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1. Introduction

The nonlinear dispersive long wave equations (DLWEs) are a class of important nonlinear partial
differential equations (PDEs), which have widely arisen in oceanic water waves [1], fluid or plasma
mechanics [2], dynamics [3] and other fields [4–10]. The solitary wave solutions of the DLWEs can
be used to describe nonlinear wave phenomena such as dispersion, dissipation, diffusion, reaction,
convection, etc. As far as we know, there exist some methods to find exact solutions of DLWEs,
it is concluded that: the Bácklund transformations method and the Hirota bilinear method [1, 2], the
bifurcation method of planar dynamical systems [3], the modified Clarkson and Kruskal’s (CK’s) direct
method [4], the variable separation approach [5], etc.

In this paper, we consider the following (2+1)-dimensional nonlinear dispersive long wave system:

uty + vxx + 1
2 (u2)xy = 0,

vt + (u + uv + uxy)x = 0,
(1.1)
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where u(x, y, t) is the horizontal velocity, v(x, y, t) represents the wave altitude above the undisturbed
water surface, t denotes the time, and (x, y) stands for the spreading plane. In fact, the system (1.1)
can be used to solve nonlinear evolutional problems in two spatial dimensions by inverse spectral
transform, which was first obtained by Boiti [6] as a compatibility condition for a weak Lax pair. It is
a hot topic to find the traveling wave solution of nonlinear partial differential equations (PDEs). Zhou
[3] utilized dynamical systems and the numerical simulation method to study dynamical behaviors
of travelling waves. Lou [7] gained nine types of two-dimensional partial differential equation and
thirteen types of the ordinary differential equation with the help of the direct and nonclassical method.
Zhang [8] obtained a kind of special multisoliton-like solutions of the system by using the Bácklund
transform. Yomba [9] got some new soliton-like solutions in virtue of a modified extending tanh
method. Elgarayhi [10] employed Jacobi elliptic functions to construct periodic wave solutions of the
system (1.1). Recently, Zhu and Xia et al. studied the exact solutions of the Klein-Gordon equation
and Hirota-Satsuma coupled KdV system [11] and Ginzburg-Landau equation [12] via method of the
bifurcation theory of planar dynamical system. Zhang and Xia et al. also employed dynamical system
method to obtain the exact solutions of the generalized combined double sinh-cosh-Gordon equation
[13] and the fractional-order and integer-order Biswas-Milovic equation [14].

Different from them, we use Feng’s first integral method [15] to obtain the exact solutions of the
system (1.1). In fact, Feng’s first integral method was initially proposed by Feng [16] which is based
on the ring theory of commutative algebra. This powerful method has been widely applied to solve
many PDEs and further developed by many authors [17–23]. Particularly, if x = y, the system (1.1)
can be reduced to (1+1)-dimensional nonlinear dispersive long wave systems as follows:

utx + vxx + 1
2 (u2)xx = 0,

vt + (u + uv + uxx)x = 0,
(1.2)

where u(x, t) and v(x, t) stand for the horizontal velocity and height of water waves respectively. The
system (1.2) can be used to describe the evolvement of the horizontal velocity composition u(x, t) and
height v(x, t) of water waves which are spreading at an infinite narrow channel of finite constant depth
in both directions [1, 5].

The rest of this paper is organized as follows: Section 2, we introduce the steps of first integral
method for the nonlinear partial differential systems. In section 3, we obtain eight groups of solutions
for the (1+1)-dimensional and (2+1)-dimensional nonlinear dispersive long wave system respectively
via Feng’s first integral method. In section 4, we make a short summary.

2. The steps of first integral method

Hosseini [22] and El-Sabbagh [23] had summarized the steps of Feng’s first integral method for the
PDEs. Here, we apply it to the system (1.2) as follows:
Step I. Utilize traveling wave transformations u(x, t) = φ(ξ) and v(x, t) = ϕ(ξ) , where ξ = x − ct, we
can change (1.2) into an ordinary differential system as follows:

−cφ′′ + ϕ′′ + 1
2 (φ2)′′ = 0,

−cϕ′ + (φ + φϕ + φ′′)′ = 0,
(2.1)

where “′” and “′′” etc denote the derivatives about the same variable ξ.
Step II. By some proper mathematical calculation, we try to transform the system (2.1) into a second-
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order ordinary differential equation. Here, we can integrate the first equation of (2.1) once and let the
integral constant be 0 and integrate it once. We have:

− cφ + ϕ +
1
2
φ2 = k1, (2.2)

where k1 is an integral constant. Integrate the second equation of (2.1) once, we have:

− cϕ + φ + φϕ + φ′′ = k2, (2.3)

where k2 is an integral constant. We rewrite (2.2) as ϕ = cφ − 1
2φ

2 + k1 and substitute it into (2.3), we
have:

φ′′ =
1
2
φ3 −

3
2

cφ2 + (c2 − k1 − 1)φ + ck1 + k2. (2.4)

Step III. With the introduction of new variables X = φ(ξ) and Y = φ′(ξ) = X′, (2.4) can be changed
into a system of ODEs as the following forms:

X′ = Y,
Y ′ = 1

2 X3 − 3
2cX2 + (c2 − k1 − 1)X + ck1 + k2.

(2.5)

Step IV. We try to seek one first integration to (2.5) which reduces (2.4) to a first-order integrable
ordinary differential equation by the Division Theorem which is on the basis of ring theory of
commutative algebra. Finally, we can establish an exact solution to (1.2) by means of solving the
resulting first-order integrable differential equation.
Division Theorem [24]: Suppose that P(w, z) and Q(w, z) are polynomials of two variables w and z
and P(w, z) is irreducible in C[w, z]. If Q(w, z) vanishes at all zero points of P(w, z), then there exists a
polynomial R(w, z) in C[w, z] such that

Q(w, z) = P(w, z)R(w, z).

Remark 2.1 If the system (1.2) is instead of a common partial differential system, the above train of
thought and specific solving steps are the same (see [22, 23]). Moreover, if the independent variables
of (1.2) are x, y and t even more, the steps to resolve the system are similar.

3. The exact solutions of the nonlinear dispersive long wave system

In this section, we try to seek the exact solutions for the (1+1)-dimensional and (2+1)-dimensional
nonlinear dispersive long wave system via Feng’s first integral method which was described in Sect. 2.

3.1. Exact solutions to the (1 + 1) − dimensional nonlinear dispersive long wave system

By the steps of Feng’s first integral method which were described in Sect. 2, we utilize the Division
Theorem to seek the first integration of (2.5) now. Assume that X = X(ξ) and Y = Y(ξ) are the
nontrivial solutions to (2.5) and P(X,Y) =

∑m
i=0 si(X)Y i is an irreducible polynomial in C[X,Y] such

that:

P(X(ξ),Y(ξ)) =

m∑
i=0

si(X)Y i = 0, (3.1)
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where si(X), i = 0, 1, 2, ...,m are polynomials of X, which sm(X) , 0. In this case, we generally take
m = 1 or m = 2. Equation (3.1) is also called the first integration to (2.5). According to the Division
Theorem, there exists a polynomial Q(X,Y) = g(X) + h(X)Y ∈ C[X,Y] such that:

dP
dξ

=
dP
dX

dX
dξ

+
dP
dY

dY
dξ

= [g(X) + h(X)Y]
m∑

i=0

si(X)Y i. (3.2)

Case 1: We suppose m = 1 in (3.1) and equate the coefficients of Y i, i = 0, 1 on both sides of (3.2),
that we can obtain a group of equations as follows:

s1
′(X) = s1(X)h(X),

s0
′(X) = s0(X)h(X) + s1(X)g(X),

s1(X)[1
2 X3 − 3

2cX2 + (c2 − k1 − 1)X + ck1 + k2] = s0(X)g(X).
(3.3)

As si(X), i = 0, 1 are polynomials of X, then from the first equation of (3.3), we can conclude that
s1(X) is a constant and h(X) = 0. Without loss of generality, we take s1(X) = 1 and substitute it into the
second and third equations of (3.3), then balance the degrees of g(X) and s0(X), that we can conclude
that deg(g(X)) = 1. Thus, we can assume g(X) = A1X + A0 , where A1 , 0, A1 and A0 are undetermined
constants, then from the second equation of (3.3), we obtain:

s0(X) =
1
2

A1X2 + A0X + B, (3.4)

where B is an integral constant. We substitute s0(X), s1(X) and g(X) into the third equation of (3.3) and
equate the coefficient of each power of X to zero, which yields:

1
2 = 1

2 A2
1,

−3
2c = 3

2 A0A1,

c2 − k1 − 1 = A1B + A0,

ck1 + k2 = A0B.

(3.5)

Solving (3.5), which leads to:

A1 = 1, A0 = −c, k1 = −B − 1, k2 = c, (3.6)

and
A1 = −1, A0 = c, k1 = B − 1, k2 = c, (3.7)

where c and B are arbitrary constants. By substituting (3.6), (3.7) into (3.1) and considering Y = X′,
we can derive two first-order ordinary differential equations for X′ as follows:

X′ +
1
2

X2 − cX + B = 0, (3.8)

and

X′ −
1
2

X2 + cX + B = 0. (3.9)
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By solving (3.8) and (3.9) respectively and considering X(ξ) = φ(ξ), u(x, t) = φ(ξ), v(x, t) = ϕ(ξ),
ξ = x − ct and ϕ = cφ − 1

2φ
2 + k1, we obtain four groups of solutions for (1.2) as follows:

u = c −
√

2B − c2tan[
√

2B−c2

2 (x − ct) + C1],
v = ( 1

2c2 − B)[tan(
√

2B−c2

2 (x − ct) + C1)]2 + 1
2c2 − B − 1,

(3.10)

where c and B are arbitrary constants, 2B − c2 > 0 and C1 is an integral constant.

u = c +
√

c2 − 2B coth[
√

c2−2B
2 (x − ct) + C2],

v = (B − 1
2c2)[coth(

√
c2−2B

2 (x − ct) + C2)]2 + 1
2c2 − B − 1,

(3.11)

where c and B are arbitrary constants, 2B − c2 < 0 and C2 is an integral constant.

u = c +
√
−(2B + c2) tan[

√
−(2B+c2)

2 (x − ct) + C3],

v = (B + 1
2c2)[tan(

√
−(2B+c2)

2 (x − ct) + C3)]2 + 1
2c2 + B − 1,

(3.12)

where c and B are arbitrary constants, 2B + c2 < 0 and C3 is an integral constant.

u = c −
√

2B + c2 coth[
√

2B+c2

2 (x − ct) + C4],
v = −(B + 1

2c2)[coth(
√

2B+c2

2 (x − ct) + C4)]2 + 1
2c2 + B − 1,

(3.13)

where c and B are arbitrary constants, 2B + c2 > 0 and C4 is an integral constant.
Remark 3.1 We have got four groups of solitary wave solutions for (1.2) via Feng’s first integral
method when m = 1 in (3.1).
Case 2: Suppose m = 2 in (3.1) and equalize the coefficients of Y i, i = 0, 1, 2 on both sides of (3.2), we
obtain a group of equations as follows:

s2
′(X) = s2(X)h(X),

s′1(X) = a1(X)h(X) + s2(X)g(X),
s0
′(X) + 2s2(X)[ 1

2 X3 − 3
2cX2 + (c2 − k1 − 1)X + ck1 + k2]

= s0(X)h(X) + s1(X)g(X),
s1(X)[1

2 X3 − 3
2cX2 + (c2 − k1 − 1)X + ck1 + k2] = s0(X)g(X).

(3.14)

Because si(X), i = 0, 1, 2 are polynomials of X, then from the first equation of (3.14) we can
conclude that s2(X) is a constant and h(X) = 0. Without loss of generality, we take s2(X) = 1 and
substitute it into the second and third and fourth equations of (3.14), then balance the degrees of g(X)
and s1(X) as well as s0(X) and s1(X), we can conclude that deg(g(X)) = 1. Thus, we assume
g(X) = A1X + A0 , where A1 , 0, A1 and A0 are undetermined constants, then from the second
equation of (3.14), we have:

s1(X) =
1
2

A1X2 + A0X + B, (3.15)

where B is an integral constant. Then we substitute s2(X), s1(X) and g(X) into the third equation of
(3.14). We have:

s0(X) = (1
8 A2

1 −
1
4 )X4 + ( 1

2 A0A1 + c)X3

+ ( 1
2 A1B + 1

2 A2
0 − c2 + k1 + 1)X2 + (A0B − 2(ck1 + k2))X + B1.

(3.16)
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We substitute s0(X), s1(X), s2(X) and g(X) into the fourth equation of (3.14) and equate the coefficient
of each power of X to zero, that we can obtain a system of equations made up of A1, A0, B, B1, c, k1 and
k2. By solving this system, that we obtain two groups of solutions as follows:

A1 = 2, A0 = −2c, B1 =
1
4

B2, k1 = −
1
2

B − 1, k2 = c, (3.17)

and
A1 = −2, A0 = 2c, B1 =

1
4

B2, k1 =
1
2

B − 1, k2 = c, (3.18)

where c and B are arbitrary constants. We substitute (3.17) and (3.18) into (3.15) and (3.16)
respectively, that we can obtain the expressions for s0(X), s1(X) and s2(X), then we plug these
expressions into (3.1) and consider Y = X′, that we can derive two second-order equations for X′ as
follows:

(X′)2 + (X2 − 2cX + B)X′ +
1
2

X4 − cX3 + (c2 +
1
2

B)X2 − cBX +
1
4

B2 = 0, (3.19)

and
(X′)2 + (−X2 + 2cX + B)X′ +

1
2

X4 − cX3 + (c2 −
1
2

B)X2 + cBX +
1
4

B2 = 0. (3.20)

Solve (3.19) and (3.20) respectively, we obtain the following two first-order ordinary differential
equations for X′:

X′ = −
1
2

(X2 − 2cX + B), (3.21)

and
X′ =

1
2

(X2 − 2cX − B). (3.22)

Solve (3.21) and (3.22) respectively and consider X(ξ) = φ(ξ), u(x, t) = φ(ξ), v(x, t) = ϕ(ξ), ξ = x − ct
and ϕ = cφ − 1

2φ
2 + k1, we obtain four groups of solutions for (1.2) as follows:

u = c −
√

B − c2 tan[
√

B−c2

2 (x − ct) + C5],
v = 1

2 (c2 − B)[tan(
√

B−c2

2 (x − ct) + C5)]2 + 1
2c2 − 1

2 B − 1,
(3.23)

where c and B are arbitrary constants, B − c2 > 0 and C5 is an integral constant.

u = c +
√

c2 − B coth[
√

c2−B
2 (x − ct) + C6],

v = 1
2 (B − c2)[coth(

√
c2−B
2 (x − ct) + C6)]2 + 1

2c2 − 1
2 B − 1,

(3.24)

where c and B are arbitrary constants, B − c2 < 0 and C6 is an integral constant.

u = c +
√
−(B + c2) tan[

√
−(B+c2)

2 (x − ct) + C7],

v = 1
2 (B + c2)[tan(

√
−(B+c2)

2 (x − ct) + C7)]2 + 1
2c2 + 1

2 B − 1,
(3.25)

where c and B are arbitrary constants, B + c2 < 0 and C7 is an integral constant.

u = c −
√

B + c2 coth[
√

B+c2

2 (x − ct) + C8],
v = −1

2 (B + c2)[coth(
√

B+c2

2 (x − ct) + C8)]2 + 1
2c2 + 1

2 B − 1,
(3.26)
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where c and B are arbitrary constants, B + c2 > 0 and C8 is an integral constant.
Remark 3.2 We have got four groups of solitary wave solutions for (1.2) via Feng’s first integral
method when m = 2 in (3.1). All exact solutions of the (1+1)-dimensional nonlinear dispersive long
wave system (1.2) have been obtained.

Now, we plot the three-dimensional graphs of the solutions (3.10) and (3.11) respectively (see the
following Figures 1–4), the graphs of the rest of three groups of solutions (3.12), (3.23) and (3.25) are
similar to (3.10), while the graphs of the rest of other three groups of solutions (3.13), (3.24) and (3.26)
are similar to (3.11). We illustrate the figures as follows:

(1) Figure 1(a) displays the three-dimensional graph of the solution u(x, t) of (3.10) with eligible
parameters “c = 1, B = 1,C1 = 0 ” and small variable intervals “x ∈ (−2, 2), t ∈ (0, 2)”. Figure
1(b) shows the three-dimensional graph of the solution u(x, t) of (3.10) which takes the same eligible
parameters and larger variable intervals “x ∈ (−30, 30), t ∈ (0, 30)”. The process of drawing and
simulation shows that this is a class of solitary wave solution and the number and size of the solitons
change greatly as the interval changes.

(2) Figure 2 displays the three-dimensional graph of the solution v(x, t) of (3.10) with c = 1, B = 1
and C1 = 0. Let “x ∈ (−2, 2), t ∈ (0, 2)” in Figure 2(a), while the larger variable intervals “x ∈
(−30, 30), t ∈ (0, 30)” is taken in Figure 2(b). The process of drawing and simulation shows that it
is a distorted wave solution if we take a smaller variable interval, while it is a class of solitary wave
solution if we take a larger variable interval. The number and size of these solitons change greatly as
the interval changes.

(3) Figures 3(a) and 3(b) display the three-dimensional graphs of the solution u(x, t) of (3.11) with
eligible parameters c = 3, B = 4 and C2 = 0 while Figures 4(a) and 4(b) display the three-dimensional
graphs of the solution v(x, t) of (3.11) with eligible parameters c = 3, B = 4 and C2 = 0. The process
of drawing and simulation shows that they are also a class of solitary wave solutions and the number
and size of the solitons change greatly as the intervals change.

(a) x ∈ (−2, 2), t ∈ (0, 2). (b) x ∈ (−30, 30), t ∈ (0, 30).

Figure 1. The three-dimensional graph of the solution u(x, t) of (3.10) for c = 1, B = 1,C1 = 0.
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(a) x ∈ (0, 1), t ∈ (0, 1). (b) x ∈ (−30, 30), t ∈ (0, 30).

Figure 2. The three-dimensional graph of the solution v(x, t) of (3.10) for c = 1, B = 1,C1 = 0.

(a) x ∈ (−1, 1), t ∈ (0, 1). (b) x ∈ (−30, 30), t ∈ (0, 30).

Figure 3. The three-dimensional graph of the solution u(x, t) of (3.11) for c = 3, B = 4,C2 = 0.
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(a) x ∈ (0, 2), t ∈ (0, 2). (b) x ∈ (−30, 30), t ∈ (0, 30).

Figure 4. The three-dimensional graph of the solution v(x, t) of (3.11) for c = 3, B = 4,C2 = 0.

3.2. Exact solutions to the (2+1)-dimensional nonlinear dispersive long wave system

By using the travel wave transformations u(x, t) = φ(ξ) and v(x, t) = ϕ(ξ) , where ξ = x + ay − ct,
we change (1.1) into an ordinary differential system as follows:

−acφ′′ + ϕ′′ + a
2 (φ2)′′ = 0,

−cϕ′ + (φ + φϕ + aφ′′)′ = 0.
(3.27)

Integrate the first equation of (3.27) once and let the integral constant be equal to 0 and integrate it
once. We have:

− acφ + ϕ +
a
2
φ2 = k3, (3.28)

where k3 is an integral constant. Integrate the second equation of (3.27) once, we obtain:

− cϕ + φ + φϕ + aφ′′ = k4, (3.29)

where k4 is an integral constant. We rewrite (3.28) as ϕ = acφ − a
2φ

2 + k3 and substitute it into (3.29),
we have:

φ′′ =
1
2
φ3 −

3
2

cφ2 + (c2 −
k3 + 1

a
)φ +

ck3 + k4

a
. (3.30)

With the introduction of new variables φ(ξ) = X(ξ) and X′(ξ) = Y(ξ), (3.30) converts to a system of
ODEs:

X′ = Y,
Y ′ = 1

2 X3 − 3
2cX2 + (c2 −

k3+1
a )X + ck3+k4

a .
(3.31)

We utilize the Division Theorem to seek the first integration to (3.31) now. Assume that X = X(ξ) and
Y = Y(ξ) are the nontrivial solutions to (3.31) and P(X,Y) =

∑m
i=0 si(X)Y i is an irreducible polynomial

in C[X,Y] such that:

P(X(ξ),Y(ξ)) =

m∑
i=0

si(X)Y i = 0, (3.32)
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where si(X), i = 0, 1, 2, ...,m are polynomials of X, which sm(X) , 0. In this case, we generally take
m = 1 or m = 2. Equation (3.32) is also referred to as the first integration to (3.31). According to
Division Theorem [24], there exists a polynomial Q(X,Y) = g(X) + h(X)Y ∈ C[X,Y] such that:

dP
dξ

=
dP
dX

dX
dξ

+
dP
dY

dY
dξ

= [g(X) + h(X)Y]
m∑

i=0

si(X)Y i. (3.33)

Case 3: Assume m = 1 in (3.32) and equate the coefficients of Y i, i = 0, 1 on both sides of (3.33), we
derive a groups of equations as follows:

s1
′(X) = s1(X)h(X),

s0
′(X) = s0(X)h(X) + s1(X)g(X),

s1(X)[ 1
2 X3 − 3

2cX2 + (c2 −
k3+1

a )X + ck3+k4
a ] = s0(X)g(X).

(3.34)

Because si(X), i = 0, 1 are polynomials of X, then from the first equation of (3.34), we can conclude
that s1(X) is a constant and h(X) = 0. Without loss of generality, we take s1(X) = 1 and substitute it into
the second and third equations of (3.34), then balance the degrees of g(X) and s0(X), we can conclude
that deg(g(X)) = 1. Thus, we assume g(X) = A1X + A0 , where A1 , 0, A1 and A0 are undetermined
constants, then from the second equation of (3.34), we have:

s0(X) =
1
2

A1X2 + A0X + B, (3.35)

where B is an integral constant. We substitute s0(X), s1(X) and g(X) into the third equation of (3.34)
and equate the coefficient of each power of X to zero that we obtain a system of equations made up of
a, A1, A0, B, c, k3 and k4. By solving this system, we obtain two groups of solutions as follows:

A1 = 1, A0 = −c, k3 = −aB − 1, k4 = c, (3.36)

and
A1 = −1, A0 = c, k3 = aB − 1, k4 = c, (3.37)

where a, c and B are arbitrary constants. Substitute (3.36) and (3.37) into (3.32) and consider Y = X′,
we derive two first-order ordinary differential equations for X′ as follows:

X′ +
1
2

X2 − cX + B = 0, (3.38)

and

X′ −
1
2

X2 + cX + B = 0. (3.39)

Now, by solving Eqs (3.38) and (3.39) respectively and considering X(ξ) = φ(ξ), u(x, t) = φ(ξ),
v(x, t) = ϕ(ξ), ξ = x + ay − ct and ϕ = acφ − a

2φ
2 + k3, we obtain four groups of solutions for (1.1) as

follows:
u = c −

√
2B − c2 tan[

√
2B−c2

2 (x + ay − ct) + C9],
v = (1

2ac2 − aB)[tan(
√

2B−c2

2 (x + ay − ct) + C9)]2 + 1
2ac2 − aB − 1,

(3.40)
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where a, c and B are arbitrary constants, 2B − c2 > 0 and C9 is an integral constant.

u = c +
√

c2 − 2B coth[
√

c2−2B
2 (x + ay − ct) + C10],

v = (aB − 1
2ac2)[coth(

√
c2−2B

2 (x + ay − ct) + C10)]2 + 1
2ac2 − aB − 1,

(3.41)

where a, c and B are arbitrary constants, 2B − c2 < 0 and C10 is an integral constant.

u = c +
√
−(2B + c2) tan[

√
−(2B+c2)

2 (x + ay − ct) + C11],

v = (aB2 + 1
2ac2)[tan(

√
−(2B+c2)

2 (x + ay − ct) + C11)]2 + 1
2ac2 + aB − 1,

(3.42)

where a, c and B are arbitrary constants, 2B + c2 < 0 and C11 is an integral constant.

u = c −
√

2B + c2 coth[
√

2B+c2

2 (x + ay − ct) + C12],
v = −(aB2 + 1

2ac2)[coth(
√

2B+c2

2 (x + ay − ct) + C12)]2 + 1
2ac2 + aB − 1,

(3.43)

where a, c and B are arbitrary constants, 2B + c2 > 0 and C12 is an integral constant.
Remark 3.3 We have got four groups of solitary wave solutions for (1.1) via Feng’s first integral
method when m = 1 in (3.32).
Case 4: Suppose m = 2 in (3.32) and equate the coefficients of Y i, i = 0, 1, 2 on both sides of (3.33),
we obtain equations as follows:

s2
′(X) = s2(X)h(X),

s′1(X) = s1(X)h(X) + s2(X)g(X),
s0
′(X) + 2s2(X)[ 1

2 X3 − 3
2cX2 + (c2 −

k3+1
a )X + ck3+k4

a ]
= s0(X)h(X) + s1(X)g(X),

s1(X)[ 1
2 X3 − 3

2cX2 + (c2 −
k3+1

a )X + ck3+k4
a ] = s0(X)g(X).

(3.44)

Since si(X), i = 0, 1, 2 are polynomials of X, then from the first equation of (3.44), we can conclude
that s2(X) is a constant and h(X) = 0. For simplicity, we take s2(X) = 1 and substitute it into the second
and third and forth equations of (3.44), then balance the degrees of g(X) and s1(X) as well as s0(X) and
s1(X), we can conclude that deg(g(X)) = 1. Thus, we can assume g(X) = A1X + A0 , where A1 , 0, A1

and A0 are undetermined constants, from the second equation of (3.44), we have:

s1(X) =
1
2

A1X2 + A0X + B, (3.45)

where B is an integral constant. Then we substitute s2(X), s1(X) and g(X) into the third equation of
(3.44), we obtain:

s0(X) = ( 1
8 A2

1 −
1
4 )X4 + ( 1

2 A0A1 + c)X3

+ (1
2 A1B + 1

2 A2
0 − c2 + k3+1

a )X2 + (A0B − 2(ck3+k4)
a )X + B1.

(3.46)

Now we substitute s0(X), s1(X), s2(X) and g(X) into the fourth equation of (3.44) and equate the
coefficient of each power of X to zero, that we can derive a system of equations made up of
a, A1, A0, B, B1, c, k3 and k4. By solving this system, we obtain two groups of solutions as follows:

A1 = 2, A0 = −2c, B1 =
1
4

B2, k3 = −
1
2

aB − 1, k4 = c, (3.47)
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and
A1 = −2, A0 = 2c, B1 =

1
4

B2, k3 =
1
2

aB − 1, k4 = c, (3.48)

where a, c and B are arbitrary constants.
Now we substitute (3.47), (3.48) into (3.45) and (3.46) respectively and obtain the expressions

for s0(X), s1(X) and s2(X), then plug them into (3.32) and consider Y = X′, that we can derive two
equations for X′:

(X′)2 + (X2 − 2cX + B)X′ +
1
2

X4 − cX3 + (c2 +
1
2

B)X2 − cBX +
1
4

B2 = 0, (3.49)

and
(X′)2 + (−X2 + 2cX + B)X′ +

1
2

X4 − cX3 + (c2 −
1
2

B)X2 + cBX +
1
4

B2 = 0. (3.50)

Solve (3.49) and (3.50) respectively, we obtain the following two first-order ordinary differential
equations:

X′ = −
1
2

(X2 − 2cX + B), (3.51)

and
X′ =

1
2

(X2 − 2cX − B). (3.52)

Now, resolve (3.51) and (3.52) respectively and consider X(ξ) = φ(ξ) , u(x, t) = φ(ξ), v(x, t) = ϕ(ξ),
ξ = x + ay − ct and ϕ = acφ − a

2φ
2 + k3, that we obtain four groups of solutions for (1.1) as follows:

u = c −
√

B − c2 tan[
√

B−c2

2 (x + ay − ct) + C13],
v = a

2 (c2 − B)[tan(
√

B−c2

2 (x + ay − ct) + C13)]2 + 1
2ac2 − 1

2aB − 1,
(3.53)

where a, c and B are arbitrary constants, B − c2 > 0 and C13 is an integral constant.

u = c +
√

c2 − B coth[
√

c2−B
2 (x + ay − ct) + C14],

v = a
2 (B − c2)[coth(

√
c2−B
2 (x + ay − ct) + C14)]2 + 1

2ac2 − 1
2aB − 1,

(3.54)

where a, c and B are arbitrary constants, B − c2 < 0 and C14 is an integral constant.

u = c +
√
−(B + c2) tan[

√
−(B+c2)

2 (x + ay − ct) + C15],

v = a
2 (B + c2)[tan(

√
−(B+c2)

2 (x + ay − ct) + C15)]2 + 1
2ac2 + 1

2aB − 1,
(3.55)

where a, c and B are arbitrary constants, B + c2 < 0 and C15 is an integral constant.

u = c −
√

B + c2 coth[
√

B+c2

2 (x + ay − ct) + C16],
v = −a

2 (B + c2)[coth(
√

B+c2

2 (x + ay − ct) + C16)]2 + 1
2ac2 + 1

2aB − 1,
(3.56)

where a, c and B are arbitrary constants, B + c2 > 0 and C16 is an integral constant.
Remark 3.4 We have got four groups of solitary wave solutions for (1.1) via Feng’s first integral
method when m = 2 in (3.32). Now, all exact solutions of the (2+1)-dimensional nonlinear dispersive
long wave system (1.1) have been obtained.
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Now, we plot the three-dimensional graphs of the solution (3.55) and (3.56) respectively (see the
following Figures 5–8). The rest of three groups of graphs for (3.40), (3.42) and (3.53) are similar to
(3.55), while the rest of other three groups of graphs for (3.41), (3.43) and (3.54) are similar to (3.56).
We illustrate the figures as follows:

(1) Figure 5(a) displays the three-dimensional graph of the solution u(x, y, t) of (3.55) with c =

1, B = −5, a = 2,C15 = 0, t = 0 and small variable intervals x ∈ (−1, 1), y ∈ (−1, 1). Figure 5(b) shows
the three-dimensional graph of the solution u(x, y, t) of (3.55) with same parameters and larger variable
intervals x ∈ (−20, 20), y ∈ (−20, 20). The process of drawing and simulation shows that this is a
class of solitary wave solution and the number and size of these solitons change greatly as the interval
changes. (Remark: Here we let t as a constant, while the case is similar to Figure 1 if we take x (or y)
as a constant and y (or x) and t are variable. The cases for Figures 6–8 are the same).

(2) Figure 6 displays the three-dimensional graph of the solution v(x, y, t) of (3.55) with c = 1, B =

−5, a = 2,C15 = 0 and t = 1. Let x ∈ (−1, 1), y ∈ (−1, 1) in Figure 6(a), while the larger variable
interval x ∈ (−20, 20), y ∈ (−20, 20) is taken in Figure 6(b). The process of drawing and simulation
shows that it is also a class of solitary wave solution and the number and size of the solitons change
greatly as the interval changes.

(3) Figures 7(a) and 7(b) display the three-dimensional graphs of the solution u(x, y, t) of (3.56)
with c = 1, B = 3, a = 2,C16 = 0 and t = 1

2 , while Figures 8(a) and 8(b) show the three-dimensional
graphs of the solution v(x, y, t) of (3.56) with c = 2, B = 5, a = 2,C16 = 0 and t = 1. The process of
drawing and simulation shows that they are also a class of solitary wave solutions and the number and
size of the solitons change greatly as the intervals change.

(a) t = 0, x ∈ (−1, 1), y ∈ (−1, 1). (b) t = 0, x ∈ (−20, 20), y ∈ (−20, 20).

Figure 5. The three-dimensional graph of the solution u(x, y, t) of (3.55) for
c = 1, B = −5, a = 2,C15 = 0.
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(a) t = 1, x ∈ (−1, 1), y ∈ (−1, 1). (b) t = 1, x ∈ (−20, 20), y ∈ (−20, 20).

Figure 6. The three-dimensional graph of the solution v(x, y, t) of (3.55) for
c = 1, B = −5, a = 2,C15 = 0.

(a) t = 1
2 , x ∈ (−1, 1), y ∈ (0, 0.1). (b) t = 1

2 , x ∈ (−20, 20), y ∈ (−20, 20).

Figure 7. The three-dimensional graph of the solution u(x, y, t) of (3.56) for
c = 1, B = 3, a = 2,C16 = 0.
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(a) t = 1, x ∈ (−1, 1), y ∈ (−1, 1). (b) t = 1, x ∈ (−20, 20), y ∈ (−20, 20).

Figure 8. The three-dimensional graph of the solution v(x, y, t) of (3.56) for
c = 2, B = 5, a = 2,C16 = 0.

4. Conclusions

In this paper, Feng’s first integral method was successfully applied to solve the (1+1)-dimensional
and (2+1)-dimensional nonlinear dispersive long wave systems. We gain eight groups of exact
solutions for the (1+1)-dimensional and (2+1)-dimensional nonlinear dispersive long wave system
respectively via Feng’s first integral method. We find that there exist some similarities in the
expressions of the solutions of (1+1)-dimensional and (2+1)-dimensional DLWEs but there exists
some differences in their dimensions for their respective solutions. While system (1.1) and system
(1.2) have different physical significance due to their dimensions. We plot their figures typically to
illustrate the features of the results. The process of drawing and simulation shows that the solutions of
system (1.1) and (1.2) all belong to solitary wave solutions except that we take a minimum interval
that it belongs to a distorted wave solution for the example Figure 2(a). The number and size of their
solitons change greatly as the intervals change. There exist some problems that subject to be resolved
in this paper, for example, if we take m = 3 or larger number in (3.1) and (3.32), do the system (1.1)
and (1.2) exist solutions or can we find out? This can be the direction of our future work.
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