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Abstract: In this paper, we study the transcendental entire solutions for the nonlinear differential-
difference equations of the forms:

f 2(z) + ω̃ f (z) f ′(z) + q(z)eQ(z) f (z + c) = u(z)ev(z),

and

f n(z) + ω f n−1(z) f ′(z) + q(z)eQ(z) f (z + c) = p1eλ1z + p2eλ2z, n ≥ 3,

where ω is a constant, ω̃, c, λ1, λ2, p1, p2 are non-zero constants, q,Q, u, v are polynomials such that
Q, v are not constants and q, u . 0. Our results are improvements and complements of some previous
results.
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1. Introduction

Let f (z) be a nonconstant function meromorphic on the complex plane C. We assume that the reader
is familiar with the fundamental results and standard notations of Nevanlinna theory (see [10, 12, 21]).
For simplicity, we denote by S (r, f ) any quantity satisfying S (r, f ) = o(T (r, f )) as r → ∞, outside of a
possible exceptional set of finite logarithmic measure.

Nevanlinna theory and its difference analogues have been used to study the growth, oscillation,
solvability and existence of entire or meromorphic solutions to differential equations, difference
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equations and differential-difference equations, see, e.g.,[1, 2, 4, 6, 12–16, 18–20].
In 1964, Hayman [10] considered the following non-linear differential equation

f n(z) + Qd(z, f ) = g(z), (1.1)

where Qd(z, f ) is a differential polynomial in f with degree d and obtained the following result which
is an extension of Tumura–Clunie theory.

Theorem A. Suppose that f (z) is a nonconstant meromorphic function, d ≤ n − 1, and f , g satisfy
N(r, f ) + N(r, 1/g) = S (r, f ) in (1.1). Then we have g(z) = ( f (z) + γ(z))n, where γ(z) is meromorphic
and a small function of f (z).

Since then, the non-linear differential equation (1.1) has been studied extensively over the years, see
[16, 19, 20] etc.

In 2006, Li and Yang [13] studied the particular case that g(z) has the form p1eα1z + p2eα2z in Eq
(1.1) and proved the following result.

Theorem B. Let n ≥ 4 be an integer and Qd(z, f ) denote an algebraic differential polynomial in f of
degree d ≤ n − 3. Let p1, p2 be two nonzero polynomials, α1 and α2 be two nonzero constants with
α1/α2 , rational. Then the differential equation

f n(z) + Qd(z, f ) = p1eα1z + p2eα2z (1.2)

has no transcendental entire solutions.

Moreover, Yang and Li [13] also studied the case when n = 3, and found the exact forms of solutions
to Eq (1.2) under some related conditions.

In 2014, Liao and Ye [14] investigated the structure of solutions to the following differential
equation

f n f ′ + Qd(z, f ) = u(z)ev(z) (1.3)

with non-zero rational function u and non-constant polynomial v and obtained the following result.

Theorem C. Suppose that f is a meromorphic solution of (1.3) which has finitely many poles. Then

Qd(z, f ) ≡ 0, f (z) = s(z)ev(z)/(n+1)

for n ≥ d + 1 and s is a rational function satisfying sn[(n + 1)s′ + v′s] = (n + 1)u.

In 2012, Wen et al. [18] classified the finite order entire solutions of the equation

f n(z) + q(z)eQ(z) f (z + c) = P(z), (1.4)

where q,Q, P are polynomials, n ≥ 2 is an integer, and c ∈ C \ {0}. In 2019, Chen et al. [2] derived
some conclusions when the term P(z) on the right-hand side of Eq (1.4) is replaced by p1eλz + p2e−λz,
where p1, p2, λ are non-zero constants.
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Based on the above results, one can see that there exists only one dominant term f n or f n f ′ on
the left-hand side of these equations. In 2020, Chen, Hu and Wang [4] investigated the following
non-linear differential-difference equation which has two dominated terms

f n(z) + ω f n−1(z) f ′(z) + q(z)eQ(z) f (z + c) = u(z)ev(z), (1.5)

where n is a positive integer, c , 0, ω are constants, q,Q, u, v are polynomials such that Q, v are not
constants and q, u . 0, and obtained the following result.

Theorem D. Let n be an integer satisfying n ≥ 3 for ω , 0 and n ≥ 2 for ω = 0. Suppose that f is
a non-vanishing transcendental entire solution of finite order of (1.5). Then every solution f satisfies
one of the following results:

(1) ρ( f ) < deg v = deg Q and f = Ce−z/ω, where C is a constant.
(2) ρ( f ) = deg Q ≥ deg v.

In the meantime, Chen et al. [4] proposed a conjecture that the conclusions of Theorem D are still
valid when n = 2 and ω , 0.

In this paper, we consider the above conjecture and obtain the following result, which is a
complement of Theorem D.

Theorem 1.1. Let c, ω̃ , 0 be constants, q,Q, u, v be polynomials such that Q, v are not constants and
q, u . 0. Suppose that f is a transcendental entire solution with finite order to

f 2(z) + ω̃ f (z) f ′(z) + q(z)eQ(z) f (z + c) = u(z)ev(z), (1.6)

satisfying λ( f ) < ρ( f ), then deg Q = deg v, and one of the following relations holds:

(1) σ( f ) < deg Q = deg v, and f = Ce−z/ω̃

(2) σ( f ) = deg Q = deg v.

The following two examples given by Chen et al. [4] can illustrate the Conclusions (1) and (2) of
Theorem 1.1, respectively.

Example 1.2. f0(z) = 2e−z is a transcendental entire solution to the following differential-difference
equation

f 2 + f f ′ + zez2+z+1 f (z + 1) = 2zez2
,

where ω̃ = 1 , 0, Q = z2 + z + 1, v = z2 and 0 = λ( f0) < σ( f0) = 1. Then we have σ( f0) = 1 <

2 = deg Q = deg v, and f0 = Ce−z/ω̃, where C = 2. This shows that the Conclusion (1) of Theorem 1.1
occurs.

Example 1.3. f1(z) = ez2
is a transcendental entire solution to the following differential-difference

equation

f 2 + f f ′ + ez2−2z−1 f (z + 1) = 2(z + 1)e2z2
,

where ω̃ = 1 , 0, Q = z2 − 2z − 1, v = 2z2 and 0 = λ( f1) < σ( f1) = 2. Then we have σ( f1) = 2 =

deg Q = deg v. This illustrates that the Conclusion (2) of Theorem 1.1 also exits.
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In [4], Chen, Hu and Wang also investigated the entire solutions with finite order to the following
differential-difference equation

f n(z) + ω f n−1(z) f ′(z) + q(z)eQ(z) f (z + c) = p1eλz + p2e−λz, (1.7)

where n is an integer, c, λ, p1, p2 are non-zero constants and ω is a constant, and q . 0, Q are
polynomials such that Q is not a constant. They obtained the following result.

Theorem E. If f is a transcendental entire solution with finite order to Eq. (1.7), then the following
conclusions hold:

(i) If n ≥ 4 for ω , 0 and n ≥ 3 for ω = 0, then every solution f satisfies ρ( f ) = deg Q = 1.
(ii) If n ≥ 1 and f is a solution to Eq.(1.7) which belongs to Γ0, then

f (z) = eλz/n+B, Q(z) = −
n + 1

n
λz + b

or

f (z) = e−λz/n+B, Q(z) =
n + 1

n
λz + b

where b, B ∈ C, and Γ0 = {eα(z) : α(z) is a non-constant polynomial}.

Given Theorem E, it is natural to ask: how about the solutions to the following more general form

f n(z) + ω f n−1(z) f ′(z) + q(z)eQ(z) f (z + c) = p1eλ1z + p2eλ2z, (1.8)

where n is a positive integer, ω is a constant and c, λ1, λ2, p1, p2 are non-zero constants, q,Q are
polynomials such that Q is not a constant and q . 0.

In this paper, we study this problem and derive the following result.

Theorem 1.4. If f is a transcendental entire solution with finite order to Eq (1.8), then the following
conclusions hold:

(1) If n ≥ 4 for ω , 0 and n ≥ 3 for ω = 0, then every solution f satisfies σ( f ) = deg Q = 1.
(2) If n ≥ 1 and f is a solution to Eq (1.8) with λ( f ) < σ( f ), then

f (z) =

(
p2n

n + ωλ2

) 1
n

e
λ2z

n , Q(z) =

(
λ1 −

λ2

n

)
z + b1,

or

f (z) =

(
p1n

n + ωλ1

) 1
n

e
λ1z

n , Q(z) =

(
λ2 −

λ1

n

)
z + b2,

where b1, b2 ∈ C satisfy p1 = q
(

p2n
n+ωλ2

) 1
n e

λ2c
n +b1 and p2 = q

(
p1n

n+ωλ1

) 1
n e

λ1c
n +b2 , respectively.

Remark 1. It is easy to see that Theorem 1.4 generalizes and improves the Theorem E of Chen et al.
[4]. In addition, we conjecture that the Conclusion (1) is still true for n = 2, and n = 3 when ω , 0 in
Eq (1.8).
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For the case when n = 3 and ω , 0 in Eq (1.8), we prove the following result under certain
assumption.

Theorem 1.5. Let ω, c, λ1, λ2, p1, p2 be non-zero constants, q,Q be polynomials such that Q is not a
constant and q . 0. If f is a transcendental entire solution with finite order to

f 3(z) + ω f 2(z) f ′(z) + q(z)eQ(z) f (z + c) = p1eλ1z + p2eλ2z, (1.9)

satisfying N1)(r, 1/ f ) < (κ + o(1))T (r, f ), where 0 ≤ κ < 1 and N1)(r, 1/ f ) denotes the counting
functions corresponding to simple zeros of f , then σ( f ) = deg Q = 1.

The two examples below exhibit the occurence of Theorem 1.5.

Example 1.6. [4] f2(z) = ez is a transcendental entire solution to the nonlinear differential-difference
equation

f 3 + f 2 f ′ +
1
2

e−4z f (z + log 2) = 2e3z + e−3z,

where ω = 1 , 0, Q = −4z, N1)(r, 1/ f2) = 0 from the fact that 0 is a Picard exceptional value of f2.
Thus, the conclusion σ( f2) = 1 = deg Q holds.

Example 1.7. f3(z) = e2z−ez is a transcendental entire solution to the nonlinear differential-difference
equation

f 3 − f 2 f ′ −
1
5

e3z f (z + log 5) = −e6z − 3e5z,

where ω = −1 , 0, Q = 3z, κ = 1/2 since N1)(r, 1/ f3) = N(r, 1/ f3) = r/π + o(r) and T (r, f3) =

2r/π + o(r) by using the following Lemma 2.5. Thus, the conclusion σ( f3) = 1 = deg Q holds.

2. Preliminary Lemmas

In order to prove our results, we need the following lemmas. Lemmas 2.1 and 2.2 are useful tools
to solve differential-difference equations.

Lemma 2.1 ([21]). Let f j(z) ( j = 1, . . . , n) (n ≥ 2) be meromorphic functions, and let
g j(z) ( j = 1, . . . , n) be entire functions satisfying

(i)
∑n

j=1 f j(z)eg j(z) ≡ 0;
(ii) when 1 ≤ j < k ≤ n, then g j(z) − gk(z) is not a constant;

(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, f j) = o{T (r, egh−gk)} (r → ∞, r < E),

where E ⊂ (1,∞) is of finite linear measure or logarithmic measure.

Then, f j(z) ≡ 0 ( j = 1, . . . , n).
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Lemma 2.2 ([21]). Let f j(z), j = 1, 2, 3 be meromorphic functions and f1(z) is not a constant. If

3∑
j=1

f j(z) ≡ 1,

and
3∑

j=1

N
(
r,

1
f j

)
+ 2

3∑
j=1

N(r, f j) < (λ + o(1))T (r), r ∈ I,

where λ < 1, T (r) = max1≤ j≤3{T (r, f j)} and I represents a set of r ∈ (0,∞) with infinite linear measure.
Then f2 ≡ 1 or f3 ≡ 1.

The difference analogues of the logarithmic derivative lemma (see [3, 7–9, 11]) are of great
importance in the study of complex difference equations. The following version is a particular case of
[11, Lemma 2.2].

Lemma 2.3 ([11]). Let f be a non-constant meromorphic function, let c, h be two complex numbers
such that c , h. If he hyper-order of T (r, f ) i.e. σ2( f ) < 1, then

m
(
r,

f (z + h)
f (z + c)

)
= S (r, f ),

for all r outside of a set of finite logarithmic measure.
The following lemma, which is a special case of [11, Theorem 3.1], gives a relationship for the

Nevanlinna characteristic of a meromorphic function with its shift.

Lemma 2.4 ([12]). Let f (z) be a meromorphic function with the hyper-order less that one, and c ∈
C \ {0}. Then we have

T (r, f (z + c)) = T (r, f (z)) + S (r, f ).

The following lemma gives the Nevanlinna characteristic function, proximity function and counting
function of a given exponential polynomial. For convenience of the readers, we give the definition of
an exponential polynomial with the following form:

f (z) = P1(z)eQ1(z) + · · · + Pk(z)eQk(z), (2.1)

where P j and Q j are polynomials in z for 1 ≤ j ≤ k. Denote q = max{deg Q j : Q j . 0}, and let
ω1, . . . , ωm be pairwise distinct leading coefficients of polynomials that attain the maximum degree q.
Thus f in (2.1) can be written in the normalized form

f (z) = H0(z) + H1(z)eω1zq
+ · · · + Hm(z)eωmzq

, (2.2)

where H j are either exponential polynomials of order < q or ordinary polynomials in z, and m ≤ k. In
addition, we denote the convex hull of a finite set W(⊂ C) by co(W), and the circumference of co(W)
by C(co(W)), refer to [17, 18] for more details.
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Lemma 2.5 ([17]). Let f (z) be given by (2.2), W = {ω1, . . . , ωm} and W0 = W ∪ {0}. Then

T (r, f ) = C(co(W0))
rq

2π
+ o(rq).

If H0(z) . 0, then

m
(
r,

1
f

)
= o(rq),

while if H0(z) ≡ 0, then

N
(
r,

1
f

)
= C(co(W))

rq

2π
+ o(rq).

The following lemma is a revised version of [12, Lemma 2.4.2].

Lemma 2.6. Let f (z) be a transcendental meromorphic solution to the equation:

f nP(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are polynomials in f and its derivatives with meromorhphic coefficients, say
{aλ|λ ∈ I}, n be a positive integer. If the total degree of Q(z, f ) as a polynomial in f and its derivatives
is at most n, then

m(r, P(z, f )) ≤
∑
λ∈I

m(r, aλ) + S (r, f ).

Lemma 2.7. (Hadamard factorization theorem [21, Theorem 2.7] or [5, Theorem 1.9]) Let f be a
meromorphic function of finite order σ( f ). Write

f (z) = ckzk + ck+1zk+1 + · · · (ck , 0)

near z = 0 and let {a1, a2, . . .} and {b1, b2, . . .} be the zeros and poles of f in C\{0}, respectively. Then

f (z) = zkeQ(z) P1(z)
P2(z)

,

where P1(z) and P2(z) are the canonical products of f formed with the non-null zeros and poles of f (z),
respectively, and Q(z) is a polynomial of degree ≤ σ( f ).

Remark 2. A well known fact about Lemma 2.7 asserts that λ( f ) = λ(zkP1) = σ(zkP1) ≤ σ( f ),
λ(1/ f ) = λ(P2) = σ(P2) ≤ σ( f ) if k ≥ 0; and λ( f ) = λ(P1) = σ(P1) ≤ σ( f ), λ(1/ f ) = λ(z−kP2) =

σ(z−kP2) ≤ σ( f ) if k < 0. So we have σ( f ) = σ(eQ) when max{λ( f ), λ(1/ f )} < σ( f ).

By combinig [21, Theorem1.42] and [21, Theorem1.44], we have the following lemma.

Lemma 2.8 ([21]). Let f (z) be a non-constant meromorphic function in the complex plane. If 0,∞
are Picard exceptional values of f (z), then f (z) = eh(z), where h(z) is a non-constant entire function.
Moreover, f (z) is of normal growth, and

(i) if h(z) is a polynomial of degree p, then σ( f ) = p;
(ii) if h(z) is a transcendental entire function, then σ( f ) = ∞.

The following lemma gives a relationship between the growth order of a meromorphic function with
its derivative.

Lemma 2.9 ([21]). Suppose that f (z) is meromorphic in the complex plane and n is a positive integer.
Then f (z) and f (n)(z) have the same order.
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3. Proof of Theorem 1.1.

Suppose that f (z) is a finite-order transcendental entire solution to Eq (1.6) and satisfies λ( f ) <
σ( f ). Then, by Lemma 2.7 and Remark 2, we have

f (z) = d(z)eh(z), (3.1)

where d is the canonical product formed by zeros of f such that σ(d) = λ( f ) < σ( f ), and h = amzm +

am−1zm−1 +· · ·+a0 is a non-constant polynomial, where am(, 0), . . . , a0 are constants, deg h = m = σ( f )
is a positive integer.

Set fc = f (z + c), we rewrite (1.6) as

f 2 + ω̃ f f ′ + qeQ fc = uev. (3.2)

By Lemmas 2.4 and 2.9, we have σ( fc) = σ( f ) = σ( f ′). From (3.2), by the order property, we get

deg v = σ(uev) ≤ max{σ( f ′) = σ( f ) = σ( fc), σ(eQ), σ(q)}
= max{deg h, deg Q}. (3.3)

By substituting (3.1) into (3.2), we obtain that

d
(
d + ω̃(d′ + dh′)

)
e2h + qdceQ+hc = uev. (3.4)

Next, we consider the following three cases.
Case 1. σ( f ) > deg Q. Then deg h > deg Q ≥ 1, and by (3.3) we have deg v ≤ deg h.
Subcase 1.1. deg h > deg v. From (3.4) we have

d
(
d + ω̃(d′ + dh′)

)
eh1e2amzm

+ qdceh2eamzm
= uev, (3.5)

where h1 = 2am−1zm−1 + · · · and h2 = Q+ (ammc+am−1)zm−1 + · · · are polynomials with degree ≤ m−1.
So, noting σ(d′) = σ(d) = σ(dc) < m, by applying Lemma 2.1 to (3.5), it follows that

qdc ≡ 0.

which yields a contradiction.
Subcase 1.2. deg h = deg v. Denote v(z) = vmzm + vm−1zm−1 + · · · + v0, where vm(, 0), . . . , v0 are

constants. From (3.4) we have

d
(
d + ω̃(d′ + dh′)

)
eh1e2amzm

+ qdceh2eamzm
= ueh3evmzm

, (3.6)

where h1 and h2 are defined as in Subcase 1.1, and h3 = vm−1zm−1 + · · · + v0 is a polynomial with
deg h3 ≤ m − 1.

If vm , 2am and vm , am, since σ(d′) = σ(d) = σ(dc) < m, by applying Lemma 2.1 to (3.6), we get
u ≡ 0, which is a contradiction.

If vm = 2am, then (3.6) can be written as(
d
(
d + ω̃(d′ + dh′)

)
eh1 − ueh3

)
e2amzm

+ qdceh2eamzm
= 0.
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By applying Lemma 2.1, we have qdc ≡ 0, which implies a contradiction.
If vm = am, then (3.6) can be written as

d
(
d + ω̃(d′ + dh′)

)
eh1e2amzm

+ (qdceh2 − ueh3)eamzm
= 0.

Similarly as above, by Lemma 2.1, we get

d
(
d + ω̃(d′ + dh′)

)
≡ 0.

Noting d . 0, it follows that

1 + ω̃

(
d′

d
+ h′

)
≡ 0.

By integrating the above equation, we have

d = c1e−
1
ω̃

z−h, c1 ∈ C \ {0}.

Noting that deg h > deg Q ≥ 1, we obtain σ(d) = deg h = σ( f ), which contradicts with σ(d) < σ( f ).
Case 2. σ( f ) = deg Q. Then from (3.3), we have deg v ≤ deg h = deg Q. Next, we deduce that

deg v = deg h = deg Q. Otherwise, if deg v < deg h = deg Q, we will get a contradiction by the
following. We suppose that Q(z) = bmzm + bm−1zm−1 + · · · + b0, where bm(, 0), . . . , b0 are constants.
Then Eq (3.4) can be written as

d
(
d + ω̃(d′ + dh′)

)
eh1e2amzm

+ (qdceh̃2)e(am+bm)zm
= uev, (3.7)

where h1 is defined as in Subcase 1.1, and h̃2 = (ammc + am−1 + bm−1)zm−1 + · · · with deg h̃2 ≤ m − 1.
If bm , ±am, since σ(d′) = σ(d) = σ(dc) < m, by applying Lemma 2.1 to (3.7), we get u ≡ 0, which

is a contradiction.
If bm = am, then Eq (3.7) can be rewritten as(

d
(
d + ω̃(d′ + dh′)

)
eh1 + qdceh̃2

)
e2amzm

= uev.

Thus, by using Lemma 2.1, we have u ≡ 0, a contradiction.
If bm = −am, then Eq (3.7) can be rewritten as

d
(
d + ω̃(d′ + dh′)

)
eh1e2amzm

= uev − qdceh̃2 .

So by Lemma 2.1, we get

d
(
d + ω̃(d′ + dh′)

)
≡ 0,

which implies

d = c2e−
1
ω̃

z−h, c2 ∈ C \ {0}.

Noting that deg h > deg v ≥ 1, we have σ(d) = deg h = σ( f ), which contradicts with σ(d) < σ( f ).
Therefore, deg v = deg h = deg Q, which implies that the Conclusion (2) holds.
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Case 3. σ( f ) < deg Q. Then we have T (r, f ) = S (r, eQ). By Milloux’s theorem and lemma 2.4, we
have T (r, f ′) = S (r, eQ) and T (r, fc) = S (r, eQ). Therefore, it follows from (3.2) that

T (r, eQ) + S (r, eQ) = T (r, f 2 + ω̃ f f ′ + q fceQ)
= T (r, uev) = T (r, ev) + S (r, ev).

Thus,

deg Q = deg v.

Differentiating (3.2) yields

2 f f ′ + ω̃( f ′)2 + ω̃ f f ′′ + AeQ = (u′ + uv′)ev, (3.8)

where A = q′ fc + q f ′c + q fcQ′.
Eliminating ev from (3.2) and (3.8), we have

B1eQ + B2 = 0, (3.9)

where
B1 = uA − q fc(u′ + uv′),

B2 = u[2 f f ′ + ω̃( f ′)2 + ω̃ f f ′′] − ( f 2 + ω̃ f f ′)(u′ + uv′).

Note that σ( f ′′) = σ( f ′) = σ( f ) = σ( fc) < deg Q, then by applying Lemma 2.1 to (3.9), we get
B1 ≡ B2 ≡ 0. It follows from B1 ≡ 0 that

q′

q
+

f ′c
fc

+ Q′ =
u′

u
+ v′,

by integration, we have q fceQ = c3uev, where c3 is a non-zero constant.
If c3 = 1, then substituting q fceQ = uev into (3.2), we see that f 2 + ω̃ f f ′ = 0. Thus we can easily

get f = c4e−z/ω̃, where c4 ∈ C \ {0}, which implies that the Conclusion (1) holds.
If c3 , 1, we have f = c3u−c/q−cev−c−Q−c . By substituting this expression into (3.2), we obtain

c3u−c

q−c

(
c3u−c

q−c
+ ω̃

((
c3u−c

q−c

)′
+

c3u−c

q−c
(v−c − Q−c)′

))
e2(v−c−Q−c) = (1 − c3)uev.

Since 1 ≤ σ( f ) = deg(v−c −Q−c) < deg Q = deg v, then by Lemma 2.1 and (1− c3)u . 0 we can easily
deduce a contradiction.

4. Proof of Theorem 1.4.

Suppose that f is a finite-order transcendental entire solution to Eq (1.8). Denote fc = f (z + c), then
Eq (1.8) can be written as

f n + ω f n−1 f ′ + qeQ fc = p1eλ1z + p2eλ2z. (4.1)
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By Lemma 2.4, we have σ( f ) = σ( fc).
Differentiating both sides of (4.1), we have

n f n−1 f ′ + ω(n − 1) f n−2( f ′)2 + ω f n−1 f ′′ + A1eQ = p1λ1eλ1z + p2λ2eλ2z, (4.2)

where A1 = q′ fc + q f ′c + q fcQ′.
Eliminating eλ2z from (4.1) and (4.2), we get

λ2 f n + (λ2ω − n) f n−1 f ′ − ω(n − 1) f n−2( f ′)2 − ω f n−1 f ′′ + A2eQ

= p1(λ2 − λ1)eλ1z, (4.3)

where A2 = λ2q fc − A1.
By taking the derivative of (4.3), we get

λ2n f n−1 f ′ + (λ2ω − n)
[
(n − 1) f n−2( f ′)2 + f n−1 f ′′

]
−ω(n − 1)

[
(n − 2) f n−3( f ′)3 + f n−22 f ′ f ′′

]
− ω(n − 1) f n−2 f ′ f ′′ − ω f n−1 f ′′′

+(A′2 + A2Q′)eQ = p1(λ2 − λ1)λ1eλ1z. (4.4)

Then eliminating eλ1z from (4.3) and (4.4) gives

λ1λ2 f n + (λ1λ2ω − nλ1 − λ2n) f n−1 f ′ − (n − 1) [λ1ω + λ2ω − n] f n−2( f ′)2

−(λ1ω + λ2ω − n) f n−1 f ′′ + ω(n − 1)(n − 2) f n−3( f ′)3 + 3ω(n − 1) f n−2 f ′ f ′′

+ω f n−1 f ′′′ + (λ1A2 − A′2 − A2Q′)eQ = 0. (4.5)

Case 1. σ( f ) < 1. By applying the logarithmic derivative lemma, Lemmas 2.3 and 2.5 to Eq (4.1) ,
we obtain

T
(
r, eQ

)
= m

(
r, eQ

)
= m

(
r,

p1eλ1z + p2eλ2z − f n − ω f n−1 f ′

q fc

)
≤ m

(
r,

f
q fc

)
+ m

(
r,

1
f

)
+ m

(
r, p1eλ1z + p2eλ2z

)
+m

(
r,

f n + ω f n−1 f ′

f n

)
+ m(r, f n) + O(1)

≤ (n + 1)T (r, f ) + C(co(W0))
r

2π
+ o(r) + S (r, f )

≤ C(co(W0))
r

2π
+ o(r),

where W0 = {0, λ1, λ2}. Thus we have deg Q ≤ 1. Noting deg Q ≥ 1, we know that deg Q = 1. Let
Q = az + b, a ∈ C \ {0}, b ∈ C.

Thus, by applying Lemma 2.1 to (4.5), we have

λ1A2 − A′2 − A2Q′ = (λ1 − a)A2 − A′2 ≡ 0. (4.6)

Subcase 1.1.A2 ≡ 0. That is λ2q fc − q′ fc − q f ′c − q fca ≡ 0. Noting q fc . 0, it follows that

λ2 −
q′

q
−

f ′c
fc
− a ≡ 0.

AIMS Mathematics Volume 6, Issue 8, 8107–8126.



8118

By integration, we have

q fc = c1e(λ2−a)z, c1 ∈ C \ {0}.

If a , λ2, then σ( f ) = σ( fc) = 1, which contradicts with σ( f ) < 1. Thus we have a = λ2, and
fc = c1/q. Then f (z) = c1/q(z − c), which is impossible for a transcendental function f .

Subcase 1.2.A2 . 0. From (4.6), we get

A2 = c2e(λ1−a)z, c2 ∈ C \ {0}.

It follows that

(q fc)′ + (a − λ2)(q fc) = −c2e(λ1−a)z, c2 ∈ C \ {0}. (4.7)

Since λ1 , λ2, we consider three subcases as follows.
Subcase 1.2.1. a = λ2. Then (4.7) can be written as (q fc)′ = −c2e(λ1−λ2)z. By integration, we obtain

q fc = c2
λ2−λ1

e(λ1−λ2)z + c3, where c3 ∈ C. By Lemma 2.5 we have

T (r, q fc) = T
(
r,

c2

λ2 − λ1
e(λ1−λ2)z + c3

)
= C(co(W1))

r
2π

+ o(r), W1 = {0, λ1 − λ2}.

Since f is transcendental, by Lemma 2.4, it follows that

C(co(W1))
r

2π
+ o(r) = T (r, q fc) ≤ T (r, fc) + T (r, q) + O(1)

= T (r, f ) + S (r, f ),

which contradicts with σ( f ) < 1.
Subcase 1.2.2. a = λ1. Then (4.7) can be written as (q fc)′ + (λ1 − λ2)(q fc) = −c2. Thus, we obtain

q fc = c2
λ2−λ1

+ c4e(λ2−λ1)z, where c4 ∈ C. We assert that c4 , 0. Otherwise, we have f (z) = c2
λ2−λ1

1
q(z−c) ,

which contradicts with the assumption that f is transcendental. Therefore, c4 , 0, similarly as in
Subcase 1.2.1, by combining Lemmas 2.4, 2.5, and σ( f ) < 1, we can get a contradiction.

Subcase 1.2.3. a , λ1 and a , λ2. Then by (4.7), we get that

q fc =
c2

λ2 − λ1
e(λ1−a)z + c5e(λ2−a)z, c5 ∈ C.

Since c2 , 0, a , λ1, and λ1 , λ2, similarly as in Subcase 1.2.1, by combining Lemmas 2.4, 2.5, and
σ( f ) < 1, we also get a contradiction.

Case 2. σ( f ) > 1. Denote P = p1eλ1z + p2eλ2z, then by Lemma 2.5 we have σ(P) = 1. We rewrite
Eq (4.1) as

f n + ω f n−1 f ′ + (q fc)eQ = P. (4.8)

Differentiating (4.8) yields

n f n−1 f ′ + ω(n − 1) f n−2( f ′)2 + ω f n−1 f ′′ + LeQ = P′, (4.9)
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where L = (q fc)′ + Q′(q fc).
Subcase 2.1. ω , 0 and n ≥ 4. Eliminating eQ from (4.8) and (4.9), we have

f n−2H = PL − P′(q fc), (4.10)

where

H = L f 2 + (ωL − nq fc) f f ′ − (n − 1)ωq fc( f ′)2 − ωq fc f f ′′.

Subcase 2.1.1. H . 0. We rewrite PL − P′(q fc) as

P
[
(q fc)′ + Q′(q fc)

]
− P′(q fc)

= Pq
(q fc)′

q fc

fc

f
· f + (PQ′ − P′)q

fc

f
· f

= Pq
(
q′

q
+

f ′c
fc

)
fc

f
· f + (PQ′ − P′)q

fc

f
· f ,

and H as

q
(
q′

q
+

f ′c
fc

+ Q′
)

fc

f
· f 3 + q

(
ω

(
q′

q
+

f ′c
fc

+ Q′
)
− n

)
fc

f
· f 2 f ′

−(n − 1)ωq
fc

f
· f ( f ′)2 − ωq

fc

f
· f 2 f ′′,

thus both PL − P′(q fc) and H are differential polynomials with meromorphic coefficients. By the
logarithmic derivative lemma and Lemma 2.4, we have m(r, f ′c/ fc) = S (r, fc) = S (r, f ); by Lemma 2.3,
we have m(r, fc/ f ) = S (r, f ); and by Lemma 2.5, we have m(r, P) = O(r). Note that n ≥ 4 and H, f H
are entire, by applying Lemma 2.6 to (4.10), it follows that

T (r,H) = m(r,H) = S (r, f ) + O(r),

and

T (r, f H) = m(r, f H) = S (r, f ) + O(r).

Thus, by H . 0 we deduce that

T (r, f ) ≤ T (r, f H) + T
(
r,

1
H

)
= S (r, f ) + O(r),

which contradicts with σ( f ) > 1.
Subcase 2.1.2. H ≡ 0. Then from (4.10), we have

PL − P′(q fc) = P
[
(q fc)′ + Q′(q fc)

]
− P′(q fc) ≡ 0.

Noting q fcP . 0, it follows that

(q fc)′

q fc
+ Q′ −

P′

P
≡ 0.
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By integration, we have

q fc = c6Pe−Q, c6 ∈ C \ {0}. (4.11)

Substituting (4.11) into (4.8), we get that

f n + ω f n−1 f ′ = (1 − c6)P. (4.12)

If c6 = 1, then from (4.12) we have f +ω f ′ = 0. By integration, we get f = c7e−
1
ω z, c7 ∈ C \ {0}, which

contradicts with σ( f ) > 1. Thus, c6 , 1. It follows from (4.11) that

f = c6
P−c

q−c
e−Q−c . (4.13)

Then deg Q = deg Q−c = σ( f ) > 1 since σ(P−c) = 1 by Lemma 2.5.
By Substituting (4.13) into (4.12), we have

cn
6

1 − c6

(P−c

q−c

)n

+ ω

(
P−c

q−c

)n−1 ((
P−c

q−c

)′
+

P−c

q−c
(−Q−c)′

) e−nQ−c = P.

Thus, from deg Q > 1, σ(P−c) = σ(P) = 1 and Lemma 2.1, we get P(z) ≡ 0, which is impossible.
Subcase 2.2. ω = 0 and n ≥ 3. Eliminating eQ from (4.8) and (4.9), we obtain

f n−1 (
L f − nq fc f ′

)
= PL − P′(q fc).

Subcase 2.2.1. L f − nq fc f ′ . 0. Since n ≥ 3 and ω = 0, similarly as in Subcase 2.1.1, we have

T (r, L f − nq fc f ′) = m(r, L f − nq fc f ′) = S (r, f ) + O(r),

and

T (r, f
(
L f − nq fc f ′

)
) = m(r, f

(
L f − nq fc f ′

)
) = S (r, f ) + O(r).

By L f − nq fc f ′ . 0, we deduce that

T (r, f ) ≤ T (r, f
(
L f − nq fc f ′

)
) + T

(
r,

1
L f − nq fc f ′

)
= S (r, f ) + O(r),

which contradicts with σ( f ) > 1.
Subcase 2.2.2. L f − nq fc f ′ ≡ 0. Then

(q fc)′

q fc
+ Q′ − n

f ′

f
≡ 0.

By integration, we obtain

q fceQ = c8 f n, c8 ∈ C \ {0}. (4.14)

Substituting (4.14) into (4.8) yields

(1 + c8) f n = P.
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If c8 , −1, then we have nT (r, f ) + S (r, f ) = T (r, (1 + c8) f n) = T (r, P) = O(r), which contradicts with
σ( f ) > 1. Thus, c8 = −1, and then p1eλ1z + p2eλ2z = P = (1 + c8) f n ≡ 0, which is impossible.

Case 3. σ( f ) = 1. By (4.1), Lemma 2.3, and the logarithmic derivative lemma, we obtain

T
(
r, eQ

)
= m

(
r, eQ

)
= m

(
r,

p1eλ1z + p2eλ2z − f n − ω f n−1 f ′

q fc

)
≤ m

(
r,

1
q fc

)
+ m

(
r, p1eλ1z + p2eλ2z

)
+ m

(
r, f n + ω f n−1 f ′

)
+ O(1)

≤ m
(
r,

f
fc

)
+ m

(
r,

1
f

)
+ m

(
r,

f n + ω f n−1 f ′

f n

)
+ m(r, f n)

+T
(
r, p1eλ1z + p2eλ2z

)
+ O(log r)

≤ (n + 1)T (r, f ) + T
(
r, p1eλ1z + p2eλ2z

)
+ S (r, f ).

Note that deg Q ≥ 1, then by combining Lemma 2.5, we get

1 ≤ deg Q = σ
(
eQ

)
≤ max{σ( f ), σ

(
p1eλ1z + p2eλ2z

)
} = 1,

that is σ( f ) = deg Q = 1. Thus, the Conclusion (1) is proved.
Next, we will prove the Conclusion (2). Suppose that f is a finite-order transcendental entire

solution to Eq (1.8) and satisfies λ( f ) < σ( f ). Then, similarly as in the proof of Theorem 1.1, by
Lemma 2.7 and Remark 2, we have

f (z) = d(z)eh(z), (4.15)

where d is the canonical product formed by zeros of f such that σ(d) = λ( f ) < σ( f ), and h is a
polynomial with deg h = σ( f ) ≥ 1.

By substituting (4.15) into (1.8), we get

dn−1(d + ω(d′ + dh′))enh + qdceQ+hc = p1eλ1z + p2eλ2z. (4.16)

Dividing both sides of (4.16) by p2eλ2z, we obtain

f1 + f2 + f3 = 1, (4.17)

where

f1 = −
p1

p2
e(λ1−λ2)z, f2 =

dn−1(d + ω(d′ + dh′))
p2

enh−λ2z, f3 =
qdc

p2
eQ+hc−λ2z.

Obviously, f1 is not a constant by the fact that λ1 , λ2. Let T (r) = max{T (r, f1),T (r, f2),T (r, f3)}.
Next we distinguish two cases below.

Case 1. σ( f ) > 1. It follows from max{σ(d′) = σ(d), 1} < deg h that dn−1(d + ω(d′ + dh′))/p2e−λ2z

is a small function of eh. Then T (r) ≥ T (r, f2) = nT (r, eh) + S (r, eh) . Thus, by Milloux’s theorem and
Lemma 2.4, we get

N
(
r, 1

f2

)
T (r)

=
N

(
r, 1

dn−1(d+ω(d′+dh′))

)
T (r)

≤
T

(
r, dn−1(d + ω(d′ + dh′))

)
T (r)
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=
O(T (r, d)) + O(log r)

T (r, eh)
·

T (r, eh)
T (r)

→ 0,

and

N
(
r, 1

f3

)
T (r)

=
N

(
r, 1

qdc

)
T (r)

≤
T (r, qdc)

T (r)
≤

T (r, d) + S (r, d) + O(log r)
T (r, eh)

·
T (r, eh)

T (r)
→ 0

as r → ∞.
Therefore, by applying Lemma 2.2, we can deduce that f2 ≡ 1 or f3 ≡ 1.
If f2 ≡ 1, then dn−1(d+ω(d′+dh′))enh−λ2z ≡ p2. We deduce that dn−1(d+ω(d′+dh′)) . 0. Otherwise,

p2 ≡ 0, which is a contradiction. So, by Lemma 2.5 and Milloux’s theorem, we obtain

S
(
r, eh

)
+ nT

(
r, eh

)
= T

(
r, enh

)
= T

(
r,

p2eλ2z

dn−1(d + ω(d′ + dh′))

)
≤ T

(
r, p2eλ2z

)
+ T

(
r, dn−1(d + ω(d′ + dh′))

)
+ O(1)

= O(r) + O(T (r, d)),

which contradicts with deg h = σ( f ) > max{σ(d), 1}.
If f3 ≡ 1, then by (4.17), we have f1 + f2 ≡ 0. It follows that

dn−1(d + ω(d′ + dh′))enh = p1eλ1z.

By a similar discussion as above, we can also get a contradiction.
Case 2. σ( f ) = 1. Then we have σ(d) < 1 = deg h = σ(e(λ1−λ2)z) and

T (r) ≥ T (r, f1) = T
(
r, e(λ1−λ2)z

)
+ S

(
r, e(λ1−λ2)z

)
. Thus, by Milloux’s theorem and Lemma 2.4, we

obtain

N
(
r, 1

f2

)
T (r)

=
O(T (r, d)) + O(log r)

T
(
r, e(λ1−λ2)z) ·

T
(
r, e(λ1−λ2)z

)
T (r)

→ 0,

and

N
(
r, 1

f3

)
T (r)

≤
T (r, d) + S (r, d) + O(log r)

T
(
r, e(λ1−λ2)z) ·

T
(
r, e(λ1−λ2)z

)
T (r)

→ 0,

as r → ∞.
Therefore, by applying Lemma 2.2, we can deduce that f2 ≡ 1 or f3 ≡ 1.
If f2 ≡ 1, then

dn−1(d + ω(d′ + dh′))enh−λ2z = p2. (4.18)

We assert that h′ = λ2/n. Otherwise, since σ(d′) = σ(d) < 1 = deg(nh − λ2z), by applying
Lemma 2.1 to (4.18), we get p2 ≡ 0, which is a contradiction. Thus h′ = λ2/n. We set h = λ2z/n + B,
where B is a constant. Substituting this into (4.18), we have

dn−1
(
d + ω

(
d′ +

λ2d
n

))
= p2e−nB. (4.19)
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Next, we deduce that d is a constant. Otherwise, if d is a non-constant entire function, then it follows
from (4.19) that 0 is a Picard exceptional value of d. Thus by Lemma 2.8, we have d = eα, where α is
a non-constant polynomial, which contradicts with σ(d) < 1. So d is a non-zero constant, and (4.19)
can be written as

dnenB
(
1 + ω

λ2

n

)
= p2.

Therefore,

f = deh = deBeλ2z/n =

(
p2n

n + ωλ2

) 1
n

e
λ2z

n .

Moreover, by f2 ≡ 1 and (4.17), we also have f1 + f3 ≡ 0. That is

p1eλ1z = qdceQ+hc ,

which implies that

Q =

(
λ1 −

λ2

n

)
z + b1,

where b1 satisfies p1 = q
(

p2n
n+ωλ2

) 1
n e

λ2c
n +b1 .

If f3 ≡ 1, then by (4.17) we have f1 + f2 = 0. It follows that

dn−1(d + ω(d′ + dh′))enh−λ1z = p1.

By using a similar method as in the case f2 ≡ 1, we get

f (z) =

(
p1n

n + ωλ1

) 1
n

e
λ1z

n .

Furthermore, it follows from f3 ≡ 1 that qdceQ+hc−λ2z ≡ p2. Then we can deduce

Q =

(
λ2 −

λ1

n

)
z + b2,

where b2 satisfies p2 = q
(

p1n
n+ωλ1

) 1
n e

λ1c
n +b2 . From the above discussion, the proof of the Conclusion (2)

is complete.

5. Proof of Theorem 1.5.

Suppose that f is a finite-order transcendental entire solution to Eq (1.9).
If σ( f ) < 1, then by a similar method as in Theorem 1.4 (Case 1), we can get a contradiction.
If σ( f ) > 1, we denote P = p1eλ1z + p2eλ2z. Then Eq (1.9) can be written as

f 3 + ω f 2 f ′ + (q fc)eQ = P. (5.1)
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Differentiating (5.1) yields

3 f 2 f ′ + ω2 f ( f ′)2 + ω f 2 f ′′ + LeQ = P′, (5.2)

where L = (q fc)′ + Q′(q fc).
Eliminating eQ from (5.1) and (5.2), we obtain

f H = PL − P′(q fc), (5.3)

where

H = L f 2 + (ωL − nq fc) f f ′ − (n − 1)ωq fc( f ′)2 − ωq fc f f ′′.

If H ≡ 0, then from (5.3) we have PL − P′(q fc) ≡ 0. By a similar reasoning as in Theorem 1.4
(Subcase 2.1.2), we get a contradiction. Therefore, H . 0. Noting that H is entire and PL − P′(q fc),
H/ f are differential polynomials with meromorphic coefficients, similarly as in Theorem 1.4 (Subcase
2.1.1), by applying Lemma 2.6 to (5.3), we obtain

T (r,H) = m(r,H) = S (r, f ) + O(r),

and

m(r,H/ f ) = S (r, f ) + O(r).

Obviously, the poles of H/ f arise from the poles of ( f ′)2/ f . Suppose that z0 is a zero of f with
multiplicity p, then it is a simple pole of ( f ′)2/ f when p = 1, and a zero of ( f ′)2/ f with multiplicity
p − 2 when p ≥ 2. Noting that f is entire, we obtain

T (r,H/ f ) = m(r,H/ f ) + N(r,H/ f ) = m(r,H/ f ) + N1)(r, 1/ f )
< (κ + o(1))T (r, f ) + S (r, f ) + O(r).

Therefore, by H . 0, it follows that

T (r, f ) = T (r, 1/ f ) + O(1) ≤ T
(
r,

H
f

)
+ T

(
r,

1
H

)
+ O(1)

< (κ + o(1))T (r, f ) + S (r, f ) + O(r), 0 ≤ κ < 1.

Thus we have

T (r, f ) = S (r, f ) + O(r),

which contradicts with σ( f ) > 1.
If σ( f ) = 1, then by a similar method as in Theorem 1.4(Case 3), we can get that σ( f ) = deg Q = 1.

6. Conclusions

By using the Nevanlinna theory and its difference analogues, we study the transcendental entire
solutions for two types of nonlinear differential-difference equations, and obtain three main theorems,
which are improvements and complements of some previous results. Meanwhile, some examples are
given to illustrate the conclusions.
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