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Abstract: Many problems in engineering and social sciences can be transformed into system of
nonlinear equations. As a result, a lot of methods have been proposed for solving the system. Some of
the classical methods include Newton and Quasi Newton methods which have rapid convergence
from good initial points but unable to deal with large scale problems due to the computation of
Jacobian matrix or its approximation. Spectral and conjugate gradient methods proposed for
unconstrained optimization, and later on extended to solve nonlinear equations do not require any
computation of Jacobian matrix or its approximation, thus, are suitable to handle large scale
problems. In this paper, we proposed a spectral conjugate gradient algorithm for solving system of
nonlinear equations where the operator under consideration is monotone. The search direction of the
proposed algorithm is constructed by taking the convex combination of the Dai-Yuan (DY) parameter
and a modified conjugate descent (CD) parameter. The proposed search direction is sufficiently
descent and under some suitable assumptions, the global convergence of the proposed algorithm is
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proved. Numerical experiments on some test problems are presented to show the efficiency of the
proposed algorithm in comparison with an existing one. Finally, the algorithm is successfully applied
in signal recovery problem arising from compressive sensing.

Keywords: nonlinear monotone equations; conjugate gradient method; spectral conjugate gradient
method and large-scale problems
Mathematics Subject Classification: 65K05, 65L09, 90C30

1. Introduction

Consider a nonempty closed convex set Ω ⊂ Rn and a mapping F : Rn → Rn which is continuous
and monotone. In this work, our interest is on finding the solution x ∈ Ω such that

F(x) = 0. (1.1)

System of nonlinear equation (1.1) arises in many practical applications such as in controlling the
motion of a planar robot manipulator [1], economic equilibrium problems [2], power flow equations [3]
and chemical equilibrium systems [4]. Additionally, in mathematics, subproblems in the generalized
proximal algorithms with Bregman distance [5] and monotone variational inequality problems by using
fixed point map or normal map [6,7] can all be transformed into finding the solution of (1.1). Recently,
algorithms for solving system of nonlinear monotone equations are proved to be efficient in signal and
image recovery [8].

Due to the existence of nonlinear equations in various fields and their wide range of applications, a
lot of methods have been proposed to find their solution. Some of the early and popular iterative
methods are Newton method, Quasi-Newton method, Levenberg-Marquardt method and their
variants [9–13]. These early methods are characterised by their advantage of rapid convergence from
good initial points. However, they require solving linear systems using a Jacobian matrix or its
approximation at every iteration. This problem affects their suitability to solve large-scale systems of
nonlinear equations.

On the other hand, conjugate gradient methods, spectral gradient methods, and spectral conjugate
gradient methods are class of methods for solving large scale unconstrained optimization problems.
Among the advantages of these methods are their simplicity in implementation and low storage
requirements. These advantages stimulate researchers to extend these methods in order to solve
nonlinear equations. For example, the projection technique proposed by Solodov and Svaiter [14]
motivated many researchers to extend conjugate gradient methods from solving unconstrained
optimization problem to solve system of nonlinear equations. Inspired by the work of Solodov and
Svaiter in [14], Wang et al. [15] proposed a projection method for solving system of nonlinear
monotone equations. In their algorithm, a linear system of equations is solved approximately, at each
iteration, to obtain a trial point and then a line search strategy is performed along the search direction
determined by the current point and the trial point with the aim of getting a predictor-corrector point.
Hence, the algorithm computes its next iterate by projection. They proved the global convergence of
the proposed method and presented some numerical experiments in order to show the performance of
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the algorithm. In [16], Cheng combined the classical PRP method with hyperplane projection method
to solve nonlinear monotone equations. Xiao and Zhou [17] extended the well-known CG Descent
for unconstrained minimization problems to solve large scale convex constraint nonlinear monotone
equations. They achieved this by combining the CG Descent with the projection technique in [14].
They proved the global convergence of this method and showed the numerical performance. Liu and
Li [18] modified the work in [17] and proposed another extension of the CG descent method to solve
nonlinear monotone equations. Based on the popular Dai-Yuan (DY) conjugate gradient
parameter [19], Liu [20] proposed a spectral DY-type method for solving nonlinear monotone
equations. The method can be viewed as a combination of the DY conjugate gradient method, spectral
gradient method and the projection technique. They showed that the method converges globally and
presented some numerical experiments. Later on, Liu and Li [21] developed another DY-type
algorithm, which is a multivariate spectral method for solving (1.1). In their work, the direction uses a
combination of the multivariate spectral gradient method and DY conjugate gradient parameter. The
numerical experiments of the method is reported and the global convergence is also proved. However,
restriction is imposed on the lipschitz constant L < 1 − r with r ∈ (0, 1) before proving the global
convergence. Motivated by this work, Liu and Feng [22] proposed another spectral conjugate gradient
method for solving (1.1). Their work improved the computational effect of the DY conjugate gradient
method and under some assumptions both the global and linear convergence of the method is proved.
Most recently, a lot of algorithms have been developed for solving (1.1). Some of these algorithms
can be found in [23–32].

In this paper, motivated by the work of Liu and Feng [22] on the modification of DY conjugate
gradient method, we propose an efficient spectral conjugate gradient algorithm for solving systems of
nonlinear monotone equations with convex constraint. The search direction in our proposed approach
uses a convex combination of the DY parameter and a modified CD parameter. Specifically, this paper
gives the following contributions:

• We propose an efficient spectral conjugate gradient algorithm for solving systems of nonlinear
monotone equations with convex constraint by taking the convex combination of the DY
parameter and a modified CD parameter.
• This algorithm can be viewed as an extension of the work proposed by Yu et al in [33].
• The global convergence of the proposed algorithm is proved under some suitable assumptions.
• The proposed algorithm is applied to recover a distorted signal.

The organization of the paper is as follows: In the next section, we introduce the details of the
algorithm, some important definitions and prove global convergence. In the third section, we provide
numerical experiments of the proposed algorithm and compare it performance with an existing one.
Finally, we apply the algorithm in signal recovery, and give conclusion in the last section.

2. Algorithm: Motivation and convergence result

In this section, projection map, its properties, and some important assumptions needed for the
convergence analysis are introduced.

Definition 2.1. Let Ω ⊂ Rn be a nonempty, closed and convex set. The projection of any x ∈ Rn onto
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Ω is
PΩ(x) = arg min{‖x − y‖ : y ∈ Ω}.

The projection map has the following property:

‖PΩ(x) − y‖ ≤ ‖x − y‖, ∀x, y ∈ Rn. (2.1)

Spectral and conjugate gradient algorithms generate sequence of iterates using the following formula:

xk+1 = xk + αkdk, (2.2)

where αk is called the step length, and the direction dk defined in spectral and conjugate gradient
method respectively as:

dk =

−Fk, if k = 0,
−νkFk, if k ≥ 1,

(2.3)

and

dk =

−Fk, if k = 0,
−Fk + βkdk−1, if k ≥ 1.

(2.4)

Different spectral and conjugate gradient directions are developed using different choice of the
parameters νk and βk respectively. To ensure the global convergence of these methods, the direction dk

needs to satisfy the sufficient decent property. That is:

FT
k dk ≤ −τ‖Fk‖, (2.5)

where τ > 0.
One of the well-known parameter proposed in this direction is the DY conjugate gradient parameter

in [19] defined as

βDY
k =

‖Fk‖
2

YT
k−1dk−1

, (2.6)

such that the direction in (2.4) becomes:

dk =

−Fk, if k = 0,
−Fk + ‖Fk‖

2

YT
k−1dk−1

dk−1, if k ≥ 1,
(2.7)

where Yk−1 = Fk − Fk−1. Unfortunately, (2.7) does not satisfy the decency property (2.5). As a result,
Liu and Feng [22] modified the work in [19] and proposed a spectral conjugate gradient algorithm
for solving (1.1). The direction in [22] satisfies (2.5) and thus, the global convergence is proved
successfully under some appropriate assumptions.

Motivated by the work in [22], and due to the limited number of DY-type conjugate gradient
methods in literature, we proposed a new spectral DY-type conjugate gradient algorithm for solving
(1.1). Interestingly, the proposed direction satisfies the sufficient descent property (2.5), and uses a
convex combination of the DY parameter and a modified CD parameter as follows:

dk =

−Fk, if k = 0,
−νkFk + [(1 − θk)βDY

k + θkβ̃k]dk−1, if k ≥ 1,
(2.8)
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where

νk =
sT

k−1sk−1

sT
k−1yk−1

, yk−1 = F(xk) − F(xk−1) + rsk−1, sk−1 = xk − xk−1, (2.9)

βDY
k is defined as (2.6), β̃k = ‖Fk‖

2

max{−FT
k dk−1,γ‖dk−1‖}

and θk ∈ (0, 1). Substituting the value of βDY
k and β̃k in

(2.8) we get

dk =

−Fk, if k = 0

−νkFk +

[
(1 − θk) ‖Fk‖

2

YT
k−1dk−1

+ θk
‖Fk‖

2

max{−FT
k dk−1,γ‖dk−1‖}

]
dk−1 if k ≥ 1.

(2.10)

Throughout this work, the following assumptions are made.

• (Assumption1) The mapping F is monotone, that is,

(F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ Rn.

• (Assumption2) The mapping F is Lipschitz continuous, that is there exists L > 0 such that

‖F(x) − F(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn.

• (Assumption3) The solution set of (1.1), denoted by Ω, is nonempty.

We state the steps of our proposed algorithm as follows:

Algorithm 2.2. Step 0. Choose initial point x0 ∈ Ω, θk ∈ (0, 1), κ ∈ (0, 1], β ∈ (0, 1) µ > 1, σ, γ >
0, δ ∈ (0, 2), and Tol > 0. Set k := 0.
Step 1. If ‖Fk‖ ≤ Tol, stop, otherwise proceed with Step 2.
Step 2. Compute dk = −‖Fk‖, k = 0 and

dk =

−νkFk, if YT
k−1dk−1 ≤ µ‖Fk‖‖dk−1‖,

−νkFk +

[
(1 − θk) ‖Fk‖

2

YT
k−1dk−1

+ θk
‖Fk‖

2

max{−FT
k dk−1,γ‖dk−1‖}

]
dk−1, otherwise.

(2.11)

Step 3. Compute Λk = max{κβi : i = 0, 1, 2, . . .} such that

− 〈F(xk + κβidk), dk〉 ≥ σκβ
i‖dk‖

2 min
{
1, ‖F(xk + κβidk)‖

1
c
}
, c ≥ 1. (2.12)

Step 4. Set zk = xk + Λkdk. If ‖F(zk)‖ = 0, stop. Else compute

xk+1 = PΩ

[
xk − δ

F(zk)T (xk − zk)
‖F(zk)‖2

F(zk)
]
.

Step 5. Let k = k + 1 and go to Step 1.

Remark 2.3. It is worth noting that when YT
k−1dk−1 ≤ µ‖Fk‖‖dk−1‖, our proposed search direction

reduces to that of Yu et al. proposed in [33]. Thus, as a contribution, this work can be viewed as an
extension of the work of Yu et al. [33].

We now state and proof the following Lemmas and Theorem for the convergence.
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Lemma 2.4. The parameter νk given by (2.9) is well defined, and ∀k ≥ 0, dk satisfies

FT
k dk ≤ −τ‖Fk‖

2. (2.13)

Proof. Since F is monotone, then

〈F(xk) − F(xk−1), xk − xk−1〉 ≥ 0,

which yields
〈yk−1, sk−1〉 ≥ r‖sk−1‖

2. (2.14)

Again, by Lipschitz continuity, we have

〈yk−1, sk−1〉 = 〈F(xk) − F(xk−1), sk−1〉 + r‖sk−1‖
2 ≤ (L + r)‖sk−1‖

2. (2.15)

From (2.14) and (2.15) we get
1

(L + r)
≤ νk ≤

1
r
. (2.16)

Now, to show (2.13), for k = 0, FT
k dk = −‖Fk‖

2, thus τ = 1 and the result holds. When k , 0, If
YT

k−1dk−1 ≤ µ‖Fk‖‖dk−1‖, then from (2.11),

FT
k dk = −νk‖Fk‖

2,

using (2.16), we have

FT
k dk ≤ −

1
(L + r)

‖Fk‖
2,

and (2.13) holds by taking τ = 1
L+r .

On the other hand, if YT
k−1dk−1 > µ‖Fk‖‖dk−1‖, multiplying (2.11) by FT

k we obtain

FT
k dk = − νk‖Fk‖

2 +

[
(1 − θk)

‖Fk‖
2

YT
k−1dk−1

+ θk
‖Fk‖

2

max{−FT
k dk−1, γ‖dk−1‖}

]
FT

k dk−1

≤ −νk‖Fk‖
2 + (1 − θk)

‖Fk‖
2

YT
k−1dk−1

FT
k dk−1 + θk

‖Fk‖
2FT

k dk−1

−FT
k dk−1

= −νk‖Fk‖
2 + (1 − θk)

‖Fk‖
2

YT
k−1dk−1

FT
k dk−1 − θk‖Fk‖

2

≤ −νk‖Fk‖
2 + (1 − θk)

‖Fk‖
2

YT
k−1dk−1

FT
k dk−1

≤ −νk‖Fk‖
2 +

‖Fk‖
2

YT
k−1dk−1

FT
k dk−1

= −νk‖Fk‖
2 +

FT
k dk−1

YT
k−1dk−1

]‖Fk‖
2

≤ −νk‖Fk‖
2 +
‖Fk‖‖dk−1‖

YT
k−1dk−1

‖Fk‖
2(by cauchy-schwarz inequality)

< −νk‖Fk‖
2 +
‖Fk‖‖dk−1‖

µ‖Fk‖‖dk−1‖
‖Fk‖

2

≤ −

[
1

(L + r)
−

1
µ

]
‖Fk‖

2.

(2.17)
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The last inequality follows from (2.16). By letting τ = ( 1
L+r −

1
µ
) > 0, the required result holds. �

Lemma 2.5. Let {dk} be given by (2.11), then there are some constants p1 > 0, m1 > 0 and m2 > 0 for
which

‖dk‖ ≤

p1‖Fk‖, if YT
k−1dk−1 ≤ µ‖Fk‖‖dk−1‖,

m1‖Fk‖ + m2‖Fk‖
2, otherwise.

(2.18)

Proof. If YT
k−1dk−1 ≤ µ‖Fk‖‖dk−1‖,

‖dk‖ = νk‖Fk‖.

Using (2.16), we have
‖dk‖ ≤ p1‖Fk‖,

where p1 =
1
r
. However, if YT

k−1dk−1 > µ‖Fk‖‖dk−1‖, then

‖dk‖ = νk‖Fk‖ + (1 − θk)
‖Fk‖

2‖dk−1‖

|YT
k−1dk−1|

+ θk
‖Fk‖

2‖dk−1‖

max{−FT
k dk−1, γ‖dk−1‖}

≤ νk‖Fk‖ +
‖Fk‖

2‖dk−1‖

|YT
k−1dk−1|

+
‖Fk‖

2‖dk−1‖

γ‖dk−1‖

≤ νk‖Fk‖ +
‖Fk‖

2‖dk−1‖

µ‖Fk‖‖dk−1‖
+
‖Fk‖

2

γ

≤ (νk +
1
µ

)‖Fk‖ +
1
γ
‖Fk‖

2

≤ (p1 +
1
µ

)‖Fk‖ +
1
γ
‖Fk‖

2

≤ m1‖Fk‖ + m2‖Fk‖
2,

(2.19)

where m1 = p1 + 1
µ
, p1 = 1

r and m2 = 1
γ
. �

Lemma 2.6. Suppose (Assumption1) - (Assumption3) hold, then the sequences {xk} and {zk} generated
by Algorithm 2.2 are bounded. Also,

lim
k→∞

Λk‖dk‖ = 0, (2.20)

and
lim
k→∞
‖xk+1 − xk‖ = 0. (2.21)

Proof. Let x̃ be a solution of problem (1.1), using monotonicity from Assumption 1 we have

〈F(zk), xk − x̃〉 = 〈F(zk), xk − zk + zk − x̃〉

= 〈F(zk), xk − zk〉 + 〈F(zk) − F(x̃), zk − x̃〉

≥ 〈F(zk), xk − zk〉.

(2.22)

Using the above Eq (2.22) and xk+1 we obtain

‖xk+1 − x̃‖2 =

∥∥∥∥∥∥PΩ

[
xk − δ

〈F(zk), xk − zk〉

‖F(zk)‖2
F(zk)

]
− x̃

∥∥∥∥∥∥2
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≤

∥∥∥∥∥xk − x̃ − δ
〈F(zk), xk − zk〉

‖F(zk)‖2
F(zk)

∥∥∥∥∥2

= ‖xk − x̃‖2 − 2δ
〈F(zk), xk − zk〉

‖F(zk)‖2
〈F(zk), xk − x̃〉 + δ2 〈F(zk), xk − zk〉

2

‖F(zk)‖2

≤ ‖xk − x̃‖2 − 2δ
〈F(zk), xk − zk〉

‖F(zk)‖2
〈F(zk), xk − zk〉 + δ2 〈F(zk), xk − zk〉

2

‖F(zk)‖2

= ‖xk − x̃‖2 − δ(2 − δ)
〈F(zk), xk − zk〉

2

‖F(zk)‖2
(2.23)

≤ ‖xk − x̃‖2.

Showing that ‖xk − x̃‖ ≤ ‖x0 − x̃‖ for all k and hence {xk} is bounded and lim
k→∞
‖xk − x̃‖ exists. Since {xk}

is bounded, and F is Lipschitz continuous,

‖F(xk)‖ ≤ p, p > 0. (2.24)

Using this and (2.18), we have

‖dk‖ ≤

n1, if YT
k−1dk−1 ≤ µFT

k dk−1,

n2, otherwise,
(2.25)

where n1 = p1 p and n2 = m1 p + m2 p2 and taking M = min{n1, n2}, we have that the direction dk is
bounded. That is

‖dk‖ ≤ M, M > 0. (2.26)

To prove that {zk} is bounded, we know that

zk − xk = Λkdk,

and since we have proved that dk is bounded. This implies {zk} is also bounded. Again, by Lipschitz
continuity,

‖F(zk)‖ ≤ n, n > 0. (2.27)

Now from our line search (2.12), let min{1, ‖F(xk + κβidk)‖
1
c } = ‖F(xk + κβidk)‖

1
c , squaring from both

sides of (2.12) we get
σ2Λ4

k‖dk‖
4‖F(zk)‖

2
c ≤ 〈F(zk), Λkdk〉

2. (2.28)

Also, since 0 < δ < 2, then from (2.23) we have

〈F(zk), xk − zk〉
2 ≤
‖F(zk)‖2(‖xk − x̃‖2 − ‖xk+1 − x̃‖2)

δ(2 − δ)
. (2.29)

This together with (2.28) gives

σ2Λ4
k‖dk‖

4‖F(zk)‖
2
c ≤
‖F(zk)‖2(‖xk − x̃‖2 − ‖xk+1 − x̃‖2)

δ(2 − δ)
. (2.30)

Since lim
k→∞
‖xk − x̃‖ exists and that (2.27) holds, taking the limit as k → ∞ on both sides of (2.30) we

have

AIMS Mathematics Volume 6, Issue 8, 8078–8106.



8086

σ2 lim
k→∞

Λ4
k‖dk‖

4‖F(zk)‖
2
c = 0, (2.31)

but ‖F(zk)‖ , 0, therefore,
lim
k→∞

Λk‖dk‖ = 0. (2.32)

Note that if the min{1, ‖F(xk + Λkdk)‖
1
c } = 1, then, (2.30) becomes

σ2Λ4
k‖dk‖

4 ≤
‖F(zk)‖2(‖xk − x̃‖2 − ‖xk+1 − x̃‖2)

δ(2 − δ)
, (2.33)

and thus (2.32) holds.
Using this and the definition of zk, we obtain

lim
k→∞
‖zk − xk‖ = 0. (2.34)

From the definition of projection operation, we get

lim
k→∞
‖xk+1 − xk‖ = lim

k→∞

∥∥∥∥∥∥PΩ

[
xk − δ

〈F(zk), xk − zk〉

‖F(zk)‖2
F(zk)

]
− xk

∥∥∥∥∥∥
≤ lim

k→∞

∥∥∥∥∥xk − δ
〈F(zk), xk − zk〉

‖F(zk)‖2
F(zk) − xk

∥∥∥∥∥
≤ δ lim

k→∞
‖xk − zk‖

= 0.

(2.35)

�

Lemma 2.7. Suppose (Assumption2) holds, and the sequences {xk} and {zk} are generated by Algorithm
2.2. Then

ΛK ≥ max
{
κ,

τβ‖Fk‖
2

(L + σ)‖dk‖
2 ,

τβ‖Fk‖
2

(L + σ‖F(xk + κβi−1dk)‖
1
c )‖dk‖

2

}
. (2.36)

Proof. From (2.12), if Λk , κ, then Λ̂k = Λkβ
−1 does not satisfy (2.12), that is,

−〈F(xk + Λ̂kdk), dk〉 < σ‖dk‖
2Λ̂k min{1, ‖F(xk + Λ̂kdk)‖

1
c }.

Now let the min{1, ‖F(xk + Λ̂kdk)‖
1
c } = ‖F(xk + Λ̂kdk)‖

1
c . Using (2.13) and (Assumption2), we have

τ‖Fk‖
2 ≤ −FT

k dk

= (F(xk + Λ̂kdk) − Fk)T dk − 〈F(xk + Λ̂kdk), dk〉

≤ ‖F(xk + Λ̂kdk) − F(xk)‖‖dk‖ − 〈F(xk + Λ̂kdk), dk〉

≤ L‖xk + Λ̂kdk − xk‖‖dk‖ + σΛ̂k‖dk‖
2‖F(xk + Λ̂kdk)‖

1
c

≤ Λ̂kL‖dk‖
2 + σΛ̂k‖dk‖

2‖F(xk + Λ̂kdk)‖
1
c

≤ Λ̂k‖dk‖
2(L + σ‖F(xk + Λ̂kdk)‖

1
c ).
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Therefore,

Λ̂k ≥
τ‖Fk‖

2

(L + σ‖F(xk + Λ̂kdk)‖
1
c )‖dk‖

2
, (2.37)

substituting Λ̂k = Λkβ
−1 and solving for Λk we get

Λk ≥
τβ‖Fk‖

2

(L + σ‖F(xk + κβi−1dk)‖
1
c )‖dk‖

2
. (2.38)

�

On the other hand, if min{1, ‖F(xk + Λ̂kdk)‖
1
c } = 1, then (2.38) reduces to

Λk ≥
τβ‖Fk‖

2

(L + σ)‖dk‖
2 . (2.39)

Combining (2.38) and (2.39), we get

ΛK ≥ max
{
κ,

τβ‖Fk‖
2

(L + σ)‖dk‖
2 ,

τβ‖Fk‖
2

(L + σ‖F(xk + κβi−1dk)‖
1
c )‖dk‖

2

}
. (2.40)

Theorem 2.8. Suppose that (Assumption1-Assumption3) hold and let the sequence {xk} be generated
by Algorithm 2.2, then

lim inf
k→∞

‖F(xk)‖ = 0. (2.41)

Proof. We prove by contradiction. Suppose (2.41) is not satisfied, then there exists α > 0 such that
∀k ≥ 0,

‖F(xk)‖ ≥ α. (2.42)

From Eqs (2.13) and (2.42), we obtain ∀k ≥ 0,

‖dk‖ ≥ τα. (2.43)

We multiply ‖dk‖ on both sides of (2.36), and from (2.26) and (2.42), we get

Λk‖dk‖ ≥ max
{
κ,

τβ‖Fk‖
2

(L + σ)‖dk‖
2 ,

τβ‖Fk‖
2

(L + σ‖F(xk + κβi−1dk)‖
1
c )‖dk‖

2

}
‖dk‖

≥ max
{
α,

τβα2

(L + σ)M
,

τβα2

(L + σ‖F(xk + κβi−1dk)‖
1
c )M

}
.

(2.44)

Taking limit as k → ∞ on both sides, we obtain

lim
k→∞

Λk‖dk‖ > 0, (2.45)

which contradicts Eq (2.32). Therefore,

lim inf
k→∞

‖F(xk)‖ = 0. (2.46)

�
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3. Numerical experiments

In this section, we give the numerical experiments in order to depict the advantages and the
performance of our proposed algorithm (MDY) in comparison with the projected Dai-Yuan
derivative-free algorithm (PDY) by Liu and Feng [22]. All codes are written on Matlab R2019b and
run on a PC of corei3-4005U processor, 4 GB RAM and 1.70 GHZ CPU.

In MDY, the parameters are choosen as follows: r = 0.001, θk = 1/(k + 1), µ = 1.9, γ = 0.9,
σ = 0.02, c = 2, κ = 1, β = 0.70 and δ = 1.1. The parameters in the PDY algorithm are maintained
as exactly as they are reported in [22]. Based on this setting, we consider nine test problems with
eight different initial points and tested them on five different dimensions, n = 1000, n = 5000, n =

10000, n = 50000 and n = 100000. We used ‖Fk‖ < 10−6 as stopping criteria and denoted failure by
“-” whenever the number of iterations exceeds 1000 and the stopping criterion is not satisfied. The test
problems are listed below, where the function F is taken as F(x) = ( f1(x), f2(x), . . . , fn(x))T .

Problem 1 [26].
f1(x) = ex1 − 1
fi(x) = exi + xi − 1, for i = 1, 2, ..., n, and Ω = Rn

+.

Problem 2 [34] Modified Logarithmic Function.

fi(x) = ln(xi + 1) −
xi

n
, for i = 2, 3, ..., n,

and Ω = {x ∈ Rn :
n∑

i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 [35] Nonsmooth Function.

fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n,

and Ω = {x ∈ Rn :
n∑

i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n}.

Problem 4 [36]

fi(x) = min
{
min{|xi|, x2

i },max{|xi|, x3
i }
}

for i = 1, 2, 3, ..., n and Ω = Rn
+.

Problem 5 [37] Strictly Convex Function.

fi(x) = exi − 1, for i = 1, 2, ..., n,
and Ω = Rn

+.

Problem 6
fi(x) =

i
n

exi − 1, for i = 1, 2, ..., n,

and Ω = Rn
+.
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Problem 7 [38] Tridiagonal Exponential Function

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for i = 2, ..., n − 1,
fn(x) = xn − ecos(h(xn−1+xn)),

h =
1

n + 1
and Ω = Rn

+.

Problem 8 [22]

f1(x) =
5
2

x1 + x2 − 1,

fi(x) = xi−1 +
5
2

xi + xi+1 − 1, for i = 1, 2, ..., n,

fn(x) = xn−1 +
5
2

xn − 1 and Ω = Rn
+.

Problem 9 [26]
fi(x) = exi

2
+ 1.5 sin(2xi) − 1, for i = 1, 2, ..., n,

and Ω = Rn
+.

The results of our experiments are shown in Tables 1–9 based on the number of iterations denoted
as (ITER), number of function evaluations (FVAL), CPU time (TIME), and the norm of the function
(NORM) when the solution was obtained. Looking at the reported results, it can be observed that the
proposed MDY algorithm outperformed the PDY algorithm in most of the problems by having the least
ITER, FVAL and TIME.
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Table 1. Numerical results of the PDY and MDY algorithms on Problem 1 with given initial
points and dimensions.

PDY MDY
DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 26 54 0.56086 2.43E-07 1 2 0.0171 0.00E+00
x2 36 74 0.11293 3.49E-07 3 4 0.0523 0.00E+00
x3 42 85 0.091373 8.84E-07 6 7 0.0311 1.99E-14
x4 51 104 0.11197 9.89E-07 9 10 0.0293 0.00E+00
x5 24 50 0.13649 7.08E-07 9 10 0.0392 0.00E+00
x6 40 82 0.061757 3.16E-07 11 12 0.0155 0.00E+00
x7 51 104 0.096776 9.89E-07 9 10 0.0157 0.00E+00
x8 33 68 0.065298 7.09E-07 8 9 0.0179 0.00E+00

5000

x1 34 70 0.61141 9.63E-09 1 2 0.0561 0.00E+00
x2 27 56 0.34817 1.30E-08 4 5 0.0586 0.00E+00
x3 42 85 1.2759 8.84E-07 6 7 0.0296 1.99E-14
x4 53 107 0.2958 7.98E-07 8 9 0.0441 0.00E+00
x5 25 52 0.37603 7.92E-07 8 9 0.0369 0.00E+00
x6 36 74 0.35124 3.44E-07 11 12 0.0472 0.00E+00
x7 52 106 1.2879 7.98E-07 8 9 0.1098 0.00E+00
x8 30 62 0.13964 7.92E-07 8 9 0.0776 0.00E+00

10000

x1 33 68 1.0889 6.22E-09 1 2 0.0153 0.00E+00
x2 29 60 0.23701 2.14E-08 8 9 0.0538 4.54E-07
x3 42 85 1.305 8.84E-07 6 7 0.0678 1.99E-14
x4 47 95 1.5416 5.62E-07 8 9 0.0616 0.00E+00
x5 26 54 0.23998 5.60E-07 8 9 0.0622 0.00E+00
x6 41 84 0.38904 1.10E-07 11 12 0.0844 0.00E+00
x7 47 95 1.2676 5.62E-07 8 9 0.3386 0.00E+00
x8 29 60 0.27526 5.60E-07 8 9 0.1665 0.00E+00

50000

x1 37 76 1.4006 7.60E-09 1 2 0.0489 0.00E+00
x2 28 58 0.83132 8.48E-08 3 4 0.0982 0.00E+00
x3 42 85 2.0342 8.84E-07 6 7 0.1496 1.99E-14
x4 51 104 1.9564 6.27E-07 8 9 0.2306 0.00E+00
x5 27 56 2.007 6.26E-07 8 9 0.2302 0.00E+00
x6 45 92 1.4682 2.84E-07 11 12 0.8319 0.00E+00
x7 51 104 1.7938 6.27E-07 8 9 0.2874 0.00E+00
x8 27 56 0.79777 6.26E-07 8 9 0.2378 0.00E+00

100000

x1 32 66 1.8828 3.23E-07 1 2 0.0875 0.00E+00
x2 21 44 2.7454 7.70E-07 3 4 0.2164 0.00E+00
x3 42 85 2.4577 8.84E-07 6 7 0.3210 1.99E-14
x4 51 104 3.228 7.08E-07 8 9 0.4317 0.00E+00
x5 28 58 1.9717 7.07E-07 8 9 1.0072 0.00E+00
x6 32 66 1.6766 7.38E-07 11 12 0.6324 0.00E+00
x7 51 104 2.8174 7.08E-07 8 9 0.4355 0.00E+00
x8 28 58 1.9569 7.07E-07 8 9 0.4106 0.00E+00
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Table 2. Numerical results of the PDY and MDY algorithms on Problem 2 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 4 10 0.0685 3.60E-08 9 10 0.0090 7.50E-07
x2 2 6 0.0092 5.17E-07 6 7 0.0062 4.70E-08
x3 18 38 0.0273 4.14E-07 11 12 0.0199 2.22E-07
x4 27 56 0.0351 1.81E-07 13 14 0.0205 5.83E-08
x5 27 56 0.0233 1.81E-07 13 14 0.0262 5.83E-08
x6 20 42 0.0763 8.06E-07 11 12 0.0159 2.39E-07
x7 27 56 0.0610 1.81E-07 13 14 0.0317 5.83E-08
x8 23 48 0.0350 4.78E-07 13 14 0.0121 6.03E-08

5000

x1 4 10 0.1548 6.26E-09 9 10 0.0423 6.55E-07
x2 2 6 0.1020 1.75E-07 8 9 0.0420 1.54E-07
x3 30 62 0.3021 1.54E-07 11 12 0.0947 9.29E-08
x4 22 46 0.4080 8.16E-07 15 16 0.0675 1.14E-07
x5 22 46 0.5070 8.16E-07 15 16 0.0639 1.14E-07
x6 18 38 0.0891 5.88E-08 11 12 0.0546 5.43E-07
x7 22 46 0.8183 8.16E-07 15 16 0.0676 1.14E-07
x8 22 46 0.1619 7.35E-07 15 16 0.0547 1.15E-07

10000

x1 4 10 0.0435 3.62E-09 8 9 0.0727 3.82E-07
x2 2 6 0.0229 1.21E-07 8 9 0.1028 3.83E-07
x3 28 58 0.8568 1.05E-07 11 12 0.0785 1.12E-07
x4 25 52 1.1158 9.00E-07 16 17 0.1164 7.17E-07
x5 25 52 0.1869 9.00E-07 16 17 0.1788 7.17E-07
x6 15 32 0.1591 5.56E-07 11 12 0.0731 4.53E-07
x7 25 52 0.3560 9.00E-07 16 17 0.1178 7.17E-07
x8 27 56 1.0754 2.32E-07 16 17 0.0988 7.27E-07

50000

x1 5 12 0.1702 9.31E-09 8 9 0.3421 4.49E-07
x2 2 6 0.1391 6.32E-08 8 9 0.6900 7.60E-07
x3 21 44 0.9208 6.18E-10 11 12 0.3741 1.32E-07
x4 23 48 1.5209 1.82E-07 14 15 0.3856 9.11E-07
x5 23 48 0.5798 1.82E-07 14 15 0.8571 9.11E-07
x6 15 32 0.5612 2.59E-07 10 11 0.3134 4.57E-07
x7 23 48 1.4190 1.82E-07 14 15 0.3989 9.11E-07
x8 23 48 0.8190 1.99E-07 14 15 0.6855 9.12E-07

100000

x1 6 14 0.3599 1.10E-09 8 9 0.4518 4.95E-07
x2 2 6 0.1567 5.40E-08 6 7 0.3181 3.56E-07
x3 29 60 2.2696 6.52E-08 11 12 0.8592 1.35E-07
x4 20 42 1.6957 3.99E-07 15 16 0.9457 4.77E-07
x5 20 42 1.5530 3.99E-07 15 16 0.8649 4.77E-07
x6 15 32 1.0689 2.34E-07 10 11 0.4211 4.56E-07
x7 20 42 1.6885 3.99E-07 15 16 1.2478 4.77E-07
x8 20 42 1.7092 3.97E-07 15 16 1.2242 4.77E-07
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Table 3. Numerical results of the PDY and MDY algorithms on Problem 3 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 1 3 0.0285 0.00E+00 1 2 0.0562 0.00E+00
x2 1 3 0.0032 0.00E+00 1 2 0.0028 0.00E+00
x3 1 3 0.0042 0.00E+00 1 2 0.0026 0
x4 1 3 0.0029 0.00E+00 1 2 0.0023 0.00E+00
x5 1 3 0.0043 0.00E+00 1 2 0.0070 0.00E+00
x6 1 3 0.0029 0.00E+00 1 2 0.0027 0
x7 1 3 0.0037 0.00E+00 1 2 0.0134 0.00E+00
x8 1 3 0.0045 0.00E+00 1 2 0.0023 0.00E+00

5000

x1 1 3 0.0124 0.00E+00 1 2 0.0056 0.00E+00
x2 1 3 0.0238 0.00E+00 1 2 0.0064 0.00E+00
x3 1 3 0.0103 0.00E+00 1 2 0.0071 0
x4 1 3 0.0246 0.00E+00 1 2 0.0053 0.00E+00
x5 1 3 0.0158 0.00E+00 1 2 0.0053 0.00E+00
x6 1 3 0.0194 0.00E+00 1 2 0.0085 0
x7 1 3 0.0054 0.00E+00 1 2 0.0182 0.00E+00
x8 1 3 0.0188 0.00E+00 1 2 0.0092 0.00E+00

10000

x1 1 3 0.0159 0.00E+00 1 2 0.0111 0.00E+00
x2 1 3 0.0389 0.00E+00 1 2 0.0103 0.00E+00
x3 1 3 0.0707 0.00E+00 1 2 0.0086 0
x4 1 3 0.0514 0.00E+00 1 2 0.0178 0.00E+00
x5 1 3 0.0095 0.00E+00 1 2 0.0207 0.00E+00
x6 1 3 0.0700 0.00E+00 1 2 0.0116 0
x7 1 3 0.1447 0.00E+00 1 2 0.0085 0.00E+00
x8 1 3 0.0666 0.00E+00 1 2 0.0131 0.00E+00

50000

x1 1 3 0.0354 0.00E+00 1 2 0.0339 0.00E+00
x2 1 3 0.0306 0.00E+00 1 2 0.0296 0.00E+00
x3 1 3 0.0452 0.00E+00 1 2 0.0314 0
x4 1 3 0.0981 0.00E+00 1 2 0.0288 0.00E+00
x5 1 3 0.2769 0.00E+00 1 2 0.0285 0.00E+00
x6 1 3 0.0522 0 1 2 0.0567 0
x7 1 3 0.0429 0.00E+00 1 2 0.0677 0.00E+00
x8 1 3 0.0304 0.00E+00 1 2 0.0317 0.00E+00

100000

x1 1 3 0.1861 0.00E+00 1 2 0.0528 0.00E+00
x2 1 3 0.0571 0.00E+00 1 2 0.0665 0.00E+00
x3 1 3 0.2492 0 1 2 0.0574 0
x4 1 3 0.1440 0.00E+00 1 2 0.0518 0.00E+00
x5 1 3 0.2074 0.00E+00 1 2 0.1099 0.00E+00
x6 1 3 0.1527 0 1 2 0.0913 0
x7 1 3 0.1820 0.00E+00 1 2 0.0632 0.00E+00
x8 1 3 0.2676 0.00E+00 1 2 0.0525 0.00E+00
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Table 4. Numerical results of the PDY and MDY algorithms on Problem 4 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 1 2 0.0370 0.00E+00 1 2 0.0315 0.00E+00
x2 1 3 0.0192 0 1 2 0.0041 0
x3 1 3 0.0051 0 1 2 0.0035 0
x4 1 3 0.0163 0.00E+00 1 2 0.0028 0.00E+00
x5 1 3 0.0208 0.00E+00 1 2 0.0056 0.00E+00
x6 1 3 0.0895 0 1 2 0.0076 0
x7 1 3 0.0048 0.00E+00 1 2 0.0045 0.00E+00
x8 1 3 0.0036 0.00E+00 1 2 0.0043 0.00E+00

5000

x1 1 2 0.0186 0.00E+00 1 2 0.0174 0.00E+00
x2 1 3 0.0506 0 1 2 0.0124 0
x3 1 3 0.0075 0 1 2 0.0077 0
x4 1 3 0.0136 0.00E+00 1 2 0.0266 0.00E+00
x5 1 3 0.0700 0.00E+00 1 2 0.0216 0.00E+00
x6 1 3 0.0195 0 1 2 0.0153 0
x7 1 3 0.0145 0.00E+00 1 2 0.0098 0.00E+00
x8 1 3 0.0121 0.00E+00 1 2 0.0141 0.00E+00

10000

x1 1 2 0.0070 0.00E+00 1 2 0.0119 0.00E+00
x2 1 3 0.1034 0 1 2 0.0196 0
x3 1 3 0.0135 0 1 2 0.0158 0
x4 1 3 0.0361 0.00E+00 1 2 0.0332 0.00E+00
x5 1 3 0.0544 0.00E+00 1 2 0.0394 0.00E+00
x6 1 3 0.0638 0 1 2 0.1124 0
x7 1 3 0.0252 0.00E+00 1 2 0.0225 0.00E+00
x8 1 3 0.0146 0.00E+00 1 2 0.0371 0.00E+00

50000

x1 1 2 0.0343 0.00E+00 1 2 0.0865 0.00E+00
x2 1 3 0.1957 0 1 2 0.0819 0
x3 1 3 0.0459 0 1 2 0.0964 0
x4 1 3 0.2370 0.00E+00 1 2 0.0841 0.00E+00
x5 1 3 0.1080 0.00E+00 1 2 0.0739 0.00E+00
x6 1 3 0.0633 0 1 2 0.0821 0
x7 1 3 0.2133 0.00E+00 1 2 0.1969 0.00E+00
x8 1 3 0.1406 0.00E+00 1 2 0.0873 0.00E+00

100000

x1 1 2 0.1164 0.00E+00 1 2 0.1440 0.00E+00
x2 1 3 0.2909 0 1 2 0.2257 0
x3 1 3 0.1400 0 1 2 0.0981 0
x4 1 3 0.3750 0.00E+00 1 2 0.1590 0.00E+00
x5 1 3 0.4534 0.00E+00 1 2 0.1982 0.00E+00
x6 1 3 0.2308 0 1 2 0.1476 0
x7 1 3 0.4785 0.00E+00 1 2 0.1296 0.00E+00
x8 1 3 0.2340 0.00E+00 1 2 0.2338 0.00E+00
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Table 5. Numerical results of the PDY and MDY algorithms on Problem 5 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 22 46 0.0222 9.21E-07 9 10 0.0444 1.48E-07
x2 21 44 0.0430 6.82E-07 2 3 0.0172 0.00E+00
x3 19 39 0.0233 7.03E-07 9 10 0.0142 6.20E-07
x4 23 48 0.0597 5.48E-07 11 12 0.0127 4.08E-07
x5 23 48 0.0573 5.48E-07 11 12 0.0116 4.08E-07
x6 19 40 0.0357 8.45E-07 8 9 0.0112 1.64E-07
x7 23 48 0.0509 5.48E-07 11 12 0.0105 4.08E-07
x8 23 48 0.0198 5.48E-07 11 12 0.0121 4.73E-07

5000

x1 24 50 0.3187 5.15E-07 3 4 0.0191 0.00E+00
x2 22 46 0.0826 7.62E-07 8 9 0.0300 7.90E-07
x3 19 39 0.0502 7.03E-07 9 10 0.0263 6.20E-07
x4 24 50 0.6055 6.13E-07 12 13 0.0365 9.32E-08
x5 24 50 0.0659 6.13E-07 12 13 0.0433 9.32E-08
x6 19 40 0.0562 8.45E-07 8 9 0.0263 1.79E-07
x7 24 50 0.2314 6.13E-07 12 13 0.0359 9.32E-08
x8 24 50 0.2175 6.13E-07 12 13 0.0715 9.55E-08

10000

x1 24 50 0.9088 7.28E-07 3 4 0.0217 0.00E+00
x2 23 48 1.0124 5.39E-07 8 9 0.1157 7.49E-07
x3 19 39 0.0770 7.03E-07 9 10 0.0461 6.20E-07
x4 24 50 0.1673 8.66E-07 12 13 0.0581 1.97E-07
x5 24 50 0.3174 8.66E-07 12 13 0.0515 1.97E-07
x6 19 40 0.1640 8.45E-07 8 9 0.1526 1.81E-07
x7 24 50 0.4775 8.66E-07 12 13 0.0701 1.97E-07
x8 24 50 0.1529 8.66E-07 12 13 0.0624 2.00E-07

50000

x1 1000 2001 57.2051 - 3 4 0.0639 0.00E+00
x2 24 50 0.6099 6.03E-07 3 4 0.0577 0.00E+00
x3 19 39 0.3208 7.03E-07 9 10 0.1544 6.20E-07
x4 26 54 1.4338 7.40E-07 13 14 0.2169 1.20E-07
x5 26 54 0.5082 7.40E-07 13 14 0.2429 1.20E-07
x6 19 40 0.4547 8.45E-07 8 9 0.2335 1.83E-07
x7 26 54 1.4782 7.40E-07 13 14 0.2546 1.20E-07
x8 26 54 0.4505 7.40E-07 13 14 0.2212 1.21E-07

100000

x1 1000 2001 111.2323 - 3 4 0.1011 0.00E+00
x2 24 50 0.7284 0.00E+00 8 9 0.2502 7.91E-07
x3 19 39 0.9047 7.03E-07 9 10 0.5091 6.20E-07
x4 27 56 0.8660 5.23E-07 13 14 0.5304 1.63E-07
x5 27 56 1.4732 5.23E-07 13 14 0.5062 1.63E-07
x6 19 40 1.0220 8.45E-07 8 9 0.2425 1.83E-07
x7 27 56 1.6349 5.23E-07 13 14 0.4260 1.63E-07
x8 27 56 1.3935 5.23E-07 13 14 0.5942 1.63E-07
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Table 6. Numerical results of the PDY and MDY algorithms on Problem 6 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 44 90 0.0658 1.18E-11 19 20 0.0445 5.53E-07
x2 29 60 0.0381 7.81E-09 17 18 0.0228 6.66E-08
x3 26 54 0.0379 6.89E-07 16 17 0.0188 2.58E-07
x4 31 64 0.0327 6.25E-07 16 17 0.0149 3.89E-08
x5 33 68 0.0308 5.56E-08 29 30 0.0539 3.99E-07
x6 27 56 0.0306 7.55E-07 15 16 0.0155 2.42E-07
x7 31 64 0.0422 6.25E-07 16 17 0.0183 3.89E-08
x8 27 56 0.0372 8.60E-07 28 29 0.0614 8.56E-07

5000

x1 31 64 0.1616 5.94E-07 21 22 0.1470 9.91E-08
x2 34 70 0.4522 8.16E-07 23 24 0.1008 2.64E-07
x3 27 56 0.7265 8.45E-08 23 24 0.0947 8.84E-07
x4 27 56 0.1009 5.59E-07 18 19 0.0651 1.23E-07
x5 34 70 0.4300 3.51E-08 37 38 0.1812 5.97E-08
x6 41 84 0.1106 7.52E-07 23 24 0.0756 1.19E-07
x7 27 56 0.1036 5.59E-07 18 19 0.0748 1.23E-07
x8 34 70 0.3258 2.98E-08 37 38 0.3811 5.11E-08

10000

x1 31 64 1.0425 1.08E-07 20 21 0.1020 7.15E-08
x2 28 58 0.1353 6.94E-07 21 22 0.1216 8.05E-07
x3 28 58 0.6867 6.64E-07 22 23 0.1175 4.11E-08
x4 27 56 0.1326 6.74E-07 28 29 0.2012 5.77E-07
x5 39 80 0.1576 9.58E-07 47 48 0.4850 2.16E-07
x6 25 52 0.5139 3.29E-07 22 23 0.1242 7.33E-07
x7 27 56 1.3498 6.74E-07 28 29 0.4814 5.77E-07
x8 39 80 0.2082 9.54E-07 52 53 0.5935 1.68E-07

50000

x1 38 78 1.2228 3.81E-07 21 22 0.5432 3.12E-07
x2 32 66 2.0428 9.69E-07 25 26 0.5454 3.09E-07
x3 33 68 1.2210 7.92E-07 20 21 0.4772 8.52E-08
x4 29 60 0.6295 7.67E-07 33 34 1.7709 1.82E-08
x5 43 88 1.2302 5.80E-07 54 55 2.5580 3.97E-08
x6 33 68 0.6304 5.82E-07 23 24 0.5140 4.08E-07
x7 29 60 1.6810 7.67E-07 33 34 1.0103 1.82E-08
x8 43 88 0.7733 5.80E-07 54 55 3.3048 4.32E-08

100000

x1 43 88 1.8763 6.08E-07 21 22 0.8796 5.05E-07
x2 34 70 1.9474 6.98E-07 20 21 0.6977 7.14E-07
x3 34 70 1.9860 8.90E-07 19 20 0.7883 1.35E-07
x4 33 68 1.5214 5.29E-07 32 33 2.9599 3.60E-07
x5 45 92 2.1469 5.72E-07 64 65 6.0691 4.87E-07
x6 35 72 1.6323 7.19E-07 22 23 0.9286 5.29E-07
x7 33 68 1.7901 5.29E-07 32 33 2.0214 3.60E-07
x8 45 92 2.9727 5.72E-07 63 64 6.9672 8.49E-07
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Table 7. Numerical results of the PDY and MDY algorithms on Problem 7 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 25 52 0.0393 8.08E-07 9 10 0.0634 7.69E-07
x2 26 54 0.1552 6.16E-07 9 10 0.0105 2.29E-07
x3 26 54 0.5694 6.39E-07 10 11 0.0251 5.26E-07
x4 26 54 0.1853 5.26E-07 10 11 0.0182 2.35E-07
x5 26 54 0.0600 5.26E-07 10 11 0.0177 2.35E-07
x6 26 54 0.0420 6.38E-07 10 11 0.0207 7.79E-08
x7 26 54 0.0874 5.26E-07 10 11 0.0162 2.35E-07
x8 26 54 0.0620 5.26E-07 10 11 0.0250 2.34E-07

5000

x1 26 54 0.1716 9.05E-07 9 10 0.0751 6.03E-07
x2 27 56 0.2699 6.90E-07 10 11 0.0637 2.10E-07
x3 27 56 0.3134 7.16E-07 10 11 0.0550 2.40E-07
x4 27 56 0.1879 5.89E-07 11 12 0.0595 7.07E-08
x5 27 56 0.8405 5.89E-07 11 12 0.0716 7.07E-08
x6 27 56 0.1697 7.16E-07 10 11 0.0543 2.77E-07
x7 27 56 0.1786 5.89E-07 11 12 0.1336 7.07E-08
x8 27 56 0.3122 5.89E-07 11 12 0.0701 7.07E-08

10000

x1 27 56 0.9604 6.40E-07 10 11 0.1228 1.71E-07
x2 28 58 0.2988 7.32E-07 10 11 0.1194 3.88E-07
x3 29 60 0.3063 5.70E-07 10 11 0.0914 3.91E-07
x4 28 58 0.3465 6.25E-07 11 12 0.1108 5.35E-07
x5 28 58 0.8089 6.25E-07 11 12 0.2015 5.35E-07
x6 29 60 1.0545 5.69E-07 10 11 0.1050 3.93E-07
x7 28 58 1.5376 6.25E-07 11 12 0.1228 5.35E-07
x8 28 58 0.5480 6.25E-07 11 12 0.1011 5.35E-07

50000

x1 29 60 1.6703 0.00E+00 7 8 0.2341 8.40E-07
x2 32 66 1.9397 0.00E+00 10 11 0.3769 3.12E-07
x3 33 68 3.8015 0.00E+00 10 11 0.9105 3.07E-07
x4 31 64 2.8722 0.00E+00 10 11 0.4259 7.09E-07
x5 31 64 1.5377 0.00E+00 10 11 0.3419 7.09E-07
x6 33 68 1.7936 0.00E+00 10 11 0.3309 3.07E-07
x7 31 64 1.5968 0.00E+00 10 11 0.3624 7.09E-07
x8 31 64 1.4277 0.00E+00 10 11 0.8288 7.09E-07

100000

x1 31 64 3.0553 0.00E+00 10 11 0.9843 3.12E-07
x2 34 70 3.2251 0.00E+00 10 11 0.7217 7.84E-08
x3 35 72 3.3118 0.00E+00 9 10 0.7526 5.66E-07
x4 33 68 3.1050 0.00E+00 10 11 1.2116 2.42E-07
x5 33 68 3.0781 0.00E+00 10 11 0.8509 2.42E-07
x6 35 72 3.4062 0.00E+00 9 10 0.7296 5.67E-07
x7 33 68 3.1780 0.00E+00 10 11 0.7927 2.42E-07
x8 33 68 3.0914 0.00E+00 10 11 0.7982 2.42E-07
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Table 8. Numerical results of the PDY and MDY algorithms on Problem 8 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 187 376 0.4150 9.74E-07 22 23 0.0312 4.76E-07
x2 225 452 0.2766 9.68E-07 23 24 0.0282 2.75E-07
x3 205 412 0.2474 9.84E-07 23 24 0.0273 3.97E-07
x4 204 410 0.3133 9.77E-07 24 25 0.0712 8.64E-07
x5 204 410 0.4370 9.77E-07 24 25 0.0553 8.64E-07
x6 226 454 0.8938 9.59E-07 26 27 0.0550 9.85E-07
x7 204 410 0.4095 9.77E-07 24 25 0.0283 8.64E-07
x8 204 410 0.3274 9.77E-07 24 25 0.0349 8.65E-07

5000

x1 191 384 1.3117 9.76E-07 23 24 0.3638 4.85E-07
x2 208 418 2.3451 9.98E-07 21 22 0.1202 5.49E-07
x3 208 418 1.3535 9.66E-07 22 23 0.1095 8.12E-07
x4 205 412 1.4452 9.48E-07 23 24 0.1518 4.57E-07
x5 205 412 1.3220 9.48E-07 23 24 0.1192 4.57E-07
x6 202 406 1.1897 9.74E-07 24 25 0.1190 5.90E-07
x7 205 412 1.4644 9.48E-07 23 24 0.1242 4.57E-07
x8 205 412 0.7725 9.48E-07 23 24 0.1392 4.57E-07

10000

x1 180 362 1.6384 9.95E-07 24 25 0.4626 5.22E-07
x2 219 440 3.2108 9.71E-07 21 22 0.2472 7.44E-07
x3 200 402 1.9769 9.98E-07 24 25 0.3573 2.77E-07
x4 197 396 1.9286 9.86E-07 24 25 0.2675 4.32E-07
x5 197 396 1.7271 9.86E-07 24 25 0.2505 4.32E-07
x6 222 446 1.9256 9.60E-07 24 25 0.3133 4.85E-07
x7 197 396 1.7646 9.86E-07 24 25 0.7206 4.32E-07
x8 197 396 1.9013 9.86E-07 24 25 0.3670 4.33E-07

50000

x1 178 358 5.6703 9.89E-07 23 24 1.0011 2.43E-07
x2 204 410 6.3962 9.76E-07 23 24 0.9521 5.05E-07
x3 201 404 6.5874 9.87E-07 29 30 1.8089 2.98E-07
x4 196 394 6.1046 9.62E-07 24 25 2.0486 4.07E-07
x5 196 394 5.8055 9.62E-07 24 25 1.1312 4.07E-07
x6 198 398 5.9883 9.96E-07 23 24 1.2455 9.10E-07
x7 196 394 5.8655 9.62E-07 24 25 1.8848 4.07E-07
x8 196 394 6.2188 9.62E-07 24 25 1.0326 4.07E-07

100000

x1 181 364 11.8715 9.65E-07 22 23 2.0797 8.40E-07
x2 210 422 13.7964 9.90E-07 192 193 18.2612 9.34E-07
x3 215 432 14.2830 1.00E-06 151 152 13.9538 7.09E-07
x4 212 426 13.6333 9.92E-07 22 23 2.1214 7.18E-07
x5 212 426 13.8869 9.92E-07 22 23 2.1095 7.18E-07
x6 211 424 13.8529 9.60E-07 24 25 2.3077 8.51E-07
x7 212 426 13.8288 9.92E-07 22 23 2.0365 7.18E-07
x8 212 426 13.5868 9.92E-07 22 23 2.0444 7.17E-07
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Table 9. Numerical results of the PDY and MDY algorithms on Problem 9 with given initial
points and dimensions.

PDY MDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 16 34 0.0253 7.23E-07 1 2 0.0417 0.00E+00
x2 16 34 0.0268 8.17E-07 2 3 0.0086 0.00E+00
x3 15 31 0.0695 7.97E-07 5 6 0.0130 3.41E-09
x4 19 40 0.0565 4.77E-07 12 13 0.0170 0.00E+00
x5 19 40 0.0995 4.77E-07 12 13 0.0214 0.00E+00
x6 17 36 0.0403 4.98E-07 11 12 0.0149 0.00E+00
x7 19 40 0.0750 4.77E-07 12 13 0.0322 0.00E+00
x8 19 40 0.0627 4.83E-07 12 13 0.0355 0.00E+00

5000

x1 17 36 0.9394 6.06E-07 1 2 0.0172 0.00E+00
x2 17 36 0.3665 6.85E-07 3 4 0.0420 0.00E+00
x3 15 31 0.1176 7.97E-07 5 6 0.0259 3.41E-09
x4 20 42 0.2467 4.02E-07 12 13 0.0782 0.00E+00
x5 20 42 0.1706 4.02E-07 12 13 0.4931 0.00E+00
x6 17 36 0.2692 4.99E-07 4 5 0.0382 0.00E+00
x7 20 42 0.3417 4.02E-07 12 13 0.0810 0.00E+00
x8 20 42 0.2955 4.03E-07 12 13 0.0718 0.00E+00

10000

x1 17 36 0.7680 8.57E-07 1 2 0.0211 0.00E+00
x2 17 36 0.1949 9.69E-07 3 4 0.0487 0.00E+00
x3 15 31 0.8021 7.97E-07 5 6 0.0414 3.41E-09
x4 20 42 0.2540 5.69E-07 12 13 0.2491 0.00E+00
x5 20 42 0.7110 5.69E-07 12 13 0.3815 0.00E+00
x6 17 36 0.3225 4.99E-07 4 5 0.0871 0.00E+00
x7 20 42 0.7992 5.69E-07 12 13 0.1418 0.00E+00
x8 20 42 1.2002 5.70E-07 12 13 0.1433 0.00E+00

50000

x1 21 44 1.2440 9.52E-07 1 2 0.0817 0.00E+00
x2 18 38 1.3985 8.13E-07 4 5 0.1564 0.00E+00
x3 15 31 0.4610 7.97E-07 5 6 0.1678 3.41E-09
x4 20 42 1.9300 7.76E-07 12 13 0.9732 0.00E+00
x5 20 42 0.8548 7.76E-07 12 13 0.6015 0.00E+00
x6 17 36 1.0072 4.99E-07 4 5 0.1133 0.00E+00
x7 20 42 1.2552 7.76E-07 12 13 0.5539 0.00E+00
x8 20 42 1.1311 7.76E-07 12 13 0.9251 0.00E+00

100000

x1 23 48 2.2913 3.79E-07 1 2 0.2783 0.00E+00
x2 19 40 1.6232 4.31E-07 3 4 0.3007 0.00E+00
x3 15 31 1.1872 7.97E-07 5 6 0.3306 3.41E-09
x4 21 44 2.1965 4.11E-07 11 12 0.9774 0.00E+00
x5 21 44 2.0734 4.11E-07 11 12 1.6032 0.00E+00
x6 17 36 1.4438 4.99E-07 4 5 0.2584 0.00E+00
x7 21 44 2.0290 4.11E-07 11 12 0.8957 0.00E+00
x8 21 44 1.9219 4.11E-07 11 12 0.9805 0.00E+00

In addition, to further visualize the comparison of the MDY algorithm with the PDY algorithm
graphically, we adopt the well- known Dolan and Morè performance profile [39] as reported in Figures

AIMS Mathematics Volume 6, Issue 8, 8078–8106.



8099

1–3. From Figures 1 and 2, it can be seen that the MDY algorithm outperformed the PDY algorithm
significantly. The MDY algorithm solves about 93% of the problems considered with least ITER and
99% of the problems with least FVAL as opposed to the PDY method with about 28% and 3% problems
for the ITER and FVAL respectively. Moreover, in terms of TIME, Figure 3 indicated that the MDY
algorithm still performs much better than the PDY algorithm by solving around 88% of the problems in
lesser time. From these figures, we can conclude that the numerical performance of the MDY algorithm
has great advantage when compared with the existing PDY algorithm.

Figure 1. Performance profile on number of iterations.

Figure 2. Performance profile on function evaluations.
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Figure 3. Performance profile on CPU time.

4. Application in compressive sensing

The problem of sparse signal reconstruction has attracted the attention of many researchers in the
field of signal processing, machine learning and computer vision. This problem involves solving
minimization of an objective function containing quadratic `2 error term and a sparse `1 regularization
term as follows

min
x

1
2
‖h − Ax‖22 + ρ‖x‖1, (4.1)

where x ∈ Rn, h ∈ Rm, A ∈ Rm×n (m << n) is a linear operator, ρ ≥ 0, ‖x‖2 is the Euclidean norm of
x and ‖x‖1 =

∑n
i=1 |xi| is the `1−norm of x.

A lot of methods have been developed for solving (4.1) some of which can be found in [40–45].
Figueiredo et al. [43] consider reformulating (4.1) into a quadratic problem by expressing x ∈ Rn into
two parts as

x = t − y, t ≥ 0, y ≥ 0,

where ti = (xi)+, yi = (−xi)+ for all i = 1, 2, ..., n, and (.)+ = max{0, .}. Also, we have ‖x‖1 = eT
n t + eT

n y,
where en = (1, 1, ..., 1)T ∈ Rn. From this reformulation, we can write (4.1) as

min
t,y

1
2
‖h − A(t − y)‖22 + ρeT

n t + ρeT
n y, t ≥ 0, y ≥ 0, (4.2)

from [43], Eq (4.2) can be written as

min
z

1
2

zT Ez + cT z, such that z ≥ 0, (4.3)

where z =

(
t
y

)
, c = ωe2n +

(
−a
a

)
, a = AT h, E =

(
AT A −AT A
−AT A AT A

)
.

It is not difficult to see that E is a positive semi-definite showing that problem (4.3) is quadratic
programming problem.
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Xiao et al [17] further translated (4.3) into a linear variable problem, equivalently, a linear
complementary problem and the variable z solves the linear complementary problem provided that it
solves the nonlinear equation:

A(z) = min{z, Ez + c} = 0, (4.4)

where A is a vector-valued function. In [8, 46], it is proved that the function A(z) is continuous and
monotone. Thus, problem (4.1) is equivalent to problem (1.1). Therefore, the algorithm we proposed
in this work to solve (1.1) can efficiently solve (4.1) as well.

As an application, we consider applying our proposed algorithm in reconstructing a sparse signal
of length n from k observations using mean squared error (MSE) as a metric for assessing quality
reconstruction. The (MSE) is defined as

MS E =
1
n
‖s − s̃‖2,

where s represents the original signal and s̃ the restored signal. We choose n = 212, k = 210 to be the
size of the signal and the original signal contains 27 randomly nonzero elements. The measurement
y contains noise, y = As + ω, where ω is the Gaussian noise distributed as N(0, 10−4) and A is the
Gaussian matrix generated by command randn(m, n), in Matlab.

We compared the performance of our proposed algorithm (MDY) with SGCS proposed in [8].
The parameters in SGCS are maintained as they are in [8], while in MDY we choose r = 0.001,
θ = 1/(k + 1)2, µ = 1.1, γ = 0.1, σ = 0.01, Λ = 1, and β = 0.65. Each code is run with same initial
point and continuation technique on parameter µ. We only focused on the convergence behaviour of
each method to obtain a solution with similar accuracy. We initialized the experiments by x0 = AT y
and terminated the iteration when the relative change in the objective function satisfies

∣∣∣∣∣ f (xk) − f (xk−1)
f (xk−1)

∣∣∣∣∣ < 10−5.

The performance of both MDY and SGCS are shown in Figures 4 and 5. Figure 4 shows that both
the MDY and the SGCS methods recover the signal. However, looking at the reported metrics of each
method, it can be observed that the MDY method is more efficient since it has a lesser MSE, and its
recovery has fewer number of iterations and CPU time. To show the performance of both methods
graphically, we plotted four graphs (see Figure 5) demonstrating the convergence behaviour of the
MDY method and SGCS method based on the MSE, objective function, number of iterations and CPU
time. From Figure 5, it can be observed that the proposed MDY method has faster convergence rate
compared to the SGCS method. This shows that the MDY method can be a good alternative solver for
signal recovery problems.
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Figure 4. From top to bottom: the original signal, the measurement, and the recovery signals
by SGCS and MDY methods.

Figure 5. Comparison of SGCS and MDY methods based on MSE, number of iterations,
objective function and CPU time.
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5. Conclusions

In the work, a spectral conjugate gradient algorithm is proposed. The search direction uses a convex
combination of the well known DY conjugate gradient parameter and a modified conjugate descent
parameter. The search direction is suffiently descent, and global convergence of the proposed algorithm
is proved under some assumptions. Numerical experiments are reported to show the efficiency of the
algorithm in comparison with the PDY algorithm proposed in [22]. In addition, an application of
the proposed algorithm is shown in signal recovery and the result is compared with SGCS algorithm
proposed in [8]. Based on the results obtained, it can be observed that the proposed algorithm has a
better performance than the PDY and SGCS algorithms in numerical and signal recovery experiments
respectively. Future work include applying the new proposed algorithm to solve 2D robotic motion
control as presented in [47].
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