) , x = c and y = d in Theorem 2.2, then Theorem 2.2 reduces to [44, Theorem
1.1].
• If x = c and y = d, then Theorem 2.2 becomes

f
(
c + d

2

)
≤

1
2∆ (1)

[
GRL
~I( c+d

2 )− f (c) + GRL
~I( c+d

2 )+ f (d)
]
≤

f (c) + f (d)
2

.

Corollary 2.3. For a convex function f : [c, d] → R, we have the following inequalities of HHM type
for conformable fractional integrals:

f
(
c + d −

x + y
2

)
≤

ν[
yν −

(
x+y
2

)ν ] ∫ c+d−x

c+d−y
f (t)dνt ≤ f (c) + f (d) −

f (x) + f (y)
2

. (2.23)

Proof. By setting ~ (t) = t (y − t)ν−1 in Theorem 2.2, then we have proof of Corollary 2.3. �

Remark 2.5. If we set x = c and y = d in (2.23), then we get

f
(
c + d

2

)
≤

ν[
dν −

(
c+d

2

)ν ] ∫ d

c
f (t)dνt ≤

f (c) + f (d)
2

.

Corollary 2.4. For a convex function f : [c, d] → R, we have the following inequalities of HHM type
for fractional integrals with exponential kernel:

f
(
c + d −

x + y
2

)
≤

(ν − 1)

2
[

exp
(
−1−ν

ν

(y−x)
2

)
− 1

][expIν(c+d− x+y
2 )− f (c + d − y)

+ expIν(c+d− x+y
2 )+

f (c + d − x)
]
≤ f (c) + f (d) −

f (x) + f (y)
2

. (2.24)

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Theorem 2.2, we get proof of Corollary 2.4. �

Remark 2.6. If we set x = c and y = d in (2.24), then we get

f
(
c + d

2

)
≤

(ν − 1)

2
[

exp
(
−1−ν

ν
(d−c)

2

)
− 1

] [
expIν( c+d

2 )− f (c) + expIν( c+d
2 )+

f (d)
]
≤

f (c) + f (d)
2

.
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3. Related equalities and inequalities

In view of the inequalities (2.1) and (2.17), we can generate some related results in this section.

Lemma 3.1. Let f : [c, d] → R be a differentiable function on (c, d) such that f ′ ∈ L [c, d]. Then, the
following equality holds for GRL:

f (c + d − y) + f (c + d − x)
2

−
1

2Λ (1)

[
GRL
~I(c+d−y)+ f (c + d − x) + GRL

~I(c+d−x)− f (c + d − y)
]

=
(y − x)
2Λ (1)

∫ 1

0
[Λ (t) − Λ (1 − t)] f ′ (c + d − (tx + (1 − t) y)) dt

=
(y − x)
2Λ (1)

∫ 1

0
Λ (t)

[
f ′ (c + d − (tx + (1 − t) y)) − f ′ (c + d − (ty + (1 − t)x))

]
dt. (3.1)

Proof. By the help of the right hand side of (3.1), we have

(y − x)
2Λ (1)

∫ 1

0
Λ (t)

[
f ′ (c + d − (tx + (1 − t) y)) − f ′ (c + d − (ty + (1 − t)x))

]
dt

=
(y − x)
2Λ (1)

[∫ 1

0
Λ (t) f ′ (c + d − (tx + (1 − t) y)) dt −

∫ 1

0
Λ (t) f ′ (c + d − (ty + (1 − t)x)) dt

]
=

(y − x)
2Λ (1)

[S 1 − S 2] . (3.2)

By applying integration by parts, one can obtain

S 2 =

∫ 1

0
Λ (t) f ′ (c + d − (ty + (1 − t)x)) dt

= −Λ (1)
f (c + d − y)

y − x
+

1
y − x

∫ 1

0

~ ((y − x) t)
t

f (c + d − (ty + (1 − t)x))

= −Λ (1)
f (c + d − y)

y − x
+

1
y − x

= −Λ (1)
f (c + d − y)

y − x
+

1
y − x

[
GRL
~I(c+d−y)+ f (c + d − x)

]
.

Similarly, one can obtain

S 1 =

∫ 1

0
Λ (t) f (c + d − (tx + (1 − t) y)) dt

= Λ (1)
f (c + d − x)

y − x
−

1
y − x

[
GRL
~I(c+d−x)− f (c + d − y)

]
.

By making use of S 1 and S 2 in (3.2), we get the identity (3.1). �

Remark 3.1. Let the assumptions of Lemma 3.1 be satisfied.

• If ~ (t) = t, then Lemma 3.1 reduces to [43, Corollary 1].
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• If ~ (t) = tν
Γ(ν) , then Lemma 3.1 reduces to [43, Lemma 1].

• If ~ (t) = t
ν
k

kΓk(ν) in Lemma 3.1 , we get

f (c + d − x) + f (c + d − y)
2

−
Γk (ν + k)

2 (y − x)
ν
k

[
RL
~I(c+d−y)+,k f (c + d − x) + RL

~I(c+d−x)−,k f (c + d − y)
]

=
y − x

2

∫ 1

0

[
t
ν
k − (1 − t)

ν
k
]

f ′ (c + d − (tx + (1 − t) y)) dt. (3.3)

• If x = c and y = d, then Lemma 3.1 reduces to [47, Lemma 2.1].

Corollary 3.1. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the
conformable fractional integrals:

f (c + d − y) + f (c + d − x)
2

−
ν

yν − xν

∫ c+d−x

c+d−y
f (t)dνt

=
(y − x)
2Λ1 (1)

∫ 1

0
[Λ1 (t) − Λ1 (1 − t)] f ′ (c + d − (tx + (1 − t) y)) dt

=
(y − x)
2Λ1 (1)

∫ 1

0
Λ1 (t)

[
f ′ (c + d − (tx + (1 − t) y)) − f ′ (c + d − (ty + (1 − t)x))

]
dt, (3.4)

where
Λ1(t) =

yν − (tx + (1 − t)y)ν

ν
.

Proof. By setting ~ (t) = t (y − t)ν−1 in Lemma 3.1, then we have proof of Corollary 3.1. �

Remark 3.2. By setting x = c and y = d in (3.4), we get

f (c) + f (d)
2

−
ν

dν − cν

∫ d

c
f (t)dνt =

(d − c)
2Λ2 (1)

∫ 1

0
[Λ2 (t) − Λ2 (1 − t)] f ′ (td + (1 − t) c) dt

=
(d − c)
2Λ2 (1)

∫ 1

0
Λ2 (t)

[
f ′ (td + (1 − t) c) − f ′ (tc + (1 − t)d)

]
dt,

where
Λ2(t) =

yν − (tc + (1 − t)d)ν

ν
.

Corollary 3.2. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the
fractional integrals with exponential kernel:

f (c + d − y) + f (c + d − x)
2

−
(ν − 1)

2
[

exp
(
−1−ν

ν
(y − x)

)
− 1

]
×

[
expIν(c+d−y)+ f (c + d − x) + expIν(c+d−x)− f (c + d − y)

]
=

(y − x)
2Λ3 (1)

∫ 1

0
[Λ3 (t) − Λ3 (1 − t)] f ′ (c + d − (tx + (1 − t) y)) dt
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=
(y − x)
2Λ3 (1)

∫ 1

0
Λ3 (t)

[
f ′ (c + d − (tx + (1 − t) y)) − f ′ (c + d − (ty + (1 − t)x))

]
dt, (3.5)

where

Λ3(t) =
exp

(
−1−ν

ν
(y − x)t

)
− 1

ν − 1
.

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Lemma 3.1, we get proof of Corollary 3.2. �

Remark 3.3. If we set x = c and y = d in (3.5), we get

f (c) + f (d)
2

−
(ν − 1)

2
[

exp
(
−1−ν

ν
(d − c)

)
− 1

] [expIνc+ f (d) + expIνd− f (c)
]

=
(d − c)
2Λ4 (1)

∫ 1

0
[Λ4 (t) − Λ4 (1 − t)] f ′ (td + (1 − t) c) dt

=
(d − c)
2Λ4 (1)

∫ 1

0
Λ4 (t)

[
f ′ (td + (1 − t) c) − f ′ (tc + (1 − t)d)

]
dt,

where

Λ4(t) =
exp

(
−1−ν

ν
(d − c)t

)
− 1

ν − 1
.

Lemma 3.2. Let f : [c, d] → R be a differentiable function on (c, d) such that f ′ ∈ L [c, d]. Then, the
following equality holds for GRL:

1
2∆ (1)

[
GRL
~I(c+d− x+y

2 )+ f (c + d − x) + GRL
~I(c+d− x+y

2 )− f (c + d − y)
]
− f

(
c + d −

x + y
2

)
=

(y − x)
4∆ (1)

∫ 1

0
∆ (t)

[
f ′

(
c + d −

(
2 − t

2
x +

t
2

y
))
− f ′

(
c + d −

(
t
2

x +
2 − t

2
y
))]

dt. (3.6)

Proof. The proof of Lemma 3.2 is similar to Lemma 3.1, so we omit it. �

Remark 3.4. Let the assumptions of Lemma 3.2 be satisfied.

• If ~ (t) = tν
Γ(ν) , then Lemma 3.2 reduces to [43, Lemma 2].

• If ~ (t) = t
ν
k

kΓk(ν) in Lemma 3.2, we get

2
ν
k−1Γk (ν + k)

(y − x)
ν
k

[
RL
~I(c+d− x+y

2 )−,k f (c + d − y) + RL
~I(c+d− x+y

2 )+,k f (c + d − x)
]

− f
(
c + d −

x + y
2

)
=

y − x
4

∫ 1

0
t
ν
k

[
f ′

(
c + d −

(
2 − t

2
x +

t
2

y
))
− f ′

(
c + d −

(
t
2

x +
2 − t

2
y
))]

dt. (3.7)

• If x = c and y = d, then Lemma 3.2 becomes
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1
2∆ (1)

[
GRL
~I( c+d

2 )− f (c) + GRL
~I( c+d

2 )+ f (d)
]
− f

(
c + d

2

)
=

d − c
4∆ (1)

∫ 1

0
∆ (t)

[
f ′

(
t
2

c +
2 − t

2
d
)
− f ′

(
2 − t

2
c +

t
2

d
)]

dt.

Corollary 3.3. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the
conformable fractional integrals:

ν[
yν −

(
x+y
2

)ν ] ∫ c+d−x

c+d−y
f (t)dνt =

(y − x)
4∆1 (1)

∫ 1

0
∆1 (t)

[
f ′

(
c + d −

(
2 − t

2
x +

t
2

y
))

− f ′
(
c + d −

(
t
2

x +
2 − t

2
y
))]

dt, (3.8)

where

∆1(t) =
yν −

(
y −

(
y−x

2

)
t
)ν

ν
.

Proof. By setting ~ (t) = t (y − t)ν−1 in Lemma 3.2, we have proof of Corollary 3.3. �

Remark 3.5. If we set x = c and y = d in (3.8), we get

ν[
dν −

(
d+c

2

)ν ] ∫ d

c
f (t)dνt =

(d − c)
4∆2 (1)

∫ 1

0
∆2 (t)

[
f ′

(
2 − t

2
d +

t
2

c
)
− f ′

(
t
2

d +
2 − t

2
c
)]

dt,

where

∆2(t) =
dν −

(
d −

(
d−c

2

)
t
)ν

ν
.

Corollary 3.4. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the
fractional integrals with exponential kernel:

(ν − 1)

2
[

exp
(
−1−ν

ν

(y−x)
2

)
− 1

][expIν(c+d− x+y
2 )+

f (c + d − x)

+ expIν(c+d− x+y
2 )− f (c + d − y)

]
− f

(
c + d −

x + y
2

)
=

(y − x)
4∆3 (1)

∫ 1

0
∆3 (t)

[
f ′

(
c + d −

(
2 − t

2
x +

t
2

y
))
− f ′

(
c + d −

(
t
2

x +
2 − t

2
y
))]

dt, (3.9)

where

∆3(t) =
exp

(
−1−ν

ν

(y−x)t
2

)
− 1

ν − 1
.

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Lemma 3.2, we get proof of Corollary 3.4. �
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Remark 3.6. If we put x = c and y = d in (3.9), we get

(ν − 1)

2
[

exp
(
−1−ν

ν
(d−c)

2

)
− 1

] [
expIν( c+d

2 )+
f (d) + expIν( c+d

2 )− f (c)
]
− f

(
c + d

2

)

=
(d − c)
4∆4 (1)

∫ 1

0
∆4 (t)

[
f ′

(
2 − t

2
d +

t
2

c
)
− f ′

(
t
2

d +
2 − t

2
c
)]

dt,

where

∆4(t) =
exp

(
−1−ν

ν
(d−c)t

2

)
− 1

ν − 1
.

Theorem 3.1. Let f : [c, d]→ R be a differentiable function on (c, d) such that | f ′| is convex on [c, d].
Then, the following inequality holds for GRL:

∣∣∣∣GRL
~F (c, d; x, y)

∣∣∣∣ ≤ (y − x)
2Λ (1)

[[
| f ′ (c)| + | f ′ (d)|

] ∫ 1

0
|Λ (t) − Λ (1 − t)| dt

−
[
| f ′ (x)| + | f ′ (y)|

] ∫ 1

0
t |Λ (t) − Λ (1 − t)| dt

]
, (3.10)

where∣∣∣∣GRL
~F (c, d; x, y)

∣∣∣∣ B ∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)
2

−
1

2Λ (1)

[
GRL
~I(c+d−y)+ f (c + d − x)

+ GRL
~I(c+d−x)− f (c + d − y)

]∣∣∣∣∣∣.
Proof. In view of Lemma 3.1, we have∣∣∣∣GRL

~F (c, d; x, y)
∣∣∣∣ ≤ (y − x)

2Λ (1)

∫ 1

0
|Λ (t) − Λ (1 − t)| | f ′ (c + d − (tx + (1 − t) y))| dt.

Then, by using the Jensen–Mercer inequality, we obtain∣∣∣∣GRL
~F (c, d; x, y)

∣∣∣∣ ≤ (y − x)
2Λ (1)

∫ 1

0
|Λ (t) − Λ (1 − t)|

[
| f ′ (c)| + | f ′ (d)| − t | f ′ (x)| − (1 − t) | f ′ (y)|

]
dt

=
(y − x)
2Λ (1)

[∫ 1

0
|Λ (t) − Λ (1 − t)|

[
| f ′ (c)| + | f ′ (d)|

]
dt

− | f ′ (x)|
∫ 1

0
t |Λ (t) − Λ (1 − t)| dt − | f ′ (y)|

∫ 1

0
(1 − t) |Λ (t) − Λ (1 − t)| dt

]
=

(y − x)
2Λ (1)

[[
| f ′ (c)| + | f ′ (d)|

] ∫ 1

0
|Λ (t) − Λ (1 − t)| dt

−
[
| f ′ (x)| + | f ′ (y)|

] ∫ 1

0
t |Λ (t) − Λ (1 − t)| dt

]
,

which completes the proof of Theorem 3.1. �
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Remark 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then,

• If ~ (t) = tν
Γ(ν) , then Theorem 3.1 reduces to [43, Theorem 4].

• If ~ (t) = t
ν
k

kΓk(ν) in Theorem 3.1, we get∣∣∣∣∣∣ f (c + d − x) + f (c + d − y)
2

−
Γk (ν + k)

2 (y − x)
ν
k

[
RL
~I(c+d−y)+,k f (c + d − x)

+ RL
~I(c+d−x)−,k f (c + d − y)

]∣∣∣∣∣∣ ≤ y − x
ν + k

(
k −

k
2
ν
k

) [
| f ′(c)| + | f ′(d)| −

| f ′(x)| + | f ′(y)|
2

]
. (3.11)

• If x = c and y = d, then Theorem 3.1 reduces to [21, Theorem 6].

Corollary 3.5. Let the assumptions of Theorem 3.1 be satisfied. Then, we have∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)
2

−
1

y − x

∫ c+d−x

c+d−y
f (x) dx

∣∣∣∣∣∣ ≤ 1
4

[
| f ′ (c)| + | f ′ (d)| −

| f ′ (x)| + | f ′ (y)|
2

]
.

(3.12)

Proof. If we set ~ (t) = t in Theorem 3.1, then we have proof of Corollary 3.5. �

Remark 3.8. If we use x = c and y = d in Corollary 3.5, then Corollary 3.5 reduces to [47, Theorem
2.2].

Corollary 3.6. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality
holds for conformable fractional integrals:∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)

2
−

ν

yν − xν

∫ c+d−x

c+d−y
f (t)dνt

∣∣∣∣∣∣ ≤ ν(y − x)
2 (yν − xν)

×

[[
| f ′ (c)| + | f ′ (d)|

] ∫ 1

0
|Λ1 (t) − Λ1 (1 − t)| dt −

[
| f ′ (x)| + | f ′ (y)|

] ∫ 1

0
t |Λ1 (t) − Λ1 (1 − t)| dt

]
.

(3.13)

Proof. By setting ~ (t) = t (y − t)ν−1 in Theorem 3.1, we have proof of Corollary 3.6. �

Remark 3.9. If we set x = c and y = d, then we have∣∣∣∣∣∣ f (c) + f (d)
2

−
ν

dν − cν

∫ d

c
f (t)dνt

∣∣∣∣∣∣ ≤ ν(d − c)
2 (dν − cν)

[[
| f ′ (c)| + | f ′ (d)|

] ∫ 1

0
t |Λ2 (t) − Λ2 (1 − t)| dt

]
.

Corollary 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality
for fractional integrals with exponential kernel:∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)

2
−

(ν − 1)

2
[

exp
(
−1−ν

ν
(y − x)

)
− 1

]
×

[
expIν(c+d−y)+ f (c + d − x) + expIν(c+d−x)− f (c + d − y)

] ∣∣∣∣∣∣
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≤
(ν − 1)(y − x)

2
[

exp
(
−1−ν

ν
(y − x)

)
− 1

] [[
| f ′ (c)| + | f ′ (d)|

] ∫ 1

0
|Λ3 (t) − Λ3 (1 − t)| dt

−
[
| f ′ (x)| + | f ′ (y)|

] ∫ 1

0
t |Λ3 (t) − Λ3 (1 − t)| dt

]
. (3.14)

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Theorem 3.1, we get proof of Corollary 3.7. �

Remark 3.10. If we set x = c and y = d in (3.14), then we have∣∣∣∣∣∣∣∣ f (c) + f (d)
2

−
(ν − 1)

2
[

exp
(
−1−ν

ν
(d − c)

)
− 1

] [expIνc+ f (d) + expIνd− f (c)
]∣∣∣∣∣∣∣∣

≤
(ν − 1)(d − c)

2
[

exp
(
−1−ν

ν
(d − c)

)
− 1

] [[
| f ′ (c)| + | f ′ (d)|

] ∫ 1

0
t |Λ4 (t) − Λ4 (1 − t)| dt

]
.

Theorem 3.2. Let f : [c, d]→ R be a differentiable function on (c, d) such that | f ′|q is convex on [c, d]
for some q > 1. Then, the following inequality holds for GRL:

∣∣∣∣GRL
~F (c, d; x, y)

∣∣∣∣ ≤ (y − x)
2Λ (1)

(∫ 1

0
|Λ (t) − Λ (1 − t)|p dt

) 1
p

×

(
| f ′ (c)|q + | f ′ (d)|q −

| f ′ (x)|q + | f ′ (y)|q

2

) 1
q

, (3.15)

where 1
p + 1

q = 1.

Proof. In view of Lemma 3.1 and the well–known Hölder’s inequality, one can obtain

∣∣∣∣GRL
~F (c, d; x, y)

∣∣∣∣ ≤ (y − x)
2Λ (1)

(∫ 1

0
|Λ (t) − Λ (1 − t)|p dt

) 1
p
(∫ 1

0
| f ′ (c + d − (tx + (1 − t) y))|q dt

) 1
q

.

We can apply the Jensen–Mercer inequality due to the convexity of | f ′|q, to get

∣∣∣∣GRL
~F (c, d; x, y)

∣∣∣∣ ≤ (y − x)
2Λ (1)

(∫ 1

0
|Λ (t) − Λ (1 − t)|p dt

) 1
p

×

(∫ 1

0

[
| f ′ (c)|q + | f ′ (d)|q −

(
t | f ′ (x)|q + (1 − t) | f ′ (y)|q

)]
dt

) 1
q

=
(y − x)
2Λ (1)

(∫ 1

0
|Λ (t) − Λ (1 − t)|p dt

) 1
p
(
| f ′ (c)|q + | f ′ (d)|q −

| f ′ (x)|q + | f ′ (y)|q

2

) 1
q

,

which completes the proof of Theorem 3.2. �

Corollary 3.8. Let the assumptions of Theorem 3.2 be satisfied, then we have
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9413∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)
2

−
1

y − x

∫ c+d−x

c+d−y
f (x) dx

∣∣∣∣∣∣ ≤ (y − x)

2 (1 + p)
1
p

×

(
| f ′ (c)|q + | f ′ (d)|q −

| f ′ (x)|q + | f ′ (y)|q

2

) 1
q

. (3.16)

Remark 3.11. If we use x = c and y = d in Corollary 3.8, then Corollary 3.8 reduces to [47, Theorem
2.3].

Proof. By using ~ (t) = t in inequality (3.15), we can obtain inequality (3.16). �

Corollary 3.9. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality
holds for RL:∣∣∣∣∣ f (c + d − y) + f (c + d − x)

2
−

Γ (ν + 1)
2 (y − x)ν

[
RLIν(c+d−y)+ f (c + d − x) + RLIν(c+d−x)− f (c + d − y)

]∣∣∣∣∣
≤

(y − x)

2 (νp + 1)
1
p

(
| f ′ (c)|q + | f ′ (d)|q −

| f ′ (x)|q + | f ′ (y)|q

2

) 1
q

. (3.17)

Proof. By setting ~ (t) = tν
Γ(ν) in inequality (3.15), we obtain inequality (3.17). �

Remark 3.12. If we set x = c and y = d in Corollary 3.9, then we have∣∣∣∣∣ f (c) + f (d)
2

−
Γ (ν + 1)
2 (d − c)ν

[
RLIνc+ f (d) + RLIνd− f (c)

]∣∣∣∣∣ ≤ (d − c)

2 (νp + 1)
1
p

(
| f ′ (c)|q + | f ′ (d)|q

2

) 1
q

.

Corollary 3.10. Let the assumptions of Theorem 3.2 be satisfied, then we have for k–RL:∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)
2

−
Γk (ν + k)

2 (y − x)
ν
k

[
RLIν(c+d−y)+,k f (c + d − x) + RLIν(c+d−x)−,k f (c + d − y)

]∣∣∣∣∣∣
≤

(y − x)

2
(
ν
k p + 1

) 1
p

(
| f ′ (c)|q + | f ′ (d)|q −

| f ′ (x)|q + | f ′ (y)|q

2

) 1
q

. (3.18)

Proof. By setting ~ (t) = t
ν
k

kΓk(ν) in inequality (3.15), we can obtain inequality (3.18). �

Remark 3.13. If we set x = c and y = d in Corollary 3.10, then we obtain∣∣∣∣∣∣ f (c) + f (d)
2

−
Γk (ν + k)

2 (d − c)
ν
k

[
RLIνc+,k f (d) + RLIνd−,k f (c)

]∣∣∣∣∣∣ ≤ (d − c)

2
(
ν
k p + 1

) 1
p

(
| f ′ (c)|q + | f ′ (d)|q

2

) 1
q

.

Corollary 3.11. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality
for the conformable fractional integrals:∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)

2
−

ν

yν − xν

∫ c+d−x

c+d−y
f (t)dνt

∣∣∣∣∣∣ ≤ ν(y − x)
2 (yν − xν)

×

(∫ 1

0
|Λ1 (t) − Λ1 (1 − t)|p dt

) 1
p
(
| f ′ (c)|q + | f ′ (d)|q −

| f ′ (x)|q + | f ′ (y)|q

2

) 1
q

. (3.19)
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Proof. By setting ~ (t) = t (y − t)ν−1 in Theorem 3.2, we get proof of Corollary 3.11. �

Remark 3.14. If we set x = c and y = d in (3.19), then we have∣∣∣∣∣∣ f (c) + f (d)
2

−
ν

dν − cν

∫ d

c
f (t)dνt

∣∣∣∣∣∣ ≤ ν(d − c)
2 (dν − cν)

(∫ 1

0
|Λ2 (t) − Λ2 (1 − t)|p dt

) 1
p

×

(
| f ′ (c)|q + | f ′ (d)|q

2

) 1
q

.

Corollary 3.12. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality
for the fractional integrals with exponential kernel:∣∣∣∣∣∣ f (c + d − y) + f (c + d − x)

2
−

(ν − 1)

2
[

exp
(
−1−ν

ν
(y − x)

)
− 1

]
×

[
expIν(c+d−y)+ f (c + d − x) + expIν(c+d−x)− f (c + d − y)

] ∣∣∣∣∣∣
≤

(ν − 1)(y − x)

2
[

exp
(
−1−ν

ν
(y − x)

)
− 1

] (∫ 1

0
|Λ3 (t) − Λ3 (1 − t)|p dt

) 1
p

×

(
| f ′ (c)|q + | f ′ (d)|q −

| f ′ (x)|q + | f ′ (y)|q

2

) 1
q

. (3.20)

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Theorem 3.2, we have proof of Corollary 3.12. �

Remark 3.15. If we set x = c and y = d in (3.20), then we have∣∣∣∣∣∣∣∣ f (c) + f (d)
2

−
(ν − 1)

2
[

exp
(
−1−ν

ν
(d − c)

)
− 1

] [expIνc+ f (d) + expIνd− f (c)
]∣∣∣∣∣∣∣∣

≤
(ν − 1)(d − c)

2
[

exp
(
−1−ν

ν
(d − c)

)
− 1

] (∫ 1

0
|Λ4 (t) − Λ4 (1 − t)|p dt

) 1
p
(
| f ′ (c)|q + | f ′ (d)|q

2

) 1
q

.

Theorem 3.3. Let f : [c, d] → R be a differentiable function on (c, d) such that | f | is convex on [c, d].
Then, the following inequality holds for GRL:∣∣∣∣GRL

~G(c, d; x, y)
∣∣∣∣ ≤ (y − x)

2∆ (1)

[
| f ′ (c)| + | f ′ (d)| −

| f ′ (x)| + | f ′ (y)|
2

] ∫ 1

0
|∆ (t)| dt, (3.21)

where∣∣∣∣GRL
~G(c, d; x, y)

∣∣∣∣ B ∣∣∣∣∣∣ 1
2∆ (1)

[
GRL
~I(c+d− x+y

2 )+ f (c + d − x)

+ GRL
~I(c+d− x+y

2 )− f (c + d − y)
]
− f

(
c + d −

x + y
2

)∣∣∣∣∣∣.
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Proof. From Lemma 3.2 , we have∣∣∣∣GRL
~G(c, d; x, y)

∣∣∣∣ ≤ (y − x)
4∆ (1)

[∫ 1

0
|∆ (t)|

∣∣∣∣∣∣ f ′
(
c + d −

(
2 − t

2
x +

t
2

y
))∣∣∣∣∣∣ dt

+

∫ 1

0
|∆ (t)|

∣∣∣∣∣∣ f ′
(
c + d −

(
t
2

x +
2 − t

2
y
))∣∣∣∣∣∣ dt

]
Then, by using the Jensen–Mercer inequality, we get∣∣∣∣GRL

~G(c, d; x, y)
∣∣∣∣ ≤ (y − x)

4∆ (1)

[∫ 1

0
|∆ (t)|

(
| f ′c| + | f ′ (d)| −

(
2 − t

2
| f ′ (x)| +

t
2
| f ′ (y)|

))
dt

+

∫ 1

0
|∆ (t)|

(
| f ′ (c)| + | f ′ (d)| −

(
t
2
| f ′ (x)| +

2 − t
2
| f ′ (y)|

))
dt

]
=

(y − x)
4∆ (1)

[∫ 1

0
|∆ (t)|

[
2 | f ′ (c)| + 2 | f ′ (d)| −

(
| f ′ (x)| + | f ′ (y)|

)]
dt

]
=

(y − x)
2∆ (1)

[
| f ′ (c)| + | f ′ (d)| −

| f ′ (x)| + | f ′ (y)|
2

] ∫ 1

0
|∆ (t)| dt,

which completes the proof of Theorem 3.3. �

Remark 3.16. Let the assumptions of Theorem 3.3 be satisfied. Then, the following special cases can
be considered.

• If ~ (t) = t, then Theorem 3.3 reduces to [43, Corollary 2].
• If ~ (t) = t, x = c and y = d, then Theorem 3.3 reduces to [48, Theorem 2.2].
• If ~ (t) = tν

Γ(ν) , then Theorem 3.3 reduces to [43, Theorem 5].
• If ~ (t) = tν

Γ(ν) , x = c and y = d, then Theorem 3.3 reduces to [26, Theorem 5] with q = 1.

• If ~ (t) = t
ν
k

kΓk(ν) in Theorem 3.3, we get∣∣∣∣∣∣2
ν
k−1Γk (ν + k)

(y − x)
ν
k

[
RL
~I(c+d− x+y

2 )−,k f (c + d − y) + RL
~I(c+d− x+y

2 )+,k f (c + d − x)
]

− f
(
c + d −

x + y
2

)∣∣∣∣∣∣ ≤ k(y − x)
2(ν + k)

[
| f ′(c)| + | f ′(d)| −

| f ′(x)| + | f ′(y)|
2

]
. (3.22)

• If we set ~ (t) = t
ν
k

kΓk(ν) , x = c and y = d in Theorem 3.3, then we have∣∣∣∣∣∣2
ν−k

k Γk(ν + k)
(d − c)

ν
k

[
RLIν( c+d

2 )+,k
f (d) + RLIν( c+d

2 )−,k f (c)
]
− f

(
c + d

2

)∣∣∣∣∣∣ ≤ k(d − c)
2(ν + k)

[
| f ′(c)| + | f ′(d)|

2

]
.

Corollary 3.13. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds
for the conformable fractional integrals:∣∣∣∣∣∣∣∣ ν[

yν −
(

x+y
2

)ν ] ∫ c+d−x

c+d−y
f (t)dνt

∣∣∣∣∣∣∣∣ ≤ ν(y − x)

2
[
yν −

(
x+y
2

)ν ]
×

[
| f ′ (c)| + | f ′ (d)| −

| f ′ (x)| + | f ′ (y)|
2

] ∫ 1

0
|∆1 (t)| dt. (3.23)
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Proof. By setting ~ (t) = t (y − t)ν−1 in Theorem 3.3, we can get proof of Corollary 3.13. �

Remark 3.17. If we set x = c and y = d in (3.23), then we have∣∣∣∣∣∣∣∣ ν[
dν −

(
c+d

2

)ν ] ∫ d

c
f (t)dνt

∣∣∣∣∣∣∣∣ ≤ ν(d − c)

2
[
dν −

(
c+d

2

)ν ] [
| f ′ (c)| + | f ′ (d)|

2

] ∫ 1

0
|∆2 (t)| dt.

Corollary 3.14. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds
for the fractional integrals with exponential kernel:∣∣∣∣∣∣ (ν − 1)

2
[

exp
(
−1−ν

ν

(y−x)
2

)
− 1

][[expIν(c+d− x+y
2 )+

f (c + d − x)

+ expIν(c+d− x+y
2 )− f (c + d − y)

]]
− f

(
c + d −

x + y
2

) ∣∣∣∣∣∣
≤

(ν − 1)(y − x)

2
[

exp
(
−1−ν

ν

(y−x)
2

)
− 1

] [
| f ′ (c)| + | f ′ (d)| −

| f ′ (x)| + | f ′ (y)|
2

] ∫ 1

0
|∆3 (t)| dt. (3.24)

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Theorem 3.3, we can obtain proof of Corollary 3.14. �

Remark 3.18. If we set x = c and y = d in (3.24), then we have∣∣∣∣∣∣ (ν − 1)

2
[

exp
(
−1−ν

ν
(d−c)

2

)
− 1

][ [expIν( c+d
2 )+

f (d) + expIν( c+d
2 )− f (c)

] ]
− f

(
c + d

2

) ∣∣∣∣∣∣
≤

(ν − 1)(d − c)

2
[

exp
(
−1−ν

ν
(d−c)

2

)
− 1

] [
| f ′ (c)| + | f ′ (d)|

2

] ∫ 1

0
|∆4 (t)| dt.

Theorem 3.4. Let f : [c, d]→ R be a differentiable function on (c, d) such that | f ′|q is convex on [c, d]
for some q > 1. Then, the following inequality holds for GRL:

∣∣∣∣GRL
~G(c, d; x, y)

∣∣∣∣ ≤ (y − x)
4∆ (1)

(∫ 1

0
|∆ (t)|p dt

) 1
p
(| f ′ (c)|q + | f ′ (d)|q −

3 | f ′ (x)|q + | f ′ (y)|q

4

) 1
q

+

(
| f ′ (c)|q + | f ′ (d)|q −

(
| f ′ (x)|q + 3 | f ′ (y)|q

4

)) 1
q
 , (3.25)

where 1
p + 1

q = 1.

Proof. From Lemma 3.2 and well-known Hölder’s inequality, we obtain

∣∣∣∣GRL
~G(c, d; x, y)

∣∣∣∣ ≤ (y − x)
4∆ (1)

(∫ 1

0
|∆ (t)|p dt

) 1
p
(∫ 1

0

∣∣∣∣∣∣ f ′
(
c + d −

(
2 − t

2
x +

t
2

y
))∣∣∣∣∣∣q dt

) 1
q

+

(∫ 1

0

∣∣∣∣∣∣ f ′
(
c + d −

(
t
2

x +
2 − t

2
y
))∣∣∣∣∣∣q dt

) 1
q
 .
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By applying the Jensen–Mercer inequality due to convexity of | f ′|q, we can obtain∣∣∣∣GRL
~G(c, d; x, y)

∣∣∣∣ ≤ (y − x)
4∆ (1)

(∫ 1

0
|∆ (t)|p dt

) 1
p
(∫ 1

0

[
| f ′ (c)|q + | f ′ (d)|q −

(
2 − t

2
| f ′ (x)|q +

t
2
| f ′ (y)|q

)]
dt

) 1
q

+

(∫ 1

0

[
| f ′ (c)|q + | f ′ (d)|q −

(
t
2
| f ′ (x)|q +

2 − t
2
| f ′ (y)|q

)]
dt

) 1
q


=
(y − x)
4∆ (1)

(∫ 1

0
|∆ (t)|p dt

) 1
p
(| f ′ (c)|q + | f ′ (d)|q −

3 | f ′ (x)|q + | f ′ (y)|q

4

) 1
q

+

(
| f ′ (c)|q + | f ′ (d)|q −

(
| f ′ (x)|q + 3 | f ′ (y)|q

4

)) 1
q
 ,

and this completes proof of the Theorem 3.4. �

Remark 3.19. Let the assumptions of Theorem 3.4 be satisfied. Then, the following special cases can
be considered.

• If ~ (t) = t, then Theorem 3.4 reduces to [43, Corollary 3].
• If ~ (t) = t, x = c and y = d, then Theorem 3.4 reduces to [48, Theorem 2.3].
• If ~ (t) = tν

Γ(ν) , then Theorem 3.4 reduces to [43, Theorem 6].
• If ~ (t) = tν

Γ(ν) , x = c and y = d, then Theorem 3.4 reduces to [26, Theorem 6].

• If ~ (t) = t
ν
k

kΓk(ν) in Theorem 3.4, we get∣∣∣∣∣∣2
ν
k−1Γk (ν + k)

(y − x)
ν
k

[
RL
~I(c+d− x+y

2 )−,k f (c + d − y) + RL
~I(c+d− x+y

2 )+,k f (c + d − x)
]

− f
(
c + d −

x + y
2

)∣∣∣∣∣∣ ≤ y − x
4

(
k

νp + k

) 1
p
[(
| f ′(c)|q + | f ′(d)|q −

3| f ′(x)|q + | f ′(y)|q

4

) 1
q

+

(
| f ′(c)|q + | f ′(d)|q −

| f ′(x)|q + 3| f ′(y)|q

4

) 1
q
]
. (3.26)

• If ~ (t) = t
ν
k

kΓk(ν) , x = c and y = d, then we have∣∣∣∣∣∣2
ν−k

k Γk(ν + k)
(d − c)

ν
k

[
RLIν( c+d

2 )+,k
f (d) + RLIν( c+d

2 )−,k f (c)
]
− f

(
c + d

2

)∣∣∣∣∣∣
≤

(d − c)
4

(
k

νp + k

) 1
p
[(
| f
′

(c)|q + 3| f
′

(d)|q

4

) 1
q

+

(
3| f

′

(c)|q + | f
′

(d)|q

4

) 1
q
]
.

Corollary 3.15. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds
for the conformable fractional integrals:∣∣∣∣∣∣∣∣ ν[

yν −
(

x+y
2

)ν ] ∫ c+d−x

c+d−y
f (t)dνt

∣∣∣∣∣∣∣∣ ≤ ν(y − x)

4
(
yν −

(
x+y
2

)ν) (∫ 1

0
|∆1 (t)|p dt

) 1
p
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×

(| f ′ (c)|q + | f ′ (d)|q −
3 | f ′ (x)|q + | f ′ (y)|q

4

) 1
q

+

(
| f ′ (c)|q + | f ′ (d)|q −

(
| f ′ (x)|q + 3 | f ′ (y)|q

4

)) 1
q
 . (3.27)

Proof. By setting ~ (t) = t (y − t)ν−1 in Theorem 3.4, we can obtain proof of Corollary 3.15. �

Remark 3.20. If we set x = c and y = d in (3.27), then we have∣∣∣∣∣∣∣∣ ν[
dν −

(
c+d

2

)ν ] ∫ d

c
f (t)dνt

∣∣∣∣∣∣∣∣ ≤ ν(d − c)

4
(
dν −

(
c+d

2

)ν) (∫ 1

0
|∆2 (t)|p dt

) 1
p
( | f ′ (c)|q + 3 | f ′ (d)|q

4

) 1
q

+

(
3 | f ′ (c)|q + | f ′ (d)|q

4

) 1
q
 .

Corollary 3.16. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds
for the fractional integrals with exponential kernel:∣∣∣∣∣∣ (ν − 1)

2
[

exp
(
−1−ν

ν

(y−x)
2

)
− 1

][[expIν(c+d− x+y
2 )+

f (c + d − x)

+ expIν(c+d− x+y
2 )− f (c + d − y)

]]
− f

(
c + d −

x + y
2

) ∣∣∣∣∣∣
≤

(ν − 1)(y − x)

4
[

exp
(
−1−ν

ν

(y−x)
2

)
− 1

] (∫ 1

0
|∆3 (t)|p dt

) 1
p
(| f ′ (c)|q + | f ′ (d)|q −

3 | f ′ (x)|q + | f ′ (y)|q

4

) 1
q

+

(
| f ′ (c)|q + | f ′ (d)|q −

(
| f ′ (x)|q + 3 | f ′ (y)|q

4

)) 1
q
 . (3.28)

Proof. By setting ~ (t) = t
ν

exp
(
−1−ν

ν
t
)

in Theorem 3.4, we can obtain proof of Corollary 3.16. �

Remark 3.21. If we set x = c and y = d in (3.28), then we have∣∣∣∣∣∣ (ν − 1)

2
[

exp
(
−1−ν

ν
(d−c)

2

)
− 1

][ [expIν( c+d
2 )+

f (d) + expIν( c+d
2 )− f (c)

] ]
− f

(
c + d

2

) ∣∣∣∣∣∣
≤

(ν − 1)(d − c)

4
[

exp
(
−1−ν

ν
(d−c)

2

)
− 1

] (∫ 1

0
|∆4 (t)|p dt

) 1
p
( | f ′ (c)|q + 3 | f ′ (d)|q

4

) 1
q

+

(
3 | f ′ (c)|q + | f ′ (d)|q

4

) 1
q
 .
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4. Conclusions

In this work inequalities of Hermite-Hadamard-Mercer type via generalized fractional integrals
are obtained. It is also proved that the results in this paper are generalization of the several existing
comparable results in literature. As future direction, one may finds some new interesting inequalities
through different types of convexities. Our results may stimulate further research in different areas of
pure and applied sciences.
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