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1. Introduction

In many applied fields, such as biology, medicine, insurance, engineering, economics, physics and
finance, the modeling of the observed phenomenon from experimental data is crucial. The more
appropriate and precise the model, the more we are able to understand the phenomenon in great detail.
One area of study is the development of flexible probability distributions, which are frequently based
on these models. For this aim, the most standard method is based on a parametric transformation of
existing distributions. Such a transformation aims to increase the adaptability of a reference
distribution for broader perspectives in terms of data analysis. Modern computer technology has
contributed to the applicability of these distributions, allowing the processing of complex functions,
accessibility of efficient optimization techniques and achievement of a high degree of numerical
precision. The most famous and useful classes of distributions are described in detail in the surveys
of [19, 23, 38]. Post-2020 classes include the transmuted Muth generated class by [5], Box-Cox
gamma generated class by [6], Topp-Leone odd Fréchet generated class by [7], exponentiated power
generalized Weibull power series generated class by [8], truncated Cauchy power generated class
by [9], exponentiated truncated inverse Weibull generated class by [10], transmuted odd Fréchet
generated class by [13], Marshall-Olkin exponentiated generalized generated class by [41],
exponentiated M generated class by [16], type II power Topp-Leone generated class by [17], modified
T-X generated class by [12], modified odd Weibull generated class by [22], type II general inverse
exponential generated class by [27], odd generalized gamma generated class by [32], and truncated
generalized Fréchet generated (TGF-G) class by [42].

However, modern classes of distributions based on simple, quite original and motivated
transformation of the reference distribution remain rare. In this article, such a candidate is proposed;
we introduce the logarithmically-exponential generated (LE-G) class defined by the following
cumulative distribution function (cdf):

F(x;α,ω) =
1

ln(1 − e−α)
ln

(
1 − e−αG(x;ω)−1)

, x ∈ R, (1.1)

where G(x;ω) denotes the cdf of a reference continuous distribution with ω as parameter vector. One
can notice that F(x;α,ω) = Tα[G(x;ω)], where Tα(y) denotes the logarithmically-exponential
transformation: Tα(y) = ln(1 − e−αy−1

)/ ln(1 − e−α), with y ∈ (0, 1). Three major facts behind the LE-G
class are formulated below.

1. We insist on the simplicity and originality of the logarithmically-exponential definition of
F(x;α,ω), with only one transformation-parameter, that has never been considered before to the
best of our knowledge.

2. The LE-G class can be viewed as a natural “limit class” of the TGF-G class introduced by [42];
the cdf of TGF-G class tends to Equation (1.1) when β tends to 0.

3. When α tends to +∞, the following equivalence result holds:

F(x;α,ω) ∼ e−α(G(x;ω)−1−1) = e−α(1−G(x;ω))/G(x;ω),

which corresponds to the cdf defining the odd inverse exponential generated (OIE-G) class
formerly introduced in [28] with α = 1. See, also, [26] and [33], for further proceedings in this
direction. A deeper relation between the LE-G and OIE-G classes will be revealed in this study.
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The respective successes of the TGF-G and OIE-G classes in statistics motivate further investigations
into the LE-G class, which is the aim of this study. The first part is devoted to the important functions
of the class, and especially, the probability density function (pdf), hazard rate function (hrf) and
quantile function (qf). Then, as concrete examples, special members of the LE-G class are exposed.
In particular, we intend to show the importance of the new class by focusing on a new heavy
right-tailed distribution with three parameters derived to the reference Lomax (Lom) distribution.
This choice is motivated by the curvature flexibility of the corresponding pdf and hrf, demonstrating
rarely observed shapes for a three-parameter heavy-tailed distribution. Especially, we see decreasing
and unimodal shapes for the pdf, and increasing, decreasing and unimodal shapes for the hrf. The
general properties of the LE-G class are examined, describing equivalences of the cdf, pdf and hrf at
the boundaries, modes analysis, some stochastic ordering structure, functional expansions of the cdf
and the exponentiated pdf, diverse moment measures, information measures related to the entropy
concept and a crucial reliability measure. The properties of the modified Lom distribution are also
specified, and supported by numerical and graphical illustrations. Then the practice of the LE-G class
is developed for the purpose of data fitting. The parameter estimation of a special model is executed
with the famous maximum likelihood method. In particular, by considering the proposed modified
Lom model, a short Monte Carlo simulation is performed to assess the efficiency of the obtained
estimates. Next, our modeling strategy is applied to two real heavy-tailed data sets. Well-referenced
statistical measures are in favor of the proposed modified Lom model, surpassing four competitors
also derived from the Lom model.

Section 2 refines the presentation of the LE-G class. Its theoretical properties are developed in
Section 3. Our statistical approach is described in Section 4. Applications are given in Section 5. We
end the paper with concluding remarks in Section 6.

2. The LE-G class

Here, we refine the presentation of the LE-G class with functions of interest and examples of specific
distributions.

2.1. Important functions

Based on Eq (1.1), the pdf of the LE-G class is obtained upon differentiation (in the almost
everywhere sense). It is defined by

f (x;α,ω) = −
α

ln(1 − e−α)
g(x;ω)

G(x;ω)2

e−αG(x;ω)−1

1 − e−αG(x;ω)−1 , x ∈ R, (2.1)

where g(x;ω) denotes the pdf associated to G(x;ω). As usual, if we consider a random variable X
with such a pdf, for any a and b with a < b, the distribution of X is characterized by P(a ≤ X ≤ b) =∫ b

a
f (t;α,ω)dt. The cdf of X at the point x is rediscovered by taking a = −∞ and b = x.
As a crucial reliability function, the corresponding hrf is derived as

h(x;α,ω) =
f (x;α,ω)

1 − F(x;α,ω)

= −
α

ln(1 − e−α) − ln
(
1 − e−αG(x;ω)−1

) g(x;ω)
G(x;ω)2

e−αG(x;ω)−1

1 − e−αG(x;ω)−1 , x ∈ R. (2.2)
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The hrf can be increasing or decreasing, non-monotonic, or discontinuous in the broadest sense. In
survival analysis, it is informative about the underlying mechanism of failure of a lifetime system. See,
for instance, [1].

The qf of the LE-G class is defined as the inverse function of Eq (1.1). After elementary operations,
we arrive at

Q(u;α,ω) = QG

[
α
{
− ln

[
1 − (1 − e−α)u]}−1

,ω
]
, u ∈ (0, 1), (2.3)

where QG(u;ω) denotes the qf associated to G(x;ω), that is, QG(x;ω) = G−1(u;ω) with u ∈ (0, 1). This
function is fundamental in defining various parameters, measures and statistical models of the LE-G
class. About this, all the information is available in [25].

The above three functions are fundamental for further statistical processing of the LE-G class, and
their relative simplicity motivates more in this regard.

2.2. List of special distributions

In terms of heterogeneous and motley distributions, the LE-G class is rich. Based on useful
referenced distributions, Table 1 lists some special distributions of the class which have various
domains and numbers of parameters.

Table 1. Special distributions of the LE-G class based on some reference distributions.

LE-G Reference Domain G(x;ω) (α,ω) F(x;α,ω)

LES Sine (0, 1) sin
(
π

2
x
)

(α)
1

ln(1 − e−α)
ln

(
1 − e−α{sin[(π/2)x]}−1 )

LEU Uniform (0, b)
x
b

(α, b)
1

ln(1 − e−α)
ln

(
1 − e−αbx−1 )

LETP Topp-Leone (0, 1) xb(2 − x)b (α, b)
1

ln(1 − e−α)
ln

(
1 − e−αx−b(2−x)−b )

LEK Kumaraswamy (0, 1) 1 − (1 − xa)b (α, a, b)
1

ln(1 − e−α)
ln

(
1 − e−α[1−(1−xa)b]−1 )

LEE Exponential (0,+∞) 1 − e−θx (α, θ)
1

ln(1 − e−α)
ln

(
1 − e−α(1−e−θx)−1 )

LEIE Inverse exponential (0,+∞) e−θ/x (α, θ)
1

ln(1 − e−α)
ln

(
1 − e−αeθ/x )

LEL Lindley (0,+∞) 1 −
θ + 1 + θx
θ + 1

e−θx (α, θ)
1

ln(1 − e−α)
ln

(
1 − e−α[1−(θ+1+θx)e−θx/(θ+1)]−1 )

LEW Weibull (0,+∞) 1 − e−θxλ (α, λ, θ)
1

ln(1 − e−α)
ln

(
1 − e−α(1−e−θxλ )−1

)
LELom Lomax (0,+∞) 1 −

(
1 +

x
ρ

)−θ
(α, ρ, θ)

1
ln(1 − e−α)

ln
(
1 − e−α[1−(1+x/ρ)−θ]−1 )

LEGu Gumbel R exp(−e−bx) (α, b)
1

ln(1 − e−α)
ln

(
1 − e−α exp(e−bx)

)
LELog Logistic R (1 + e−bx)−1 (α, b)

1
ln(1 − e−α)

ln
(
1 − e−α(1+e−bx)

)
LEC Cauchy R

1
π

arctan(bx) +
1
2

(α, b)
1

ln(1 − e−α)
ln

(
1 − e−α[arctan(bx)/π+1/2]−1 )

All of these special distributions have their own mathematical and practical characteristics; they
can be studied independently for various purposes. The next part is devoted to the LELom distribution,
defined with the Lom distribution as distribution of reference.
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2.3. On the LELom distribution

In order to motivate the LELom distribution, a retrospective on the Lom distribution is necessary.
First, the cdf and pdf of the Lom distribution are specified by

G(x; ρ, θ) = 1 −
(
1 +

x
ρ

)−θ
, x > 0

and G(x; ρ, θ) = 0 for x ≤ 0, and

g(x; ρ, θ) =
θ

ρ

(
1 +

x
ρ

)−θ−1

, x > 0

and g(x; ρ, θ) = 0 for x ≤ 0, respectively. Thus, the Lom distribution has a decreasing pdf which tends
to 0 when x tends to +∞ with a polynomial decay rate. Moreover, it is skewed to the right with a
heavy tail. It is known to be one of the simplest distributions of this type in the literature. For this
reason, the Lom distribution has served as a model in various contexts of applied sciences dealing with
heavy-tailed data. More information on this topic can be found in [2–4, 14, 15, 20].

Despite undeniable qualities, the Lom distribution has some modeling limitations, including a pdf
which is “desperately only decreasing”, and a hrf which lacks flexibility; it can not be increasing or
have N shapes, among others. In order to overpass these limitations, several modifications or
extensions of the Lom distribution have been proposed, such as the power lomax (PLom) distribution
by [35], odd inverse exponential Lomax (OInLom) distribution by [26] and exponential Lomax
(ExLom) distribution by [24], to cite a few. The LELom distribution, briefly presented in Table 1,
constitutes a new modification of the Lom distribution. As a preliminary statement, it may be more
adapted to some data sets than the existing modifications. First, the Lelom distribution is defined with
the cdf given as

F(x;α, ρ, θ) =
1

ln(1 − e−α)
ln

(
1 − e−α[1−(1+x/ρ)−θ]−1)

, x > 0,

and F(x;α, ρ, θ) < 0 for x ≤ 0. From Equation (2.1), standard operations give the following pdf:

f (x;α, ρ, θ) = −
αθ

ρ ln(1 − e−α)
(1 + x/ρ)−θ−1[

1 − (1 + x/ρ)−θ
]2

e−α[1−(1+x/ρ)−θ]−1

1 − e−α[1−(1+x/ρ)−θ]−1
, x > 0,

and f (x;α, ρ, θ) < 0 for x ≤ 0. From Equation (2.2), the hrf of the LELom distribution is obtained as

h(x;α, ρ, θ) = −
αθ

ρ
[
ln(1 − e−α) − ln

(
1 − e−α[1−(1+x/ρ)−θ]−1

)] (1 + x/ρ)−θ−1[
1 − (1 + x/ρ)−θ

]2×

e−α[1−(1+x/ρ)−θ]−1

1 − e−α[1−(1+x/ρ)−θ]−1
, x > 0,

and h(x;α, ρ, θ) < 0 for x ≤ 0. In order to communicate on the flexibility of the LELom distribution,
various curvatures of f (x;α, ρ, θ) and h(x;α, ρ, θ) are shown in Figure 1.
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Figure 1. Panel of shapes of the (i) pdf and (ii) hrf of the LELom distribution for several
values of the parameters.

In Figure 1 (i), we see that the pdf of the LELom distribution is unimodal and asymmetric on the
right with a possibly heavy tail; the mathematical heavy-tailed nature of the LELom distribution will
be discussed later. Also, a short left tail is sometimes observed. This detail is more important than it
seems at first glance; it can be of interest for the modeling of certain lifetime phenomena presenting
low values before a numerical peak. Two concrete examples of this kind will be the subject of all the
attention in the applications part of this study (see Section 5). The corresponding hrf is revealed to be
very flexible; in Figure 1 (ii), we see that it possesses increasing, decreasing and unimodal (upside-
down) shapes, with more or less plateness. The modeling qualities of LELom distributions are thus
proven.

We end this part by presenting the qf of the LELom distribution. Based on Equation (2.3), it is given
as

Q(u;α, ρ, θ) = ρ
{(

1 − α
{
− ln

[
1 − (1 − e−α)u]}−1

)−1/θ
− 1

}
, u ∈ (0, 1). (2.4)

The analytical expression of this function allows a direct quantile analysis of the LELom
distribution, including the expressions of the quantile density function, hazard quantile function,
median and the two other quartiles, quantile asymmetry measures and quantile plateness measures.
The importance of such a manageable quantile function in survival studies can be found in [25]
and [31]. This is also a plus for the LELom distribution.

3. Some theoretical properties

This section is devoted to some theoretical properties of the LE-G class, with applications to the
LELom distribution at all stages.
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3.1. Functional equivalences

The functional equivalences of the cdf, pdf and hrf of the LE-G class are now discussed, with the
cases G(x;ω)→ 0 and G(x;ω)→ 1 distinguished. First, when G(x;ω)→ 0, a direct analysis gives

F(x;α,ω) ∼ −
1

ln(1 − e−α)
e−αG(x;ω)−1

, f (x;α,ω) ∼ −
α

ln(1 − e−α)
g(x;ω)

G(x;ω)2 e−αG(x;ω)−1
.

This last equivalence function also holds for h(x;α,ω). We see that α affects the decay rate of the
exponential term for the pdf and hrf; it plays an important role in this regard.

For the complementary case G(x;ω) → 1, by putting S G(x;ω) = 1 − G(x;ω) and using standard
equivalence results, we get

F(x;α,ω) = 1 +
α

(eα − 1) ln(1 − e−α)
S G(x;ω), f (x;α,ω) ∼ −

α

(eα − 1) ln(1 − e−α)
g(x;ω)

and h(x;α,ω) ∼ h(x;ω), where h(x;ω) = g(x;ω)/S G(x;ω) is the hrf associated to G(x;ω). Here, the
role of α is minor; it is only involved in the proportional constants only. However, these constants can
be consequent for a fixed x such that G(x;ω) ≈ 1.

As an example of application, if we focus on the LELom distribution, for x→ 0, we get

F(x;α, ρ, θ) ∼ −
1

ln(1 − e−α)
e−α[1−(1+x/ρ)−θ]−1

→ 0

and

f (x;α, ρ, θ) ∼ −
αρ

θ ln(1 − e−α)
x−2e−α[1−(1+x/ρ)−θ]−1

→ 0.

Thus, in all circumstances, f (x;α, ρ, θ) tends to 0 when x tends to 0, and with an exponential decay
rate. Note that, in this case, α[1 − (1 + x/ρ)−θ ∼ αθx/ρ, meaning that all the parameters affect this
convergence in the exponential sense. As already stated, the asymptotic behavior of h(x;α, ρ, θ)
corresponds to the one of f (x;α, ρ, θ). On the other hand, when x → +∞, by invoking the standard
equivalence results, we get

F(x;α, ρ, θ) = 1 +
αρθ

(eα − 1) ln(1 − e−α)
x−θ → 1,

and

f (x;α, ρ, θ) ∼ −
αθρθ

ρ(eα − 1) ln(1 − e−α)
x−θ−1 → 0.

Thus, in all cases, f (x;α, ρ, θ) tends to 0 with a polynomial decay rate when x tends to +∞, more or
less rapidly, depending on θ. Also, by this equivalence and the integral Riemann criteria, we have∫ +∞

0
etx f (x;α, ρ, θ)dx = +∞ for any t > 0. Therefore, the LELom distribution is a true heavy-tailed

distribution in the mathematical sense. Concerning the hrf, when x → +∞, we have h(x;α, ρ, θ) ∼
θx−1 → 0. Thus, only the parameter θ affects the equivalence function as a proportional constant.
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3.2. Mode analysis

The mode analysis of a distribution consists in identifying the mode(s) or maximal point(s) of the
corresponding pdf. For the LE-G class, a maximal point for f (x;α,ω) can be determined via the the
study of d f (x;α,ω)/dx, or more simply, the following derivative:

d
dx

ln[ f (x;α,ω)] =
dg(x;ω)/dx

g(x;ω)
− 2

g(x;ω)
G(x;ω)

+ α
g(x;ω)

G(x;ω)2

eαG(x;ω)−1

eαG(x;ω)−1
− 1

.

Thus, a maximal point of f (x;α,ω) satisfy the following non-linear equation: d ln[ f (x;α,ω)/dx = 0,
corresponding to

dg(x;ω)/dx
g(x;ω)

+ α
g(x;ω)

G(x;ω)2

eαG(x;ω)−1

eαG(x;ω)−1
− 1

= 2
g(x;ω)
G(x;ω)

.

If only one maximum is obtained, the LE-G is unimodal, if more, it is multimodal, depending on the
definition of the reference distribution. If the above equations are too complicated from the analytical
point of view, numerical or graphical approaches are more convenient for the mode analysis.

Concerning the LELom distribution, this aspect has already been commented; it is mainly unimodal
and this can be observed in Figure 1, and the mode satisfies the following non-linear equation:

−(θ + 1) (1 + x/ρ)−1 + αθ
(1 + x/ρ)−θ−1[

1 − (1 + x/ρ)−θ
]2

eα[1−(1+x/ρ)−θ]−1

eα[1−(1+x/ρ)−θ]−1
− 1

= 2θ
(1 + x/ρ)−θ−1

1 − (1 + x/ρ)−θ
.

Obviously, only mathematical software has the ability to evaluate it numerically. Mathematica, Python
or R can be used in this regard.

3.3. Stochastic ordering

The following proposition demonstrates an important first order stochastic dominance result
between the LE-G and OIE-G classes.

Proposition 1. The LE-G class first order stochastically dominates the OIE-G class. That is, we have

F(x;α,ω) ≤ F∗(x;α,ω),

where F∗(x;α,ω) = e−α(G(x;ω)−1−1).

Proof. First, let us set q(x) = ln(1 − x)/x for x ∈ (0, 1). Then, its derivative with respect to x is
dq(x)/dx = −[ln(1 − x) + x/(1 − x)]/x2, which is negative since ln(1 − y) ≥ −y/(1 − y) for y < 1,
the equality being acheived for y = 0 only. Therefore, q(x) is a decreasing function. Thus, for any
(u, v) ∈ (0, 1)2 with u ≤ v, we have q(v) ≤ q(u), and, since ln(1 − v) < 0, it is equivalent to

ln(1 − u)
ln(1 − v)

≤
u
v
.

By applying this inequality with u = e−αG(x;ω)−1
and v = e−α satisfying u ≤ v with (u, v) ∈ (0, 1)2, we

get

F(x;α,ω) =
ln

(
1 − e−αG(x;ω)−1

)
ln(1 − e−α)

≤
e−αG(x;ω)−1

e−α
= F∗(x;α,ω).
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This ends the proof of Proposition 1. �

Proposition 1 proves that the OIE-G class is not only a “limit case” of the LE-G class; a
well-identified stochastic dominance exists. Roughly speaking, the LE-G models can achieve certain
objectives that the OIE-G models can not, and vice versa. Also, it motivates the LE-G models as
alternatives of the OIE-G models.

In addition, the LE-G class satisfies the following monotone likelihood ratio property.

Proposition 2. For α1 ≤ α2, the following ratio function

κ(x;α1, α2,ω) =
f (x;α1,ω)
f (x;α2,ω)

, x ∈ R,

is decreasing with respect to x.

Proof. First, after some simplifications, we get

κ(x;α1, α2,ω) =
α1 ln(1 − e−α2)
α2 ln(1 − e−α1)

eα2G(x;ω)−1
− 1

eα1G(x;ω)−1
− 1

.

Therefore

d
dx
κ(x;α1, α2,ω) =

α1 ln(1 − e−α2)
α2 ln(1 − e−α1)

g(x;ω)
G(x;ω)2

α1eα1G(x;ω)−1
[
eα2G(x;ω)−1

− 1
]
− α2eα2G(x;ω)−1

[
eα1G(x;ω)−1

− 1
]

(
eα1G(x;ω)−1

− 1
)2 .

Now, let us study the positivity of the numerator term. Let us consider the following intermediary
function: q(α) = αeαy−1

/
[
eαy−1

− 1
]

with y = G(x;ω). Then, we have

d
dα

q(α) = eαy−1 y(eαy−1
− 1) − α

y(eαy−1
− 1)2

.

By the general inequality ez ≥ 1 + z for any z ∈ R, we get y(eαy−1
− 1) − α ≥ yαy−1 − α = 0. Therefore,

dq(α)/dα ≥ 0, implying that q(α) is an increasing function with respect to α. Therefore, α1 ≤ α2

implies that q(α1) ≤ q(α2), which is equivalent to

α1eα1G(x;ω)−1 [
eα2G(x;ω)−1

− 1
]
− α2eα2G(x;ω)−1 [

eα1G(x;ω)−1
− 1

]
≤ 0.

It follows that dκ(x;α1, α2,ω)/dx ≤ 0, and thus κ(x;α1, α2,ω) is a decreasing function with respect to
x. This ends the proof of Proposition 2. �

The demonstrated stochastic ordering properties involve many other properties described in [37].
We leave the interested reader to this reference for more information in this direction.
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3.4. Functional expansions

The following expansion investigates a linear relation between F(x;α,ω) and basic functions of the
reference distribution.

Proposition 3. The following expansion holds:

F(x;α,ω) =

+∞∑
k=1,`,m=0

βk,`,mS G(x;ω)m,

where

βk,`,m =
1

ln(1 − e−α)

(
−`

m

)
(−1)`+m+1 1

k
1
`!
α`k`, (3.1)(

−`
m

)
refers to the general binomial coefficient at m and −`, and S G(x;ω) = 1 − G(x;ω) defining the

survival function associated to G(x;ω).

Proof. Based on the logarithmic and exponential series expansions, and the generalized binomial
theorem, we have

F(x;α,ω) = −
1

ln(1 − e−α)

+∞∑
k=1

1
k

e−αkG(x;ω)−1
= −

1
ln(1 − e−α)

+∞∑
k=1

1
k

+∞∑
`=0

1
`!

(−αk)`G(x;ω)−`

= −
1

ln(1 − e−α)

+∞∑
k=1

1
k

+∞∑
`=0

1
`!

(−αk)`
+∞∑
m=0

(
−`

m

)
(−1)mS G(x;ω)m

=

+∞∑
k=1,`,m=0

βk,`,mS G(x;ω)m.

Proposition 3 is proved. �

Proposition 3 applied to the LELom distribution gives the following simple expansion:

F(x;α, ρ, θ) =

+∞∑
k=1,`,m=0

βk,`,m

(
1 +

x
ρ

)−θm
, x > 0.

The following expansion investigates a linear relation between exponentiated f (x;α,ω) and
functions of the reference distribution.

Proposition 4. Let δ > 0. Then, the following expansion holds:

f (x;α,ω)δ =

+∞∑
k,`,m=0

τ[δ]
k,`,mv[δ]

m (x;ω),

where

τ[δ]
k,`,m =

1
[− ln(1 − e−α)]δ

(
−δ

k

)(
−` − 2δ

m

)
αδ+`

1
`!

(−1)k+`+m(k + δ)` (3.2)

and
v[δ]

m (x;ω) = g(x;ω)δS G(x;ω)m.
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Proof. We have

f (x;α,ω)δ =
αδ

[− ln(1 − e−α)]δ
g(x;ω)δ

G(x;ω)2δ

e−αδG(x;ω)−1

[1 − e−αG(x;ω)−1]δ
, x ∈ R.

The general binomial theorem is the key of the proof. By applying it three times in a row, it comes

f (x;α,ω)δ =
αδ

[− ln(1 − e−α)]δ
g(x;ω)δ

G(x;ω)2δ e−αδG(x;ω)−1
+∞∑
k=0

(
−δ

k

)
(−1)ke−αkG(x;ω)−1

=
αδ

[− ln(1 − e−α)]δ
g(x;ω)δ

G(x;ω)2δ

+∞∑
k=0

(
−δ

k

)
(−1)ke−α(k+δ)G(x;ω)−1

=
αδ

[− ln(1 − e−α)]δ
g(x;ω)δ

+∞∑
k=0

(
−δ

k

)
(−1)k

+∞∑
`=0

1
`!

[−α(k + δ)]`G(x;ω)−`−2δ

=
αδ

[− ln(1 − e−α)]δ
g(x;ω)δ

+∞∑
k=0

(
−δ

k

)
(−1)k

+∞∑
`=0

1
`!

[−α(k + δ)]`
+∞∑
m=0

(
−` − 2δ

m

)
(−1)mS G(x;ω)m

=

+∞∑
k,`,m=0

τ[δ]
k,`,mv[δ]

m (x;ω).

Proposition 4 is proved. �

Notice that

(i) A direct application of Proposition 4 with δ = 1 gives the following expansion for the pdf of
the LE-G class:

f (x;α,ω) =

+∞∑
k,`,m=0

τ[1]
k,`,mv[1]

m (x;ω),

where v[1]
m (x;ω) = g(x;ω)S G(x;ω)m corresponds to the pdf of the minimum of m + 1 independent

random variables with the reference distribution as common distribution when it is multiplied by
the constant m+1. Thus, it is well identified for most of the standard distributions of the literature.
In particular, in the context of the LELom distribution, we have

f (x;α, ρ, θ) =

+∞∑
k,`,m=0

τ[1]
k,`,mv[1]

m (x; ρ, θ),

where

v[1]
m (x; ρ, θ) =

θ

ρ

(
1 +

x
ρ

)−θ(m+1)−1

, x > 0,

understanding that v[1]
m (x; ρ, θ) = 0 for x ≤ 0. One can notice that v[1]

m (x; ρ, θ) = g(x; ρ, θ(m +

1))/(m + 1), meaning that f (x;α, ρ, θ) is expressed as an infinite linear combination of pdfs of the
Lom distribution.

AIMS Mathematics Volume 6, Issue 7, 7845–7871.



7856

(ii) Proposition 3 applied to the LELom distribution gives the following simple expansion for
f (x;α, ρ, θ)δ:

f (x;α, ρ, θ)δ =

+∞∑
k,`,m=0

τ[δ]
k,`,mv[δ]

m (x; ρ, θ),

where

v[δ]
m (x; ρ, θ) =

(
θ

ρ

)δ (
1 +

x
ρ

)−δ(θ+1)−θm

, x > 0,

understanding that v[δ]
m (x; ρ, θ) = 0 for x ≤ 0.

These expansion results are useful to obtain manageable analytical expressions of various measures of
importance, such as different types of moment, entropy and reliability measures. Some of them will be
the subject of further development in the next subsections.

3.5. Moment measures

Now, let us introduce a random variable X whose distribution belongs to the LE-G class and E
be the standard expectation. Then, if the rth order moment about the origin of X converges in the
mathematical sense, it is given by

µ′r = E(Xr) =

∫ +∞

−∞

xr f (x;α,ω)dx = −
α

ln(1 − e−α)

∫ +∞

−∞

xr g(x;ω)
G(x;ω)2

e−αG(x;ω)−1

1 − e−αG(x;ω)−1 dx.

The chances of finding a simple expression for this integral are slim. For the evaluation of µ′r, two
standard solutions can be studied: (i) a numerical approach by applying approximation integral
procedure and (ii) an expansion of µ′r involving manageable coefficients. This last approach requires
the result in Proposition 4 applied with δ = 1; subject to the mathematical validity on the interchanges
of the sums and integral signs, we have

µ′r =

+∞∑
k,`,m=0

τ[1]
k,`,mξ

[r]
m , (3.3)

where ξ[r]
m =

∫ +∞

−∞
xrv[1]

m (x;ω)dx. Since v[1]
m (x;ω) is a well identified function for most of the standard

distributions, ξ[r]
m is often easily calculable via standard integration techniques or can be extracted

in published works. That is, µ′r can be obtained by summing well-identified coefficients. A correct
approximation of µ′r follows by replacing the infinite bound by any large integer; in most practical
situations, the integer 40 gives satisfaction.

Let us now study the moments about the origin of a random variable following the LELom
distribution, starting by establishing their convergence. First, at the neighborhood of x = 0, we recall
that the following function equivalence holds: f (x;α, ρ, θ) ∼ {−αρ/(θ ln(1 − e−α)]}x−2e−α[1−(1+x/ρ)−θ]−1

implying that xr f (x;α, ρ, θ) = o(x−1/2) for any r ≥ 0 and, by the Riemann integrability criterion, the
integral of xr f (x;α, ρ, θ) over (0, ε) with ε > 0 converges. At the neighborhood of x = +∞, we recall
that f (x;α, ρ, θ) ∼ {−αθρθ/[ρ(eα − 1) ln(1− e−α)]}x−θ−1 and, by the Riemann integrability criterion, the
integral of xr−θ−1 over (ε,+∞) with ε > 0 converges if and only if r < θ. Hence, the condition r < θ is
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necessary to guarantee the convergence of µ′r; the LELom distribution does not admit moments about
the origin of all orders. Thus, under the condition r < θ, numerical approximations of µ′r have sense.
Also, for an evaluation of µ′r, the complementary expansion approach described in Eq (3.3) gives

µ′r =

+∞∑
k,`,m=0

τ[1]
k,`,mξ

[r]
m ,

where, by introducing the beta function defined by B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt with a > 0 and b > 0,

ξ[r]
m =

∫ +∞

−∞

xrv[1]
m (x; ρ, θ)dx =

θ

ρ

∫ +∞

0
xr

(
1 +

x
ρ

)−θ(m+1)−1

dx

= θρr
∫ +∞

0

u(r+1)−1

(1 + u)(r+1)+θ(m+1)−r du = θρrB (r + 1, θ(m + 1) − r) .

It comes

µ′r =

+∞∑
k,`,m=0

τ[1]
k,`,mθρ

rB (r + 1, θ(m + 1) − r) .

As sketched previously, a precise approximation of µ′r follows by replacing the infinite bound with 40.
As an example of numerical work, some values for the mean and variance of X are collected in Table
2.

Table 2. Values of mean and variance of the LELom distribution for diverse values of the
parameters.

θ↓
α = 2, ρ = 3

θ↓
α = 0.5, ρ = 1.5

mean variance mean variance

5 1.301 1.36 5 0.368 0.197

5.5 1.152 0.991 5.5 0.328 0.146

6.5 0.938 0.589 6.5 0.269 0.09

7 0.858 0.473 7 0.247 0.073

7.5 0.79 0.388 7.5 0.228 0.061

8 0.733 0.324 8 0.212 0.051

8.5 0.683 0.274 8.5 0.198 0.044

In Table 2, we see some monotonic behavior of the mean and variance of X, being more or less
small for the considered values.

In order to complete the study above, one can mention that the moment generating function of X is
specified by

M(t) = E(etX) =

∫ +∞

−∞

etx f (x;α,ω)dx
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= −
α

ln(1 − e−α)

∫ +∞

−∞

etx g(x;ω)
G(x;ω)2

e−αG(x;ω)−1

1 − e−αG(x;ω)−1 dx,

with t ∈ R such that the integral converges. Subject to the logical validity of the interchanges of the
sums and integral signs, the consequence of Proposition 4 with δ = 1 is

M(t) =

+∞∑
k,`,m=0

τ[1]
k,`,mυm(t),

where υm(t) =
∫ +∞

−∞
etxv[1]

m (x;ω)dx. This last term is already available in the litterature for a wide panel
of parental distributions. If we deal with the parental Lom distribution as in the LELom distribution,
the moment generating function exists at least for t ≤ 0. It is however quite complex, but two analytical
results involving special functions are provided in [29, Section 5].

Alternatively, if X admits moments of all orders, which is not the case for the LELom distribution,
then we can use the following formula:

M(t) =

+∞∑
k=0

tk

k!
µ′k.

The characteristic function can be dettermined through the following relationship: ϕ(t) = M(it), where
i2 = −1.

In addition, the incomplete version of the rth moment about the origin of X can be treated in a
similar way. From it, one can define various measures of deviations, and diverse types of residual and
reversed residual lifetime functions. Further developments on this topic can be found in [23].

3.6. Information measures

In order to measure the variation or uncertainty of distributions belonging to the LE-G class, several
information measures can be used. The most well-known are described in [11]. Here, we focus our
attention on the Rényi and Tsallis entropy measures introduced by [36, 39], respectively. First, if the
Rényi entropy measure of the LE-G class converges in the mathematical sense, it can be defined as

I
[p]
R =

1
1 − p

ln
[∫ +∞

−∞

f (x;α,ω)pdx
]

=
p

1 − p
lnα −

p
1 − p

ln
[
− ln(1 − e−α)

]
+

1
1 − p

ln

∫ +∞

−∞

g(x;ω)p

G(x;ω)2p

e−αpG(x;ω)−1[
1 − e−αG(x;ω)−1

]p dx

 ,
with p > 0 and p , 1. By arguing similarly as for moments about the origin, the integral term can
be evaluated numerically by any integral approximation procedure. A more direct approach, which is
“exact” in the mathematical sense, consists of giving a simple expansion of I[p]

R . Owing to Proposition
4, subject to the mathematical validity on the interchanges of the sums and integral signs, we have∫ +∞

−∞

f (x;α,ω)pdx =

+∞∑
k,`,m=0

τ
[p]
k,`,mφ

[p]
m , (3.4)
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where φ[p]
m =

∫ +∞

−∞
v[p]

m (x;ω)dx, which is quite manageable for most of the standard distributions.
In the setting of the LELom distribution, let us discuss the convergence of I[p]

R deduced to the
convergence of the integral term. First, at the neighborhood of x = 0, we have
f (x;α, ρ, θ)p ∼ {−αρ/(θ ln(1 − e−α)]}px−2pe−αp[1−(1+x/ρ)−θ]−1

implying that f (x;α, ρ, θ)p = o(x−1/2). By
the Riemann integrability criterion, the integral of f (x;α, ρ, θ)p over (0, ε) with ε > 0 converges. At
the neighborhood of x = +∞, we have f (x;α, ρ, θ)p ∼ {−αθρθ/[ρ(eα − 1) ln(1 − e−α)]}px−p(θ+1) and, by
the Riemann integrability criterion, the integral of x−p(θ+1) over (ε,+∞) with ε > 0 converges if and
only if p(θ + 1) > 1. Therefore, we must have p(θ + 1) > 1 to ensure the convergence of I[p]

R . Under
this condition, numerical approximations of I[p]

R are possible. Also, owing to Equation (3.4), one can
write ∫ +∞

−∞

f (x;α, ρ, θ)pdx =

+∞∑
k,`,m=0

τ
[p]
k,`,mφ

[p]
m ,

where

φ[p]
m =

∫ +∞

−∞

v[p]
m (x; ρ, θ)dx =

(
θ

ρ

)p ∫ +∞

0

(
1 +

x
ρ

)−p(θ+1)−θm

dx = θpρ1−p 1
p(θ + 1) + θm − 1

.

Therefore, the following formula is valid:

I
[p]
R =

1
1 − p

ln

 +∞∑
k,`,m=0

τ
[p]
k,`,mθ

pρ1−p 1
p(θ + 1) + θm − 1

 ,
as well as the following practical approximation:

I
[p]
R ≈

1
1 − p

ln

 40∑
k,`,m=0

τ
[p]
k,`,mθ

pρ1−p 1
p(θ + 1) + θm − 1

 .
Similarly, the Tsallis entropy measure has an integral of the form

∫ +∞

−∞
f (x;α,ω)qdx as main term;

it can be defined as

I
[q]
T =

1
q − 1

[
1 −

∫ +∞

−∞

f (x;α,ω)qdx
]
,

where q > 0 and q , 1. A mathematical treatment similar to the one applied to I[p]
R can be performed.

In particular, for the LELom distribution, I[q]
T converges if and only if q(θ + 1) > 1. Moreover, the

following result holds:

I
[q]
T =

1
q − 1

1 − +∞∑
k,`,m=0

τ
[q]
k,`,mθ

qρ1−q 1
q(θ + 1) + θm − 1


≈

1
q − 1

1 − 40∑
k,`,m=0

τ
[q]
k,`,mθ

qρ1−q 1
q(θ + 1) + θm − 1

 .
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As an example of numerical work, some values for the above entropy measures are presented in Table
3.

Table 3. Values of the Rényi and Tsallis entropy measures of the LELom distribution for
diverse values of the parameters.

α = 0.5, θ = 2.0, ρ = 1.5 α = ρ = p = q = 0.5

p↓ Rényi entropy q↓ Tsallis entropy θ↓ Rényi entropy Tsallis entropy

0.4 3.448 0.4 11.529 2 2.378 4.568

0.5 2.378 0.5 4.568 2.5 1.8 2.918

0.6 1.894 0.6 2.832 3 1.412 2.052

0.7 1.595 0.7 2.046 3.5 1.123 1.507

1.2 0.925 1.2 0.845 4 0.894 1.128

1.5 0.743 1.5 0.62 4.5 0.705 0.846

From Table 3, we see that the amount of uncertainty of the LELOm distribution is versatile, reaching
small or large values. This aspect also reveals the statistical richness and complexity of the LELom
distribution.

3.7. A crucial reliability measure

The stress-strength model concerns the service life of a component exposed to a certain stress and
having strength (or resistance). The stress and the strength are modeled by two random variables, say
Y and X, respectively. It is assumed that if the stress exceeds the strength, the component can not live.
The reliability of such a random system is expressed by the following measure: R = P(Y < X). Here,
we investigate the expression of R in the context of the LE-G family. More precisely, we suppose that
X and Y are independent variables, and come from LE-G family in the following scenario; X is with
the cdf F(x;α1,ω) and pdf f (x;α1,ω), and Y is with the cdf F(x;α2,ω). Thus, the parameter α can
differ from one distribution to the other, but the reference distribution is the same. In this setting, we
have

R =

∫ +∞

−∞

F(x;α2,ω) f (x;α1,ω)dx

= −
α1

ln(1 − e−α2) ln(1 − e−α1)

∫ +∞

−∞

ln
(
1 − e−α2G(x;ω)−1) g(x;ω)

G(x;ω)2

e−α1G(x;ω)−1

1 − e−α1G(x;ω)−1 dx

= −
α1

ln(1 − e−α2) ln(1 − e−α1)

∫ +∞

1
ln

(
1 − e−α2u) e−α1u

1 − e−α1u du.

The obtained integral remains manageable; its numerical computation is quite possible. Alternatively,
by virtue of Propositions 3 and 4, subject to the mathematical validity on the interchanges of the sums
and integral signs, we obtain

R =

+∞∑
k=1,`,m=0

+∞∑
k′,`′,m′=0

β(α2)
k,`,mτ

[1];(α1)
k′,`′,m′

∫ +∞

−∞

S G(x;ω)mv[1]
m′ (x;ω)dx,
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where β(α2)
k,`,m is defined by Eq (3.1) with α = α2 and τ[1];(α1)

k′,`′,m′ is defined by Eq (3.2) with δ = 1 and α = α1

and

ψm,m′ =

∫ +∞

−∞

S G(x;ω)mv[1]
m′ (x;ω)dx =

∫ +∞

−∞

g(x;ω)S G(x;ω)m+m′dx

=

∫ 1

0
(1 − u)m+m′du =

1
m + m′ + 1

.

Therefore, we have

R =

+∞∑
k=1,`,m=0

+∞∑
k′,`′,m′=0

β(α2)
k,`,mτ

[1];(α1)
k′,`′,m′

1
m + m′ + 1

≈

40∑
k=1,`,m=0

40∑
k′,`′,m′=0

β(α2)
k,`,mτ

[1];(α1)
k′,`′,m′

1
m + m′ + 1

.

Thus, it can be approximated via standard computation techniques. Discussions and applications on
the role of R in various settings can be found in [18].

4. Statistical approach

An important objective of the LE-G class is to produce flexible parametric models for concrete
problems dealing with data. Here, we present a common strategy to construct accurate LE-G models
for data fitting. Let x1, . . . , xn be n values supposed to be generated from a given LE-G distribution.
Then, we can estimate the unknown parameters of the corresponding LE-G model by the maximum
likelihood approach. Specifically, by denoting (α,ω) the vector of unknown parameters, its maximum
likelihood estimate (MLE) is given as

(α̂, ω̂) = argmax(α,ω)L(x1, . . . , xn;α,ω),

where L(x1, . . . , xn;α,ω) denotes the likelihood function defined by

L(x1, . . . , xn;α,ω) =

n∏
i=1

f (xi;α,ω) =

n∏
i=1

− α

ln(1 − e−α)
g(xi;ω)

G(xi;ω)2

e−αG(xi;ω)−1

1 − e−αG(xi;ω)−1

 .
The components of (α̂, ω̂) are called MLEs of those of (α,ω), respectively. Subject to mathematical
validity, one can find the MLEs through the maximization of the log-likelihood function defined by

`(x1, . . . , xn;α,ω) = n lnα − n ln[− ln(1 − e−α)] +

n∑
i=1

ln[g(xi;ω)] − 2
n∑

i=1

ln[G(xi;ω)]

−

n∑
i=1

ln
(
eαG(xi;ω)−1

− 1
)
.

The desired MLEs are solutions of the following system of equations:

∂

∂α
`(x1, . . . , xn;α,ω) =

n
α
−

n
(eα − 1) ln(1 − e−α)

−

n∑
i=1

eαG(xi;ω)−1

G(xi;ω)
[
eαG(xi;ω)−1

− 1
] = 0
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and, by denoting ω = (ω1, . . . , ωp), for j = 1, . . . , p,

∂

ω j
`(x1, . . . , xn;α,ω) =

n∑
i=1

∂g(xi;ω)/∂ω j

g(xi;ω)
− 2

n∑
i=1

∂G(xi;ω)/∂ω j

G(xi;ω)

+ α

n∑
i=1

[∂G(xi;ω)/∂ω j]eαG(xi;ω)−1

G(xi;ω)2
[
eαG(xi;ω)−1

− 1
] = 0.

For the great majority of the referenced distributions, nice expressions of these solutions are
impossible. Therefore, the use of a numerical procedure is necessary to obtain an acceptable
approximation of (α̂, ω̂). For the sake of clarity, the existence and uniqueness of MLEs are not proven
here, but it is of course an essential aspect of the method. The established theory of the maximum
likelihood approach is in effect; the constructions of confidence intervals or likelihood ratio tests for
the parameters of LE-G models are entirely possible. We may refer to [21] for the generalities.

The above theory holds for the LELom model, under the following configuration: ω = (ρ, θ), for
x > 0,

G(x; ρ, θ) = 1 −
(
1 +

x
ρ

)−θ
, g(x; ρ, θ) =

θ

ρ

(
1 +

x
ρ

)−θ−1

,

∂

∂ρ
G(x; ρ, θ) = −

θ

ρ2 x
(
1 +

x
ρ

)−θ−1

,
∂

∂ρ
g(x; ρ, θ) =

θ

ρ3

(
1 +

x
ρ

)−θ−2

(θx − ρ),

and

∂

∂θ
G(x; ρ, θ) =

(
1 +

x
ρ

)−θ
ln

(
1 +

x
ρ

)
,

∂

∂θ
g(x; ρ, θ) =

(
1 +

x
ρ

)−θ 1
ρ + x

[
1 − θ ln

(
1 +

x
ρ

)]
.

Then, precise numerical approximations of the MLEs of (α, ρ, θ) can be obtained. We illustrate this
claim by conducting a Monte Carlo simulation study with respect to the sample size n. The R software
is used (see [34]) and we proceed as follows:

1. We draw N = 5000 samples of size n = 100, 200, 300 and 1000 from the LELom distribution
under the following sets of parameters: Set1 = (α = 0.5, ρ = 0.5, θ = 0.5), Set2 = (α = 1.5, ρ =

0.5, θ = 0.8), Set3 = (α = 1.2, ρ = 0.5, θ = 0.5) and Set4 = (α = 1.2, ρ = 0.5, θ = 0.8).
2. We calculate the MLEs of α, ρ and θ for each of the N samples, say α̂ j, ρ̂ j and θ̂ j, respectively,

for j = 1, . . . ,N.
3. We compute the average MLEs (AMLEs) and mean-squared errors (MSEs) for c = α, ρ and θ

through the following formulas:

AMLE =
1
N

N∑
j=1

ĉ j, MSE =
1
N

N∑
j=1

(ĉ j − c)2.

4. The obtained numerical results are indicated in Table 4 for Sets 1 and 2, and Table 5 for Sets 3
and 4.
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Table 4. AMLEs and MSEs of the LELom model parameters for Set1 and Set2.

n
Set1 Set2

AMLE MSE AMLE MSE

100
0.7670 0.2798 1.8867 1.0433
0.4495 0.1524 0.8046 0.7718
0.5190 0.0059 0.8857 0.0148

200
0.5958 0.1583 1.8090 0.8734
0.5419 0.0930 0.7320 0.4211
0.5104 0.0045 0.8686 0.0083

300
0.5489 0.1035 1.6867 0.4326
0.4724 0.0760 0.6046 0.1718
0.4989 0.0019 0.8357 0.0048

1000
0.5317 0.0912 1.5399 0.3495
0.5007 0.0547 0.5926 0.0806
0.5127 0.0009 0.8236 0.0032

Table 5. AMLEs and MSEs of the LELom model parameters for Set3 and Set4.

n
Set3 Set4

AMLE MSE AMLE MSE

100
0.7140 0.2910 1.7910 1.5110
0.7964 0.2267 0.7286 0.2649
0.4564 0.0054 0.8505 0.0344

200
0.9254 0.2573 1.2968 0.5961
0.7204 0.1465 0.6183 0.1950
0.4654 0.0021 0.8301 0.0102

300
0.9573 0.2451 1.2183 0.5758
0.6250 0.1093 0.5931 0.1057
0.4704 0.0017 0.7965 0.0038

1000
1.1425 0.1476 1.2010 0.1748
0.5142 0.0310 0.5788 0.0893
0.5197 0.0011 0.8091 0.0027

From Tables 4 and 5, the following comments can be formulated. As the value of n increases,
the AMLEs tend to the corresponding true values of the parameters. The MSEs decrease to 0 as the
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value of n increases. These two observations are consistent with the theoretical first-order properties of
the MLEs. Therefore, the LELom model combined with the maximum likelihood estimation method
seems to be a good solution for fitting data with a heavy tail, and a possible short left tail, a claim that
will be confirmed in the next section.

5. Applications

Here, the accuracy of the fit of the LELom model is compared to that of some competing models
such as the three-parameter power lomax (PLom) model by [35], two-parameter odd inverse
exponential Lomax (OInLom) model by [26], three-parameter exponential Lomax (ExLom) model
by [24], and standard two-parameter Lomax (Lom) model.

Based on a given data set, the following fit measures are taken into account: Cramér-von Mises
(W), Anderson-Darling (A) and Kolmogorov-Smirnov (KS) statistics with the p-value of the related
KS statistical test. In addition, the following criteria based on the maximum likelihood approach
are considered: Akaike information criterion (AIC) and Bayesian information criterion (BIC), both
defined from the estimated log-likelihood function denoted as ˆ̀. For such a data set, the model with
the smallest values for W, A, KS, AIC, and BIC, and the largest p-value is considered the best model.

The results are obtained using the R software.

The first data set was originally reported by [40]. It represents the Maximum Annual Flood
Discharges (MAFD) of the North Saskachevan River over a period of 47 years. It contains 47
observations, one per year, and the unit is 1000 cubic feet per second. The data set is given as {19.885,
20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 26.720, 27.500, 28.100, 28.600, 30.200, 30.380,
31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39.200, 40.000, 40.400, 40.400,
42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800, 61.200, 61.740,
65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600, 109.700, 121.970, 121.970, 185.560}.

The second data set includes the actual monthly tax revenue in Egypt from January 2006 to
November 2010. It was originally provided by [30]. The data set is presented as {5.9, 20.4, 14.9, 16.2,
17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17.0, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10.0,
4.1, 36.0, 8.5, 8.0, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5,
11.9, 7.0, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11.0, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8}.

Let us begin with the analysis of the first data set. The MLEs related to the considered models are
indicated in Table 6, along with their related standard errors (SEs).
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Table 6. Values of the MLEs related to the models with the related SEs (in parentheses) for
the first data set.

Models MLEs and SEs (in parentheses)

LELom 30.1240 24.4863 3.8502
(α, ρ, θ) (0.0078) (0.7501) (0.9975)

PLom 1.5941 1.3786 248.2217
(α, β, λ) (0.5966) (0.1462) (5.0557)

ExLom 1.7866 2.4702 0.0032
(α, β, λ) (0.2061) (1.1485) (0.0009)

OInLom 7.8195 127.1995 8.4659
(α, ρ, θ) (2.1153) (5.1333) (0.2254)

Lom 112.9830 2.7932 -
(ρ, θ) (7.7611) (0.8682) -

In order to measure the accuracy of the fits of the models, Table 7 gives the values of − ˆ̀, AIC, BIC,
W, A and KS (statistic and p-value) for the considered models.

Table 7. Values of − ˆ̀, AIC, BIC, W, A, KS and the KS p-value of the models for the first
data set.

Models − ˆ̀ AIC BIC W A KS KS p-value

LELom 216.5707 439.1414 444.7550 0.0280 0.1990 0.0793 0.9234

PLom 235.2859 476.5718 482.1854 0.0960 0.6430 0.2979 0.0004

ExLom 226.5981 459.1963 464.8099 0.28960 1.80388 0.1552 0.1976

OInLom 216.6007 439.2014 444.8150 0.0537 0.3709 0.0882 0.8484

Lom 243.1155 490.2310 493.9734 0.1149 0.7643 0.3641 5.907×10−06

Based on the results in Table 7, we see that the LELom model is the best with AIC = 439.1414, BIC
= 444.7550, W = 0.0280, A = 0.1990, KS = 0.0793 and the p-value of the KS test given as p-value
= 0.9234. We can notice the proximity of this last value to the optimal unit. The second best model is
the OInLom model. We illustrate that in Figure 2 by plotting the estimated pdfs and cdfs of the models
over the histogram and empirical cdf, respectively.
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Figure 2. Plots of the (i) estimated pdfs of the models over the histogram and (ii) estimated
cdfs of the models over the empirical cdf for the first data set.

Thanks to its small left tail and peakness properties, the estimated functions of the LELom model
have well captured the characteristics of the data, contrary to the other models.

Figure 3 completes the previous study by providing the probability-probability (P-P) and quantile-
quantile (Q-Q) plots of the LELom model.
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Figure 3. Graphics of the (i) P-P plot and (ii) Q-Q plot of the LELom model for the first data
set.
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This figure shows that the black lines in the P-P and Q-Q plots well adjust the corresponding scatter
plots, demonstrating the good fit of the LELom model to the data.

We now use our methodology for the second data set. The MLEs related to the considered models
are indicated in Table 8, along with their related SEs.

Table 8. Values of the MLEs related to the models with the related SEs (in parentheses) for
the second data set.

Models MLEs and SEs (in parentheses)

LELom 27.6902 5.4759 3.4196
(α, ρ, θ) (0.0243) (1.8775) (0.7343)

PLom 1.1901 2.2445 253.0403
(α, β, λ) (0.4637) (0.2773) (7.6449)

ExLom 1.8875 1.4853 0.0103
(α, β, λ) (0.2739) (1.3272) (0.0108)

OInLom 4.2666 142.7981 25.0416
(α, ρ, θ) (0.6823) (3.8372) (1.8329)

Lom 143.6553 11.4152 -
(ρ, θ) (9.6621) (6.2237) -

Table 9 provides the values of AIC, BIC, W, A and KS (statistic and p-value) for the considered
models.

Table 9. Values of − ˆ̀, AIC, BIC, W, A, KS and the KS p-value of the models for the second
data set.

Models − ˆ̀ AIC BIC W A KS KS p-value

LELom 192.3681 390.7361 396.9687 0.0433 0.2617 0.0823 0.8189

PLom 195.8858 397.6563 403.8889 0.1145 0.6521 0.1546 0.1192

ExLom 199.5225 405.0450 411.2776 0.3220 2.0531 0.1418 0.1858

OInLom 192.5344 391.0688 397.3014 0.0908 0.5380 0.0955 0.6538

Lom 214.3048 432.5045 436.6596 0.1764 1.0830 0.3175 0.0013

From Table 9, it is noted that the best model is the LELom model with AIC = 390.7361, BIC
= 396.9687, W = 0.0433, A = 0.2617, KS = 0.0823 and p-value = 0.8189. The second best model is
the OInLom model. However, it remains far from the performance of the LELom model on the basis
of the benchmarks considered.
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The main estimated functions of the models over the corresponding empirical objects are presented
in Figure 4.
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Figure 4. Plots of the (i) estimated pdfs of the models over the histogram and (ii) estimated
cdfs of the models over the empirical cdf for the second data set.

We see that the small left tail and peak properties of the LELom model made the difference with the
fits of the other models.

Figure 5 concludes the previous study by showing the P-P and Q-Q plots of the LELom model.
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Figure 5. Graphics of the (i) P-P plot and (ii) Q-Q plot of the LELom model for the second
data set.
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The black lines in the P-P and Q-Q plots adjust the scatter plots nicely, demonstrating the good fit
of the LELom model to the data.

In view of the above results, we can recommend the LELom model for the analysis of data similar
to those considered.

6. Conclusions

In this paper, we have motivated a modeling strategy based on a class of distributions defined from
an original and simple logarithmically-exponential transformation. A new flexible modification of
the Lomax model with three parameters is derived, allowing the fit of data having a heavy right tail
and an eventual short left tail. The proposed class is the subject of in-depth work on its probabilistic
and statistical properties, exploring the functional equivalences, modes analysis, stochastic ordering,
functional expansions, moment measures, information measures and reliability measures. The new
Lomax model is then applied to two real-life data sets, one related to the environment and the other to
finance. It is shown to provide a near perfect fit, outperforming some existing models also based on the
reference Lomax model, and with the same number of parameters. It is understood that only a special
distribution of the new class has been applied; others distributions with different features can be used
quite efficiently for applications in medicine, economics, insurance, reliability, and life testing, among
others.
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