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Abstract: Spherical fuzzy soft sets (SF SftSS) have its importance in a situation where human
opinion is not only restricted to yes or no but some kind of abstinence or refusal aspects are also
involved. Moreover, the notion of SFS;.Sis free from all that complexities which suffers the
contemporary theories because parameterization toll is a more important character of SFSf.S. Also,
note that aggregation operators are very effective apparatus to convert the overall information into a
single value which further helps in decision-making problems. Due to these reasons, based on a
spherical fuzzy soft set (S FS¢S ), we have first introduced basic operational laws and then based on
these introduced operational laws, some new notions like spherical fuzzy soft weighted average
(S FSs¢ WA) aggregation  operator, spherical fuzzy soft ordered weighted average
(SF SftOWA) aggregation operator and spherical fuzzy soft hybrid average (SF SftHA) aggregation
operators are introduced. Furthermore, the properties of these aggregation operators are discussed in
detail. An algorithm is established in the environment of SFS;.S and a numerical example are given
to show the authenticity of the introduced work. Moreover, a comparative study is established with
other existing methods to show the validity and superiority of the established work.
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1. Introduction

Fuzzy set (FS) proposed by Zadeh [1] established the foundation in the field of fuzzy set theory
and provided a track to address the difficulties of acquiring accurate data for multi-attribute
decision-making problems. Fuzzy set only considers membership grade (MG) "a" which is bounded
to [0,1] while in many real-life problems we have to deal with not only MG but also
non-membership grade (NMG) "b", and due to this reason, the concept of FS has been extended to
intuitionistic fuzzy set (IFS) established by Atanassov [2] that also compensate the drawback of FS.
IFS has gained the attention of many researchers and they have used it for their desired results in
practical examples for decision-making problems. IFS also enlarges the information space for
decision-makers (DMs) because NMG is also involved with the condition that 0 < a+ b < 1. Zhao
et al. [3] established the generalized intuitionistic fuzzy aggregation operators. Moreover, some
intuitionistic fuzzy weighted average, intuitionistic fuzzy ordered weighted average, and
intuitionistic fuzzy hybrid average aggregation operators are introduced in [4]. Moreover, IF
interaction aggregation operators and IF hybrid arithmetic and geometric aggregation operators are
established in [5]. Later on, the MG and NMG are denoted by interval values and a new notion has
been introduced called interval-valued IFS (IVIFS) [6] being a generalization of FS and IFS. The
notions of IFS and IVIFS have been applied to many areas like group decision-making [7], similarity
measure [8], and multicriteria decision-making problems [9]. Zhang et al. [10] introduce some
information measures for interval-valued intuitionistic fuzzy sets. In many decision-making
problems when decision-makers prove 0.6 as an MG and "0.5" as NMG then IFS fail to handle
this kind of information, so to overcome this issue, the idea of IFS is further extended to the
Pythagorean fuzzy set (P,FS) established by Yager [11] with condition that 0 < a?+p2 <1
Therefore, P,FS can express more information and IFS can be viewed as a particular case of P, FS.
Since aggregation operators are very helpful to change the overall data into single value which help
us in decision-making problems for the selection of the best alternative among the given ones, so
Khan et al. [12] introduced Pythagorean fuzzy Dombi aggregation operators and their application in
decision support system. Moreover, P,F interaction aggregation operators and their application to
multiple-attribute decision-making have been proposed in [13]. In many circumstances, we have
information that cannot be tackled by P,FS like sum(0.82,0.9%) ¢ [0, 1], to compensate for this
hurdle the idea of .g-rung orthopair fuzzy set (q-ROFS) is established by Yager [14] with condition
that 0 <a?+b% <1 for q = 1. It s clear that IFS and P,FS are special cases of q-ROFS and it
is more strong apparatus to deal with the fuzzy information more accurately. Wei et al. [15]
introduced some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision
making. Moreover, Liu and Wang [16] established the multiple-attribute decision-making based on
Archimedean Bonferroni operators. Since all ideas given above can only consider only MG and
NMG, while in many decision-making problems we need to consider the abstinence grade (AG) "¢",
hence to overcome this drawback, the idea of picture fuzzy set (PFS) has been introduced by
Cuong [17]. Cuong et al. [18] introduce the primary fuzzy logic operators, conjunction, disjunction,
negation, and implication based on PFS. Furthermore, some concepts and operational laws are
proposed by Wang et al. [19], and also some picture fuzzy geometric aggregation operators and their
properties have been discussed by them. Some PF aggregation operators are also discussed in [20,21].
Zeng et al. [22] introduced the extended version of the linguistic picture fuzzy Topsis method and its
application in enterprise resource planning systems. In the picture fuzzy set, we have a condition that
0 <a+b+ ¢<1, butin many decision-making problems, the information given by experts cannot
be handled by PFS and PFS fail to hold. For example, when experts provide "0.6" as MG, "0.5" as
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NMG, and "0.3" as AG then we can see that sum(0.6,0.5,0.3) & [0, 1]. To overcome this difficulty,
the idea of a spherical fuzzy set has been proposed by Mahmood et al. [23] with condition
that 0 <a?+b%2+ ¢2<1. So, SFS is a more general form and provides more space to
decision-makers for making their decision in many multi-attribute group decision-making problems.
Jin et al. [24] discover the spherical fuzzy logarithmic aggregation operators based on entropy and
their application in decision support systems. Furthermore, some weighted average, weighted
geometric, and Harmonic mean aggregation operators based on the SF environment with their
application in group decision-making problems have been discussed in [25,26]. Also, some spherical
fuzzy Dombi aggregation operators are defined in [27]. Ashraf et al. [28] introduced the GRA
method based on a spherical linguistic fuzzy Choquet integral environment. Ali et al. [29] introduced
the TOPSIS method based on a complex spherical fuzzy set with Bonferroni mean operator.

Note that all the above existing literature has the characteristic that they can only deal with
fuzzy information and cannot consider the parameterization structure. Due to this reason,
Molodtsov [30] introduced the idea of a soft set (SS) which is more general than that of FS due to
parameterization structure. Moreover, Maji et al. [31,32] use the SS in multi-criteria decision-making
problems. The notions of a fuzzy soft set (FS;.S) has been introduced by Maji et al. [33] which is
the combination of fuzzy set and soft set. Also, the applications of FS;S theory to
BCK/BC-algebra, in medical diagnosis, and decision-making problems have been established in
[34-36]. Similarly as FS set is generalized into IFS, FS¢.S is generalized into an intuitionistic fuzzy
soft set (IFS¢.S) [37] that is more strong apparatus to deal with fuzzy soft theory. Furthermore, Garg
and Arora [38] introduced Bonferroni mean aggregation operators under an intuitionistic fuzzy soft
set environment and proposed their applications to decision-making problems. Moreover, the concept
of intuitionistic fuzzy parameterized soft set theory and its application in decision-making have been
established in [39]. Since IFS;.S is a limited notion, so the idea of Pythagorean fuzzy soft set
P,FS;S has been established by Peng et al. [40]. Furthermore g-rung orthopair fuzzy soft set
generalizes the intuitionistic fuzzy soft set, as well as the Pythagorean fuzzy soft set and some g-rung
orthopair fuzzy soft aggregation operators, are defined by Husain et al. [41]. Since
FS;S,1F S¢S, PyFSsS and q — ROFS¢.S can only explore the MG and NMG but they cannot
consider the AG, so to overcome this drawback, PFS and SS are combined to introduce a more
general notion called picture fuzzy soft set PFS;.S given in [42]. Also, Jan et al. [43] introduced the
multi-valued picture fuzzy soft sets and discussed their applications in group decision-making
problems. Furthermore, SFS and soft set are combined to introduce a new notion called spherical
fuzzy soft set (SF SftS) discussed in [44] being the generalization of picture fuzzy soft set.
Furthermore, the concepts of interval-valued neutrosophic fuzzy soft set and bipolar fuzzy
neutrosophic fuzzy soft set along with their application in decision-making problems have been
introduced in [45,46].

The motivation of the study is to use SFS;.S because (1) Most of the existing structure like
FS;S,1F S¢S, PyFSfS,q — ROF S¢S and PFSg.S are the special cases of SFS¢.S. (2) Also, note
that SFSf.S can cope with the information involving the human opinion based on MG, AG, NMG,
and RG. Consider the example of voting where one can vote in favor of someone or vote against
someone or abstain to vote or refuse to vote. SFS;.S can easily handle this situation, while the
existing structures like FS¢.S, IFSf:S, P,FS¢ S and q — ROFSs:S can note cope this situation due
to lack of AG or RG. (3) The aim of using SFS;.Sis to enhance the space of PFS;.S because
PF S¢S has its limitation in assigning MG, AG, and NMG to the element of a set. (4) Also note that
FS, IFS, P,FS and g-ROFS are non-parameterized structure, while SFS;.S is a parameterized
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structure, so SFSr.S has more advantages over all these concepts. So in this article, based on
SFS¢S, we have introduced the idea of SFS;WA,SFS;;OWA and SFS;:HA aggregation
operators. Moreover, their properties are discussed in detail.

Further, we organize our article as follows: Section 2 deal with basic notions of FS, S¢S, PFS,
PFS¢S, SFS and SFS;:S and their operational laws. In section 3, we have introduced the basic
operational laws for SFS¢Ns. Section 4 deal with some new average aggregation operators called
SFSp WA, IVT — SFS;;OWA and SFS; HA operators. In section 5, we have established an
algorithm and an illustrative example is given to show the validity of the established work. Finally,
we have provided the comparative analysis of the proposed work to support the proposed work and
show the superiority of established work by comparing it with existing literature.

2. Preliminaries

Definition 1. [1] Fuzzy set (FS) on a nonempty set U is given by
F ={(x,a(0)): » € U}
where a: U — [0,1] denote the MG.
Definition 2. [30] For a fix universal set U, E a set of parameters and T € E, the pair (Q,T) is said
to be soft set (SftS) over U, where Q is the map given by Q:T — P(U), where P(U) is the

power set of U.

Definition 3. [33] Let U be a universal set, E be the set of parameters and H € E. A pair (P,H) is
said to be fuzzy soft set (FSftS) over U, where "P" is the map given by P: H - FSY, which is

defined by

By, () = {0, a; (%)) i, € U}
where FSY is the family of all FSs on U. Here a;(x;) represents the MG satisfying the condition
that 0 < a;(3;) < 1.

Definition 4. [17] Let U be a universal set then a picture fuzzy set (PFS) over U is given by

P = {(x,a(x),b(x),c(x)) : x € U}
where a:U — [0,1] is the MG, b:U - [0,1] is the AG and ¢:U - [0,1] is NMG with the
condition that 0 < a(s) + b(s) + ¢(x) < 1.

Definition 5. [19-21] Let P, = (ay,b4,¢1), P, = (a,b,,¢;) be two PFNs and 3 > 0. Then basic
operations on PFNs are defined by

1. LUP, = {(max(al(%), az(%))), (min(lbl(x),b2 (H))),min(cl(k), 2 (H))}.

2. P.NP, = {(min(al(x),az(x))),(min(bl(x),bz(}f)),(max(cl(%), cz(%))))}.
3. P = (1 (30), 1 (30), 0, (30)).
4 PP, = (100 + 000 = (0:60)(0209)), (0:005,00), (.00 0) ).
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(0169a260), (5160 + b200) = (6,6 (b2())) )
(@00 + €00 = (€0 (c206))

6. P1J = ((‘H(”))J; 1-@a- b1(%))l). 1-@a- C1(%))J))-

5. P1®P2=<

7. APy = ((1 — (1 =a;00)M, (0,0, ((%(”))l))-
Definition 6. [42] Let U be a universal set, E be the set of parameters and H € E. A pair (P, H)
is said to be picture fuzzy soft set (PFSftS) over U, where "P" is the map given by P:H —
PFSY, which is defined by
B, () = {(”@ a;(3;),b;(5,),¢;(3;)) s n; € [U}

where PFSU is the family of all PFSs over U. Here a;(x;),b,;(x;), and ¢;(3¢;) represent the MG,
AG, and NMG respectively satisfying the condition that 0 < a;(»;) +b;(x;) +¢;(¢;) < 1.

Definition 7. [23] Let U be a universal set then a spherical fuzzy set (SFS) over U is given by
S = {{#,a(0),b(0), c(3)): x € U}
where a: U — [0,1] is the MG, b:U — [0,1] is the AG and ¢:U — [0,1] is NMG with the

condition that 0 < (a(0))” + (6Go))” + (c(x))? < 1.

Definition 8. [25] Let S; = (ay,b4,¢1), S, = (ay,b,,¢,) be two SFNs and 3 > 0. Then basic
operations on SFNs are defined by

1. S;US, = {(max(al(%), az(%))),(min(bl(x),bz(%))),min(cl(%), ¢ (%))}.

2. NS, = {(min(al(x),az(%))),(min(bl(x),bz(%)), (max(cl(%), cz(%)))>}.
3. 81° = (1 (30), b, (30), a1 (30)).
4.5 @S, = (V@60 + (@00)7 = (2, 60)2(@,00)%), (6 66)b2 (), (62 62 () ).

5. 5188, = ((a100a;(0), (0 30b200), (Y& GOV + (602 — (G2 (2 ())?) ).

6. 5% = (@G, B0 (V= A= a6D)).

738 = (VT= A= 0607), (0200, (@ 00D
3. Operational laws for spherical fuzzy soft numbers

In this section, we will define some basic operational laws for SFS¢Ns, score function,
accuracy function, and certainty function, which further helps in MCDM problems for the selection
of the best alternative.

Definition 9. Let Spij = (Cl,ij, b,l:;‘, C/ll}): S,Pij = (a’q‘:b'q‘: lell}) be two SFSftNS and X > 0. Then

basic operational laws for SFS¢Ns are defined by
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pis iff a;; <ayy, by <byy and ¢ = oy

Sy
=S pii iff Spﬁ —Sm; and Sp., SPW
S

S

Sp

Spiy USp, = (max(ay, @), min(by, by), min(cy, ;).
Sp nS pij — < min(a,ij, a‘ﬁ»),min(b%, b‘ﬁ»),max(cij, c”ij))'
C

Py = (Cq"bq' %;’)

6. Spy; ® S, = (\/ (%‘)2 + (a'w)z - (%)Z(a&z)z,bubh‘w Ci:i%‘)-
2 2 2 2

T S5p®Spy = (aqa’iw%b'w\/ (ci)" + (eip)” = (ci5) (cs) )

8. 2S,,, = (\/1 ~ (1-a,2)" b ).

b)
9. SPW (a; ,bq,l,\/1— (1—c;;2)).

Example 1. LetS, =(03,0.506), S,,=(04,0.7,03) and S=(0.20.6,0.5) be three

Aol A

cn

SFSfNs and 3 = 3. Then

1. §

P11US

v, = ({max(0.3,0.4), min(0.5,0.7),min(0.6,0.3)) = (0.4,0.5,0.3).

2. S, NS, =(min(0.3,0.4), min(0.5,0.7), max(0.6,0.3)) = (0.3,0.5, 0.6).

3. S¢=(0.5,0.6,0.2).

4.8, @S, (J(o.3)2 1 (0.4)2 —(03)2(0.4)2, (0.5)(0.7), (o.e)(o.s)) _
(0.49,0.35,0.18).

5. 5,,8S,, = ((0.3)(0.4), (0.5)(0.7),\/(0.6)% + (0.3)2 — (0.6)2(0.3)2)

= (0.12,0.35, 0.65).
6. 35 = (1= (T=022)%,(0.6),(05)°) = (0.3395,0.216,0.125).

7. 5= ((02)%,(0.6)* ,y/T= (1— 0.52)7) = (0.008,0.216,0.7603).

Definition 10. For a SFS¢.N, Spq, = (a4, by ¢i), the score function (SF), accuracy function (AF),
and certainty function (CF) are respectively defined by

24 a—bi—cos
SC(SW)=( +a; —by Cw)

3
AC( P11) =a;

and
CF( P11) =a;

Note that SF(S,,,) € [-1,1].
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Example 2. For a SFS;:N S, | = (0.5,0.6,0.3), score values, accuracy values, and certainty values

are respectively calculated by

(2+0.5—-0.6-0.3)
Sc(S,,,) = 3 = 0.5333

Ac(S,,,)=05-03=0.2
and

CF(S,,,) = 0.5.

Definition 11. Let S, | = (a11,b11,¢11) and S, , = (aq2,b12,¢12) be two SFSsNs. Then

P12

1. If Sc(S,,,) > Sc(S,,,).then S, =S

= “pP1z°

2. 1If Sc(S,,,) < Sc(S,,,). then S,  <S, .

3. If Sc(S,,,) = Sc(S,,,). then

1) If/r'sp11 > 75, thenS, >3, ..
2) If/’ﬂsp11 = 4’vsp then Sp11 = SP12'
Theorem 1. Let S, = (a;1,b14,¢1) and S, . = (a;2,b12,¢12) betwo SFS;Ns and 3 > 0. Then
the following properties hold.
L. P11 @ p1z — SP21 EB P11°

2. 5, ®S, =S, ®S,. .
3. M8y, @ Sp,,) = (385, ©3Sp,,).
4. O +3)(S5,,) =3(S5,,) +32(S,,,).
50 (S00)™ ™ = (85,) " ®(S5) "

6. (551)' ®(S50,) = (55, 855,.)"

Proof. Proofs are straightforward and follow immediately from Definition 9.
4. Spherical fuzzy soft average aggregation operators

In this section, basic notions of SFS; WA, SFS;:OWA and SFS; HA operators are elaborated
and further their properties are discussed in detail.
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4.1. Spherical fuzzy soft weighted averaging aggregation operators

Here, we present the detailed structure of SFS;WA aggregation operator and discuss their
properties in detail.
Definition 12. For the collection of SFSfthSpM = (aij,bij, cij), where 4 =1,2,...,n and

7=12,...m, if w = {w,,w,, .., w,} denote the weight vector (WV) of e; experts and
p = {p1, 02 ., Pm} denote the WV of parameters p; with condition w;,p,; € [0,1] with
Yiciwy;=1and X7, p,=1, then SFS;WA operator is the mapping defined as
SFS;WA: R™ > R, where (R is the family of all SFS¢.Ns)

SFSftWA( P11’ p12' pnm) eaf 1 p7 (69’? 1 w’i'spij)'
Theorem 2. For a collection of SFS;Ns, where Spq. = (aij, b, cij), then the aggregated result for
SFS; WA operator is again a SFS;:N and given by

SFSftWA( p1179paz’ ""Spmn) =®;Z1 p; (@? 1 ’Wiqu)

Jr=m (e (1= ) ™) ()™ N
M)

where w = {wy, w,, ..., w,} denote the WV of "e;" experts and p = {p;,p3, ..., P,n} represent

the WV of parameters "p," with condition w,;,p; € [0,1] with ¥7_;w; =1 and Y7 ;p, = 1.

Proof. Mathematical induction method is to be used to prove this result.

By operational laws, it is clear that

Sp, DS, (\/(011)2 + (a12)? — (a11)2(012)2,511512’C11C12)

and

35 =(VI= @A -adkp,¢) for 32 1.
We will show that Eq (1) is true for n = 2 and m = 2.

SFSpWA(S,, 1Sy 1Sy, ) =B21 p; (EBE 1 wiSpW.)
= p1 (By w.S,,,) @ pa (s wiS,,)
= p1(w1Sp,, ® w,Sp,,) © P2(w1S,,, © w2S,,,)
= D1 {(\/1 — (1 —a132)*1, b1, ™, cn“’l) ® (\/1 — (1= a12)"2, b1, c21“’2)}
@ P2 {(VI— (T = 091,512, 0121) @ (VI = (T — 02,292,555, 2,2 )}
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2

wi 2 2
=D 1- 1—[(1 —a;%) Hbﬂwi ) 1_[ i1t

i=1 i=1 i=1

2 wi 2 2

@D p, 1- 1_[(1 —a;%) nbizwi ) 1_[ Ci2t

i=1 i=1 i=1

ﬁ(l e ) (1_[ m%‘)pl , (ﬂ c“wi)m)

=1

/ 2 wi\Pz P2, 2 pz\
EB\ 1- U(l—aizz) '<Hb¢2m> ,<HC¢ZW> /

Il
—

=1

- (\/1 - §=1(H423=1(1 - aijz)w¢)pi , ;=1(H42L=1 b/ii,wi)pf ) 1(1_[1 . C/wai)p;‘)
Hence the result is true for n = 2 and m = 2.

Next, consider Eq (1) is true for n = k; and m =k,

S

P12’ =

Sprgtr) =®21 1y (B2, wiS,,)

(e (e (- @)Y ),
;Zl(n?:l(%)m)pj
Further, suppose that Eq (1) is true for n =k; +1 and m =k, + 1.
SFSpWA(S

SFSpWA(S

P11’

Splz’ Y Sp(k1+1)(k2+1))

{Gakzl Pj (69 p%,)} D Pl +1) (w(k2+1)5p(k1+1)(k2+1))

P11’

ky / kg Pk,

=[] @)” ﬂ l_[(m,)““ \

_ ;:1 i=1
= L | D Ply+1 (wk2+1sp(k1+1)(ﬂ«2+1))

ﬁ(ﬂ()”) ’

(- (e (- ) I (M (o) )™ |
]kz+1(l—[]k1+1 M)’”&)pi

From the above expression, it is clear that aggregated value is also SFS;:N. Hence given Eq (1)
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is true for n = k; +1 and m =k, + 1. Hence it is true for all m,n > 1.
Definition 13. [44] Let U be a universal set, E be a set of parameters and H € E. A pair (S,H) is
said to be spherical fuzzy soft set (SF SftS) over U, where "S" is the map given by S: H — SFSY,
which is defined to be

Spf(%;) = {(7'% a;(2;),0;(¢,),¢;(3;)) : %, € [U}
where SFSU is the family of SFSs over U. Here a;(2;),b;(x;), and ¢;(»;) represents the MG,
(by’(%))z +

(cj(}ti))z < 1. For simplicity, the triplet {(aj(xi),bj(}fi), cj(xi))} is called spherical fuzzy soft
number (SF SgeN ) Also, refusal grade is defined by

/rvqu‘ - \/1 - ((af(}{i))z + (bi(%’i))z + (ci(%/i))z) :

Example 3. From a set of five laptop brands as alternatives A = {x; = Dell,»x, = Apple, x5 =
Lenovo, x, = Samsung,xs = Acer }, a person’s desire to buy the best brand. Let p = {p;
USB type — C, p, = Higher resolution screen, p; = Reaonable price,p, =

8 GB of RAM or more} be the set of parameters. Let w = {0.25,0.15,0.14,0.3,0,16} denote the
WV of "e;" experts and p = {0.27,0.19,0.29,0.25} denote the WV of "p," parameters. The
experts provide their information in the form of SFS¢Ns as given in Table 1.

2
AG, and NMG respectively satisfying the condition that 0 < (a;(%i)) +

Table 1. Tabular representation of SFS¢.N's.

P1 P2 P3 P4
# (0.2,0.1,0.6) (0.5,0.3,0.1) (0.4,0.3,0.2) (0.6,0.1,0.2)
#, (0.1,0.4,0.4) (0.6,0.3,0.1) (0.2,0.1,0.7) (0.5,0.6,0.1)
s (0.3,0.2,0.2) (0.6,0.2,0.1) (0.3,0.3,0.4) (0.5,0.1,0.3)
A (0.3,0.1,0.6) (0.1,0.2,0.6) (0.2,0.1,0.2) (0.2,0.3,0.4)
s (0.7,0.4,0.2) (0.5,0.3,0.7) (0.2,0.8,0.3) (0.7,0.1,0.2)
By using Eq (1), we have
SFSftWA( P11’ P12’ ""Spnm)

(- T1(T6 - H(HW) )
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1-— {(1 — 0'22)0.25(1 — 0.12)0.15(1 — 0.32)0.14(1 — 0.32)0.3(1 — 0.72)0.16}0.27
{(1 — 0_52)0.25(1 — 0.62)0'15(1 — 0_62)0.14-(1 — 0_12)0.3(1 — 0_52)0.16}0.19
{(1 — 0_42)0.25(1 — 0_22)0.15(1 — 0_32)0.14—(1 — 0_22)0.3(1 — 0_22)0.16}0.29 ’
{(1 — 0_6)0.25(1 — 0_52)0.15(1 — 0_52)0.14(1 — 0_22)0.3(1 — 0_72)0.16}0.25

{(1 —_ 0_12)0.25(1 _ 0.42)0.15(1 _ 0.22)0.14(1 _ 0.12)0.3(1 _ 0.42)0.16}0.27
_ {(1 — 0_32)0.25(1 _ 0.32)0.15(1 _ 0.22)0.14—(1 _ 0_22)0.3(1 _ 0.32)0.16}0.19
{(1 - 0.32)025(1 — 0.12)%15(1 — 0.32)%14(1 — 0.12)°3(1 — 0.82)0-16}029 | ’
{(1 _ 0.12)0.25(1 _ 0.62)0'15(1 _ 0.12)0.14(1 _ 0.32)0.3(1 _ 0.12)0.16}0.25

{(1 _ 0.62)0'25(1 _ 0.42)0.15(1 _ 0.22)0.14(1 _ 0.62)0'3(1 _ 0.22)0.16}0.27
{(1 _ 0.12)0.25(1 _ 0'12)0.15(1 _ 0'12)0.14(1 _ 0.62)0'3(1 _ 0'72)0.16}0.19
{(1 _ 0.22)0.25(1 _ 0.72)0.15(1 _ 0_42)0.14(1 _ 0.22)0.3(1 _ 0_32)0.16}0.29/

{(1 _ 0'22)0.25(1 _ 0.12)0.15(1 _ 0.32)0.14(1 _ 0'42)0.3(1 _ 0.22)0.16}0.25
= (0.461322,0.174673,0.250344).

Next, we propose the properties for SFS;; WA aggregation operator, which can be easily
proved.
Theorem 3. Let Spi,,- = (aij,bﬁ», cij) for i=1,2,...,m and 4 =1,2,...,m, be the family of
SFS¢Ns, w = (wy, wy, ..., w,)" denote the WV of e; experts and p = (p1, D2 ) Pin)”
denote the WV of parameters p; with condition w,p; € [0,1] with Y7, w; =1 and
i=1p; = 1. Then SFS;;WA operator holds the following properties:

1. (Idempotency): Let Spq = (aij, b cﬁ) =5, forall 1 =1,2,..,m and 4 =1,2,...,m
Spnm) = S’p'

Proof. If Spq = (aﬁ, by, cq-) =5, for all 4=1,2,...,n and 4=1,2,..,m, where Sy =

where §', = (@, b, ¢), then SFSftWA( 0117

P12’ e

(a, b, ¢), then from Theorem 1, we have

(60 ) ' f[(l‘[(m,)“”) '

): =1 i=1 1

\ [1(Te) )
ﬁ (H(l - (a)%) ﬂ(i{(b)%)pi,

\ (o) )
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= (VI-a =@, b,¢) = (@,b,0) =5,

Hence SFS¢WA(Sp, ., Sp.yr 1 Sp,,) = S'p-

Y Pam

2. (Boundedness): If S/J_¢; = (minimini{aq}, maxjmaxi{bq}, maxjmaxi{cq}) and S;q =

(max max; {aq} min;min, {bw} min;min, {Cw}) then S, ;S .S'FSftWA( 01109100 1S, ) <

Y Pam

S+

Piz*

Proof. As S/J_¢; = (minjmini{aq}, maximaxi{bq}, maxjmaxi{cq}) and

S/L;‘ = (maxjmaxi{aq},minimini{bq},minjmini{cq}), then we have to prove that Sp_q. <
SFSftWA( P11’ P12’ p/n/m) = P¢;
Now foreach 1 =1,2,...,m and 4 =1,2,...,m

min;min{a;;} < {a;;} < max,max;{a;;} © 1 —max,max;{a;;*} <1 - a,?

< min;min{a;;?}

m n | m n p;
wi
=N 1_[ (1_[ 1 — max,ma;g(aq) ) ) < 1_[ (1_[ (1 - (aq)z) )
=1 \i=1 #=1 \i=1
m n p; n iy ¥
; Yim1 Wi 157
1_[ (1_[ 1 - minjmini(aq)z)w ) ((1 max;max,;(a;;) ) lw ) '
=1 \i=1
m n p; n DN ¥
. Dim1 Wi 157
= (ﬂ 1 - (%)Z)w ) <(1 — min;min,(a;) ) N ) f
7=1 \i=1

p;
1 - (aw) ) <1 —minmin,(a;;)°

||:3

m

o 1 —max;max;(a;)" < 1_[<

=1

e 1- (1 — minfmim(aq') ) <1- ]_[;’;1( 1 (1 _ (aij)Z)Wi)pi <1-— (1 —

maxjmax,i (a’ij) 2) .

Hence

wi\Pj
mingmin,(a;;) < \/ 1= (M (1= (o)) ) s maxgmaxi(ay). @)

Now foreach 4 =1,2,...,n and 4= 1,2, ..., m, we have
m n 7
minjmini(bij) < maxfmaxi(bij) S 1_[ (1_[ min;min; (bw) ) 1_[ (H(bﬂ)um)
j=1 \i=1
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2;‘21 Dj

ﬁ(ﬁ max;‘maxm'(béz))m)m ((mm;mlm(bw))m 1“’4)

7:1 1i=1

H (ﬂ@m) E ((max;maz,(v,,))"")

= min;min,(b;;) < [17%, (17 1(b¢;)w¢) < max;max;(b,;). (3)

Also foreach i =1,2,...,mn and 4 =1,2,...,m, we get

2%1 Dj

min;min,(c;;) < max;max;(cy;) © ﬁ(ﬁ (mm’mini(w ))“”)W ﬁ(n(%})m> |

m

1_1[ (ﬁ max,max¢(c¢;))w¢) ((min;mini(cq))m;lm) ]
S f{(ﬂ(%;)mf} s ((max;‘maxi(%;))mﬂm)

2%1 p;

i—1

= minymin;(c;;) < Hﬁl(nﬁzl(cﬁ)wi)pj < max,max;(c;;). 4)

Therefore from Eqs (2), (3), and (4), it is clear that
minjmin'(aij) < \/1 - ”’-’i ( (aﬁ) ) ) < maxjmaxi(aq‘)’
min;min,(b;;) < 1_[ (ﬂ(b%,) ) < max;max;(b,;)

and
min;min,(c;;) < ]_[;Zl(l_l?zl(cﬁ)m)p" < max;max;(c,;).

LetT = SFSftWA( 0117 Op1gr 1S ) = (ag, by, ¢g), by Definition 10, we obtain

Pnm

(2+ag—bz—(ﬁz)
3

Sc(%) = Sc(S,,,) =

(2 + max;max,(a;;) — min,min,(b,;;) — min,mini(w))

= Sc(S, pﬁ)

= Sc(T) < Sc (S;;j)

and
(2+ag — by —cq)

Sc(®) = 3
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(2 + min;;mini(aij) — max,max; (bﬁ) —max;,max; (Cq'))

>
- 3
=Sc (SPW)

= 5c¢(Y) = Sc (Sp‘q).

We have the following cases

Case (1): If Sc(%) < Sc (S;;j) and Sc(¥) > Sc (S ) then by the Definition 10, we have

(SFM ) SFSftWA( P11’ 912‘ ""Spwm) (Sﬁ-";;)
Case (2): If Sc(T) = Sc (S;,). that is
(2+ag—bg—cy) (2+max7max¢(aij)—minjmini(bﬁ)—min;-mini(cﬁ))

3 3
we get

, then by using the above inequalities,

ag = max~max~(a¢j) and by = min

; i 7mln¢(b,,4) andCcI - mlnymln¢(c¢7)

S

Pwm) = (S.;L‘j)'

Thus 74 = 4”5+ this implies that SFSftWA( 0117

P12‘ e
Case (3): If Sc(T) = Sc (5 ) that is
(2+ag—bg—cy) (2+minjmin¢(aﬁ)—maxjmaxi(b”)—maximaxi(cij))

3 3
we get

, then by using the above inequalities,

ay = min;mini(aq-) and by = maxfmaxi(bﬁ») and ¢y = maxfmaxi(cij).

Thus ¢ = TS50 this implies thatSFSftWA( 0117 Op1gr o ’Spm) = (.S'p_q,).

Hence it is proved that
(Sp_ ) = SFSftWA( P11’ P12’ ""Spnm) - (Sﬁ-):,)

3.  (Monotonicity): Let S’% = (a'ij,b'ij, c'ij) be any other collection of SFS¢ Ns for all

i=12,..,n and 7 =1,2,..,m suchthat a;; <a;;, by =b

= 0 and Cq’ = C’ija then

SFS;WA(S,,,, o) < SESHWA(S

P12’ "" P11’ P12’ ""S,an)'

Proof. As a;; S @y, by 2b and Cij 2 C4j for i=1,2,...,mn and 4=1,2,...,m,so

i

, 2 _ 2
a¢;sa¢;:>1 a¢4<1 7:1—a¢;' <1 aq'
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:>J1— ;’il( =1 (1—((1%)2)”%;)?’; S\/l_ = 1( ( (aq) ) ) (5)
and

by = by = [ (b)) = T (bri) " = T2 (T (b4) )™ = T2 (T (84,) )™, (6)
Also

ciy‘ > C'i;‘ = H?:l(ci;‘)/ua 1(C4,;)WAL = H 1(1_[ 1(%7)’“%)7’7 = l_[ 1(H/L 1(C ¢;)w¢)p;

Let 15 - SFSftWA( P11’ P12‘ ""Spwm) = (ags,bgs, CZS) and

Ts —SFSftWA(Spn, plz,...,S’pm) = (a'zs,,b'zs,,czs,), then from Eqs (5), (6), and (7), we

obtain Qg < L P bZS = b’gjs, and Cx = Ca,,-

Now by using Definition 10, we obtain Sc(Z) < Sc(Ig.).
Now we have the following cases

Case (1): If Sc(Zs) < Sc(Zs.), then by using Definition 11, we have

SFSftWA( P11’ P12" ’ Pn ) < SFSffWA(S P11' ‘P12 ""S'p/n/m)'
Case (2): If Sc(Is) = Sc(Zs.), then
2 —bg.— 2 —bg. —
Sc(Is) = ( tazg—bag cis) _ ( tazg ~byg, C‘ls') = Sc(Ts).

3 3

Hence by using the above inequality, we obtain ag, = @'g,, by, = b, and g, = cgg,.

So we get Tyg = Ty, = (ais'bZS' C:ts) = (a’zs‘,b’zs,, C’Q:S‘).
Hence it is proved that

SFSpeWA(S,,,» ) < SFSpWA(S Y

P12" ’ Pn P11' P12""’ Pwm)‘

4.  (Shift Invariance): If S, = (a,b,¢) is another family of SFS; N, then

SFSftWA( Pl1 SP12®S aneas ) SFSftWA( P11’ P12" )695

’ P/n,m

Proof. Let §', = (@,b,¢) and S, = (a;;,by,¢;;) be family of SFSyNs, then

Spq'@S'P = (\/1 - (1 - (1,1:;‘2)(1 - a'z) ,b/i}'b', C,l:;‘C').
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Therefore,

SFSftWA(SPu P12@S ’ ""SPWQS’P) :@;}il p; (@?:1 Wi ( pw@s ))

) ( 1- L{ <H (1 - (w)zm (: - (a')z)m> };{ <g(b¢;)m(bm)) \}
k g(g(w) 4(%)) i
) ( 1-(1-@?) fl[ <1£1[ S i%f)““):zb, ﬁ (El[(bm)“”)pi \}
K 71(f1er) ]
=( 1_H<n (1 m(aijf)M) lj: (g(%)“”) \! (a1, c)
\ l_[ (D(w)“’i) /
{F-atge >>n<n>\

- SFSftWA( P11’ P12’ ""SPW)GBSJP'

Hence the required result is proved.

5. (Homogeneity): For any real number 1 > 0,

‘S‘F"S‘f’fVVA(J P11' P12’ S ) = RSFSftWA( P11’ P12’ ""Spwm)'

Proof. Let 3 > 0 be any real number and Spy = (aﬁ, by CM) be a collection of SFS¢.Ns, then

3S,,, =<\/(1—(1—a¢, )') b w)

Now
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SES;WA(S,,,, 35,0 -35,,.)

| ﬂ<ﬂ<>)ﬂ(n)\
e

[Pl () )
(e

- RSFSftWA( P11’ P12’ ""Spwm)'

Hence the result is proved.
4.2. Spherical fuzzy soft ordered weighted average (S F SftOWA) operator

From the above analysis, it is clear that SFS;;, WA cannot weigh the order position through
scoring the SFSs; values, so to overcome this drawback, in this section, we will discuss the notion
of SFS;OWA operator which can weigh the ordered position thorough scoring the SFSfNs. Also,
the properties of established operators are discussed.

Definition 14. Let S,W, = (aij,bij, cij) for i=1,2,..,n and 4 =1,2,...,m, be the collection of
SFSgNs, w = {wq, Wy, ..., wy,} and p = {py,ps, ...,Dn} are the WVs of "e;" experts and
parameters p; respectively with condition w;,p; € [0,1] and X7, w; =1, Y7L p; = 1. Then

SFS;:OWA operator is the mapping defined by SFS;;OWA: R"™ — R, where (R is the family of all
SFSs:Ns)

SFSftOWA( P11’ P12’ ’Spmn) 269;21 pf (EB’?=1 wisbpq')'
Theorem 4. Let Spq = (aij,bq', CW) for i=1,2,...,mn and 4 =1,2,...,m, be the family of
SFFNs. Then the aggregated result for SFS;,OWA operator is again a SFS;:N given by

SFScOWA(Sp,, Sprpr o Sppn) =BF21 P (@111 Wﬁbm;)

) Jl_ %1( ZLzl(l_(atn';')z)m)pi' 7 (T (b)), (8)
H%1(H?=l(cw)wi)p;
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where prq. = (abﬁ,bbﬁ, cbﬁ) denote the permutation of 4th and jth largest object of the
collection of 4 X y SFSftNSSpq = (aﬁ,bﬁ, c/ij)'

Proof. The proof is similar to Theorem 2.

Example 4. Consider the collection of SFS¢Ns Spq, = (aq, by cql) as given in Table 1, of

Example 3, then tabular depiction of S, piy = (am-}', byij) cbi;‘) is given in Table 2.

Table 2. Tabular depiction of prﬁ = (ahﬁ, byij) cbﬁ).

P1 P2 P3 P4
#y (0.7,0.4,0.6) (0.6,0.3,0.7) (0.4,0.8,0.7) (0.7,0.6,0.4)
#y (0.3,0.4,0.6) (0.6,0.3,0.6) (0.3,0.3,0.4) (0.6,0.3,0.3)
#3 (0.3,0.2,0.4) (0.5,0.3,0.1) (0.2,0.3,0.3) (0.5,0.1,0.2)
#y (0.2,0.1,0.2) (0.5,0.2,0.1) (0.2,0.1,0.2) (0.5,0.1,0.1)
#s (0.1,0.1,0.2) (0.1,0.2,0.1) (0.2,0.1,0.2) (0.2,0.1,0.1)
Now by using Eq (8) of Theorem 4, we have
SFSftOWA(SPn’ S.Dlz’ e Spnm)
m n P; m n | \
2 wy wy
(@) TI(Te0™) |
_ 7=1 \4i=1 7=1 \i=1 |
m n D;
wy
[T(] T
j=1 \i=1

1— {(1 — 0.72)0.25(1 — 0.32)0.15(1 — 0.32)0.14(1 — 0.22)0.3(1 — 0.12)0.16}0.27
{(1 — 0.62)0.25(1 — 0.62)0.15(1 — 0_52)0.14(1 — 0_52)0.3(1 — 0_12)0.16}0.19
{(1 — 0.42)0.25(1 — 0.32)0.15(1 — 0_22)0.14(1 — 0_22)0.3(1 — 0_22)0.16}0.29 !
{(1 — 0_7)0.25(1 — 0_62)0.15(1 — 0_52)0.14(1 — 0_52)0.3(1 — 0_22)0.16}0.25

{(1 = 0.42)025(1 — 0.42)015(1 — 0.22)01%(1 — 0.12)%3(1 — 0.12)0-16}0-27\

_ {(1 — 0_32)0.25(1 _ 0_32)0.15(1 _ 0_32)0.14(1 — 0_22)0.3(1 _ 0_22)0.16}0.19

h {(1 —_ 0.82)0'25(1 _ 0.32)0.15(1 _ 0.32)0.14(1 _ 0.12)0.3(1 _ 0.12)0.16}0.29 ’
{(1 — 0.62)0'25(1 — 0_32)0.15(1 — 0_12)0.14(1 _ 0_12)0.3(1 — 0_12)0.16}0.25

{(1 _ 0.62)0'25(1 _ 0.62)0'15(1 _ 0_42)0.14(1 _ 0_22)0.3(1 _ 0_22)0.16}0.27
{(1 _ 0.72)0.25(1 _ 0.62)0'15(1 _ 0.12)0.14(1 _ 0.12)0.3(1 _ 0.12)0.16}0.19
{(1 _ 0_72)0.25(1 _ 0_42)0.15(1 _ 0_32)0.14(1 _ 0_22)0.3(1 _ 0_22)0.16}0.29/

{(1 _ 0.42)0.25(1 _ 0.32)0.15(1 _ 0.22)0.14(1 _ 0.12)0.3(1 _ 0.12)0.16}0.25
= (0.456533,0.16599,0.21286).
Theorem 5. For the collection of SFSqNs, Spq. = (aq, by, cq) for i=1,2,..,n and

7=12,...m, w ={w,,w,, .., w,} being WV of e¢; experts and p = {py,p2, ..., Pm} being
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WYV of parameters p; with condition w;,p; € [0,1] and Y7 w; =1, ¥%p; =1, then
SFS;tOWA operator preserves the following properties.

1. (Idempotency): Let S, = (aijbijci;) =Sn, for all i=1,2,..,n and 7=

1,2,..,m,where S, = (a,b,c), then SFSp,OWA(S,,., Sy, +:5p,,,) = S'ap-

2. (Boundedness):  If S5, = (min;min{ay,;}, max;max,{by;;}, max;max;{e;})  and
5;% = (maxjmaxi{aw}, min;’mini{bw}, minjmini{cw}), then

Spi; S SESFOWA(Sp1r Spiyr 1 Spum) < Soiois-

3. (Monotonicity): Let S’% = (a'ij,b'ij, c'ij) be any other collection of SFS;Ns for all

i= 1,2, e, N and j = 1, 2, e, m such that a,,;j < a‘ﬁ», b/L; > b and Cq’ = C’ija then

i

SFS;,OWA(S,,., oun) < SFS;:OWA(S'

P12’ P11' P12’ ""S,an)‘

4. (Shift Invariance): If S’, = (a,b, ¢) is another family of SFS¢.Ns, then

SFSftOWA( Pl1 1012@5 y e aneasp) SFSftOWA( P11’ P12" ’ an)eas :
5. (Homogeneity): For any real number 1 > 0,
‘S‘F‘S‘ffom/‘él(J P11’ P12’ S ) = JSFSftOWA( P11’ P12" ’Spnm)'

Proof. The proof is simple and follows from Theorem 3.
4.3. Spherical fuzzy soft hybrid aggregation (S F SftHA) operator

As spherical fuzzy soft hybrid average (SFS; HA) aggregation operator can deal with both
situations like measuring the values of SFSyNs and also considering the ordered position of SFS¢;
values, so due to this reason here we elaborate the SFS;:HA and discuss properties related to these
operators.

Definition 15. For a collection of SFSfthSpM = (aij, by, CM); i=12,..,nand 4=1,2,..,m

and w = {w,, w>, ..., w,} being WV of "e;" experts and p = {py,p,,...,0,,} being WV of

parameters p; with condition w;,p; €[0,1] and Y7 w; =1, Y7L p; =1, the SFS; HA

operator is the mapping defined by SFS;HA:R™ — R, where (R denote the family of all SFS;;Ns)
SFStcHA(Sp,0Spys s Spo) =B 0y (@71 w5y,

Theorem 6. Let Sm; = (aij,bq-, cq,») for 1=1,2,..,m and j =1,2,...,m, be the family of
SFSgNs having WVs v = {vy,05,...,0,}" and u = {u;,u,..,u,,}7 with condition v;,u; €
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[0,1], X710, = 1,272 u; = 1. Also "n" represents the corresponding coefficient for the number
of elements in 4ith row and jth column with WVs w = (w, w, ..., w, )T denote the WVs of

e;," experts and p = {p1, P2 ., P}’ being WVs of parameters "p;" with condition w;,p; €
[0,1], X7, w; = 1Land Y72, p; = 1, then

SFSeeHA(Sp,,) Spoyr 1 Sp,,,) =DF%1 b; (EB SM)
\/1 H ( ( (aq)) ) 1(1_[ 1(biy)w¢)pi 9)
n,;';l(m:l(@,)“”)p’

where §p /nn¢ujS denote the permutation of ith and jth largest object of the family of

i X j SFSNSS;pW. = (ﬁij,ﬁﬁ', E/Lj)
Proof. The proof is similar to Theorem 1.
Example 5. Consider the family of SFS;:Ns Spq. = (aij,bij, cij) as given in Table 1 with WV

v ={0.17,0.19,.12,0.16,0.36}7 and u = {0.23,0.2,0.29,0.28}" and having the associated vector
as w = (0.23,0.18,0.1,0.27,00.22 )7 and p = {0.23,0.24,0.18,0.35}". Then by using Eq (10)

the corresponding SF SftNSS:pM = (ﬁﬁ, Bi;i'zif) of the permutation of 4th and jth largest object

of the family of 4 X # SFSfthqu. = (ﬁij, Bif' Eij) are given in Table 3. Since

§pq = /nn{u,Spq. = (\/1 — (aﬁz)nniuj’ (bq)nniu;} (cq)miu‘/"). (10)

Table 3. Tabular presentation of Spq‘ = fnniujSpij.

P1 P2 Ps3 Pa

Hq (0.03128, 0.01564,) (0.068, 0.0408,) (0 .07888,0.05916, ) (0.11424, 0.01904,)
0.09348 0.0136 0.03944, 0.03808

M2 (0.017480, 0.06992,) (0.0912, 0.0456,) (0.04408, 0.02204,) (0.1064, 0.1064,)
0.06992 0.0152 0.15428, 0.02128

H3 (0.03312, 0.02208,) (0.0576, 0.01920,) (0.04176, 0.04176,) (0.0672, 0.01344,)
0.02208 0.096 0.05568, 0.04032

My (0.04416, 0.01472,) (0.0128, 0.0256,) (0.01856, 0.01856) (0.03548, 0.5376,)
0.08832 0.0768 0.03712, 0.07168

Hg (0.23184, 0.13248,) (0.144, 0.0864,) (0 .334008, 0. 33408) (0.28224, 0.04032,)
0.06624 0.2016 0.125280 0.08064

Now by using Eq (9), we get

S

SFSftHA( P11’ an)

P12' B
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(i( ~@)) ) ﬂ(}‘[(m»“”) \

=1

(-1

= | i=1

k [1([7er) )

= (0.114201,0.025752,0.034869).

Theorem 7. Let Spﬁ = (aﬁ»,bﬁ, cq-) for i=1,2,...,m and 4=1,2,...,m, be the family of
SFSgeNs with WVs v = {05,0,,...,0,,}7 and u={uy,u,,..,u,}" having condition v;u; €
[0,1] and X720, =1, Y72, u;, = 1. Also "n" represents the corresponding coefficient for the

number of elements in ith row and jth column linked with vectors w = (wy, wy, ..., w,)T
denote the WV of "e;," experts and p = {py,ps, ..., P,,}| denote the WV of parameters "p;"
having condition w;,p; € [0,1] and Y7 w; =1, ¥ p;=1. Then SFS;HA operator
contains the subsequent properties:

1. (Idempotency): Let Spq. = §'p forall 1 =1,2,...,m andj =1, 2, ...,/m,§'p = no;u;S", then

SFSftHA( P11’ P12' ""Spnm) = §P'
2. (Boundedness): If S~P_¢;;‘ = (min;min,{a,;}, max;mas;{b,;}, max;max,{¢;;}) and S};:,j =

(maxjmaxi{ﬁq}, min;mini{ﬁﬁ}, min;,-mini{éﬁ}), then

S < SFSftHA( P11’ ,012’ pnm) .D/Ly

3. (Monotonicity): Let S'm; = (a'it,,-,b'ij, c'ij) be any other family of SFS;Ns for all i =

1,2,..,m and 4 =1,2,...,m such that Ay S @y, by 2l

i = 0y and Cij = Cijs then

SFS;HA(S), ., Sp., 0 Sp, ) < SFS; HA(S'

P11’ P12’ ’S'an)'

4. (Shift Invariance): If S', = (a,b,¢) is another family of SFSs:Ns, then

SFSftHA(Spuea P12®S [ an@sp) SFSftHA( P11’ P12’ an)®5
5. (Homogeneity): For any real number 1 > 0,
‘S'F‘S‘f’-LHA(J p11‘ P12’ s ) = ASFSftHA( P11’ P12' ""Spnm)'

Proof. The proof is simple and follows from Theorem 3.

5. A multicriteria decision making method based on spherical fuzzy soft average aggregation
operators

In this section, we will discuss a new MCDM method based on SFS; WA, SFS;;OWA and

AIMS Mathematics Volume 6, Issue 7, 7798-7832.



7819

SFSf HA aggregation operators to solve MCDM problems under the environment of SFS¢.N's.
Consider a common MCDM problem. Let A = {34, #,, %3, ..., #,.} be the set of "r" alternative,
E ={E| E; E;, ...,E,} be the family of "n" senior experts with p = {p1, P2, P3, -, P} aS a
family of "m" parameters. The experts evaluate each alternative »;(l = 1,2,3,...,7) according to
their respective parameters p; (7 = 1,2, 3, ..., m). Suppose evaluation information given by experts

is in the form of SFS;NsS, = (a;bycy)fori=12..,nandj=12..,m Let
w = {wy, W, ...,w,} denote the WV of "e;" experts and p = {p1,ps, ..., P} represent the WV
of parameters "p;," with a condition that w,p; € [0,1] and}i_, w; = 1,372, p; = 1. The

overall information is given in matrix M = [S . By using the aggregation operator for

Pij ]nXm
assessment values, the aggregated SFS;N "B;" for alternative »;(l = 1,2,3,...,r) are given by
B, = (a;,b;,¢)( =1,2,...,7). Use the Definition 10 to find the score values for SFS;:Ns and rank
them.

Step vise algorithm is given by

Step 1: Arrange all assessment information given by experts for each alternative to their

corresponding parameters to construct an overall decision matrix M = [S Pq‘] given by:
NnXm

[ (a11,011,¢11)  (a12,b12,¢02) - (Qppm0 D1 1)

azq,b21,¢
M = (021 21 21) (022,022, ¢22) - (a2m’me'c2m).

l(anlﬂ b/nlr cnl) (anZ' b (anm' b/nmr C/rwn)J

n2> Cn2)
Step 2: Normalize the SFSy; decision matrix that is given in step 1, because there are two type of
parameters, cost type parameters and benefit type parameters if it is needed according to the
following formula
{ S c%' for cost type parameter
Pij = S

D for a benefit type parameter

where S¢ pij = (cij,bq, aij) denote the complement of SM = (aij,bq, cij).

Step 3: Aggregate SFS;Ns by using the proposed aggregation operators for each parameter
p(l=1,2,..,7) toget B; = (a;,b;,¢).

Step 4: Using Definition 10 to calculate the score values for each "B,".

Step 5: Rank the results for each alternative »;(l = 1,2,3,...,7) and choose the best result.
5.1. Application steps for the proposed method

In this section, we describe the detailed explanation of the above-given algorithm through an
illustrative example to show the effectiveness of the established work.
Example 6. Suppose a person wants to select the best tyre brand from a set of four alternatives A =
{»; = Bridgestone,x, = Hankook, »#; = Dunlop,x, = MRF tyres}. Let a team of experts
consisting of five members E = {E,,E,, E3, E,, Es} with WVs w = {0.15,0.13,0.25,0.23,0.24}
provide their information about alternatives having parameters p = {p; = Cornering grip, p, =
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Durability, p; = Fuel comsumption, p, = Internal noise, ps = Aquaplaning} with WVs p =
{0.19,0.29,0.18,0.23,0.11} in the form ofSFSfth. Now we use the proposed algorithm for the

selection of the best alternative.

By using SFSWA operators.

Step 1: The overall expert information based on SFS;:Ns is given in Table 4-7.

Step 2: There is no need for normalization of SFSr; matrix because of similar kinds of parameters.
Step 3: Using the Eq (1) for each alternative »,; (4 = 1,2, 3,4), we have

B; = (0.5878,0.2090, 0.2439), B, = (0.5695,0.2081,0.2602).

Table 4. SFS;, matrix for alternative ;.

P1 P2 P3 P4 Ps
E, (0.2,0.1,02)  (05,0.1,01)  (0.2,01,02)  (05,03,01)  (0.3,0.2,0.1)
E, (0.2,0.3,03)  (0.7,05,04)  (03,02,04) (050201  (0.20.1,0.3)
Es (0.4,08,03)  (0.2,0.1,01)  (0.1,0.1,02)  (0.6,03,06)  (0.4,0.3,0.6)
E, (0.2,0.1,02)  (05,0.1,0.2)  (0.3,04,06)  (0.1,02,01)  (0.6,0.4,0.1)
Es (0.3,0.3,0.4) (0.6,0.3,0.3) (0.5,0.4,0.6) (0.6,0.3,0.7) (0.6,0.2,0.4)
Table 5. SFS;, matrix for alternative ;.
P1 P2 P3 P4 Ps
E, (0.6,0.1,02)  (05,03,01)  (050.1,03)  (0.2,03,04)  (0.7,0.3,0.2)
E, (0.4,04,01)  (0.6,03,01)  (050.202)  (0.7,01,02)  (0.2,0.7,0.3)
Es (0.2,0.2,03)  (0.6,02,01)  (0.4,01,03)  (04,03,03)  (0.3,0.8,0.1)
E, (0.6,0.1,03)  (05,0.1,0.2)  (0.1,0.3,05)  (0.2,0.3,02)  (0.1,0.2,0.7)
Es (0.4,03,03)  (0.1,02,06)  (0.1,0.2,06)  (0.2,0.2,05)  (0.3,0.2,0.5)
Table 6. SFS;, matrix for alternative 3.
P1 P2 P3 P4 Ps
E, (0.7,0.1,04)  (05,0.1,08)  (0.4,0.6,05)  (0.8,03,04)  (0.6,0.4,0.2)
E, (0.4,04,04)  (05,03,02)  (050.202)  (03,03,03)  (0.20.3,0.6)
Es (0.2,0.1,0.6)  (0.2,0.1,02)  (0.2,0.1,03)  (04,03,05)  (0.6,0.3,0.5)
E, (0.8,0.2,05)  (0.5,0505)  (0.50.3,04) (02,0804  (0.1,0.4,0.5)
Es (0.8,0.3,05)  (0.5,0.4,03)  (0.1,02,06) (02,0507  (0.6,0.3,0.6)
Table 7. SFS;, matrix for alternative .
P1 P2 P3 Pa Ps
E, (0.1,0.2,0.6)  (0.4,03,05)  (0.8,0.3,05  (0.5,050.5)  (0.7,0.5,0.1)
E, (05,02,02)  (0.2,08,04) (080205  (0201,02)  (0.5,0.20.2)
Es (0.2,0.1,03)  (0.3,03,0.3)  (0.7,0.1,04)  (0.5,04,03)  (0.4,0.3,0.2)
E, (05,03,04) (02,0507  (02,01,06)  (0503,02)  (0.1,0.1,0.8)
Es (0.4,0.6,05)  (0.8,03,04)  (0.4,04,04)  (0.5,0.1,08)  (0.4,0.5,0.5)
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B; = (0.6330,0.2626,0.4138), B, = (0.6341,0.2623,0.3955).

Step 4: To find out the score values, use Definition 10 for each B,(< = 1,2,3,4,5) given in step 3,
1.€.

Sc(B,) = 0.7116, Sc(B,) = 0.7004,

Sc(B3) = 0.6522, Sc(B,) = 0.6587.

Step 5: Select the best solution by ranking the score values.
Sc(By) > Sc(B,) > Sc(B,) > Sc(Bs).
is the best result.

Hence it is clear that "3

By using SFS;;OWA operators.

Step 1: Same as above.

Step 2: Same as above.

Step 3: Using the Eq (8) for each alternative »,; (4 = 1,2, 3,4), we have
B, = ((0.5670,0.1843,0.2113)), B, = ((0.5601,0.1936,0.2211)),
B; = ((0.6145,0.2379,0.3771)), B, = ((0.6098,0.2433,0.3591)).

Step 4: To find out the score values, use Definition 10 for each B,;(< = 1,2,3,4,5) given in step 3,
ie.
Sc(B,) = 0.7238, Sc(B,) = 0.7151,
Sc(B3) = 0.6665, Sc(B,) = 0.6691.
Step 5: Select the best solution by ranking the score values.
Sc(B;1) > Sc(B,) > Sc(B,) > Sc(Bs).
Note that the aggregated result for SFS;OWA operator is same as result obtained for SFS;WA

operator. Hence ";" is the best result.

By using SFS;:HA operators.

Step 1: Same as above.

Step 2: Same as above.

Step 3: Using the Eq (9) for each alternativex,; (< = 1,2,3,4), with o = {0.12,0.13,0.2,0.4,0.15}
and u = {0.11,0.14,0.2,0.3,0.25} being the WVs of Spq. = (aij,bﬁ», cij). Also "n" represents
the corresponding balancing coefficient for the number of elements in ith row and jth column.
Let w = {0.15,0.13,0.25,0.23,0.24} be the WV of "e;" experts and
p ={0.19,0.29,0.18,0.23,0.11} denote the WV of "p;" parameters, so we get

B, = ((0.3823,0.6357,0.6422)), B, = ((0.3801,0.6379,0.6411)),

By = ((0.3579,0.6347,0.6645)), B, = ((0.3616,0.6454, 0.6567)).

Step 4: To find out the score values, use Definition 10 for each B,(< = 1,2,3,4,5) given in step 3,
ie.
Sc(B,) = 0.3681, Sc(B,) = 0.3670,
Sc(B3) = 0.3529, Sc(B,) = 0.3531.
Step 5: Select the best solution by ranking the score values.
Sc(B1) > Sc(B,) > Sc(B,) > Sc(Bs).
Hence it is noted that the aggregated result for SFS;sHA operator is same as result obtained for
SFS;iWA and SFS;:OWA operator. Hence "3;" is the best alternative.
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5.2. Comparative analysis

In this section, we are desire to establish the comparative analysis of proposed work with some
existing operators to discuss the superiority and validity of established work. The overall analysis is
captured in the following examples.

Example 7. Let an American movie production company want to select the best movie of the year
from a set of five alternatives A = {#; = Bad education,x, = The invisible man, x5 =
Birds of prey,», = Onward,»xs = Underwater} under the set of parameters given as p =
{p; = Casting, p, = Originality, p; = Dialogues, p, = Overall story, ps = Discipline}.

Let w ={0.12,0.26,0.16,0.22,0.24} be the wVv of "e;" experts and
p = {0.15,0.21,0.28,0.13,0.23} denote the WV of "p," parameters. Suppose experts provide their
evaluation data in the form of picture fuzzy soft numbers as shown in Table 8. We use the Garg
method [20], Wei method [21], Jin et al. [24] method, Ashraf et al. [25] method to compare with
established work. The overall score values and their ranking results for all these methods are given in
Table 9.

Table 8. Picture fuzzy soft information.

A A2 A3 Ay A5
B, ((0.6,0.1,0.3)) ((0.2,0.3,0.3)) ((0.3,04,0.3)) ((0.2,0.2,0.5)) ((0.3,0.2,0.4))
B, ((0.2,03,0.4)) ((0.1,0.2,0.6)) ((0.2,0.1,0.7)) ((0.3,0.5,0.1)) ((0.2,0.6,0.1))
B, ((0.5,0.1,03)) ((0.4,0.1,03)) ((0.4,04,0.1)) ((0.1,03,05)) ((0.2,0.3,0.4))
B, ((0.5,03,0.1)) ((0.2,0.2,0.5)) ((0.3,1,04)) ((04,03,0.1)) ((0.3,0.1,0.5))
B ((0.2,03,0.2)) ((0.6,0.1,0.2)) ((0.4,04,0.1)) ((0.1,03,0.5)) ((0.3,0.3,0.4))

It is clear from the above analysis that "»," is the best alternative for all methods given in
Table 9 which shows the validity of the proposed work. Also, note that
(1) If we use only one parameter i.e., p; mean (m = 1), then SFS;WA,SFS;;OWA and SFS; HA
aggregation operators will reduce to simply spherical fuzzy weighted average (SFWA), spherical
fuzzy ordered weighted average (SFOWA), and spherical fuzzy hybrid average (SFHA) aggregation
operators that are discussed in Jin et al. method [24] and Ashraf et al. method [25]. It means given
work is more general. Also the aggregated results for the Jin et al. method [24] and Ashraf et al.
method [25] given in Table 9.
(2) If we replace 2 by 1 in the power of established operators, then SFS; WA, SFS;;OWA and
SFSf HA aggregation operators will reduce to PFS; WA, PFS;;OWA and PFS; HA aggregation
operators that show that established operators are more general. Also aggregated results of these
reduced operators are given in Table 9.
(3) If we use only one parameter i.c., p; mean (m = 1) and replace 2 by 1 in the power of
established operators, then SFS;WA,SFS;iOWA and SFS;:HA aggregation operators will reduce
to simply picture fuzzy weighted average (PFWA), picture fuzzy ordered weighted average (PFOWA),
and picture fuzzy hybrid average (PFHA) aggregation operators given in Garg method [20] and Wei
method [21]. So in this case, again the established operators are also more general. Also, the
aggregated results for the Garg method [20] and Wei method [21] are given in Table 9.
(4) Also note that the Garg method [20]. Wei method [21], Jin et al. method [24], and Ashraf et al.
method [25] are non—parameterize structure while the established work is parameterized structure, so
establish work is more general.
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Table 9. Overall results for all methods.

Methods Score values Ranking results
4 o M3 My Hs
Garg method [20] 0.3624 0.3543 0.4320 0.4321 03781 3y >3 >us >Hy > Hy
Wei method [21] 0.4478 0.3640 0.4467 0.4478 0.3898 Hy >Hg >Hg >Hy > Hy
PFS; WA 0.4620 0.4527 0.4733 0.4834 0.4627 Hy >H3 > Hs >Hy > Hy
PFS;OWA 0.4587 0.4301 0.4995 0.5083 0.4888 Hy >H3 >Hs >Hy > Hy
PFSgHA 0.3071 0.2942 0.3242 0.3305 0.3171 Hy >H3 >Hs >Hy > Hy
Jin et al. method 0.4083 0.3543 0.4320 0.4434 04312 3y >u3 > x5 >Hy > Hy
[24]
Ashraf et  al 0.3209 0.3364 0.3498 0.3501 03142 3 >y > x5 >Hy >y
method [25]
SFS;WA operator 0.4739 0.4737 0.4911 0.4975 0.4855 Hy >H3 >Hs >Hy > Hy
(Proposed work)
SFS;,OWA 0.4145 0.4015 0.4648 0.5207 0.4579 Hy >H3 >Hs >Hy > Hy
operator (Proposed
work)
SFS;:HA operator 0.2145 0.2075 0.2367 0.2489 0.2338 Hy >H3 >Hs >Hy > Hy

(Proposed work)

Moreover, Figure 1 shows the graphical representation of the above analysis given in Table 9.

06
05
04
03
02 B0506
0 B04-05
[ - T '
T o = "
2R ERE Stz e Seriest B03-04
Tz 5 0 28 2 % 2 4 50203
22t g 5 2 2 % -
LT L = wn ] n 4
s 2 5 £ 2§ 5 8 20102
oo = F ]
5 - 2001
o =2 + =
i T
o £
c =

Figure 1. Graphical representations of data given in Table 9.

Example 8. Let an American movie production company want to select the best movie of the year
from a set of five alternatives
(%, = Bad education, #, = The invisible man, x; = Birds of prey,x, = Onward, xs =

Underwater) under the set of parameters given as (p; = Casting, p, = Originality, p; =
Dialogues, p, = Overall story, ps = Discipline). Let w = {0.12,0.26,0.16,0.22,0.24} be the
WV of "e;" experts and p = {0.15,0.21,0.28,0.13,0.23} denote the WV of "p," parameters.
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Suppose experts provide their evaluation data in the form of spherical fuzzy soft numbers as shown
in Table 10. We use the Garg method [20], Wei method [21], Jin et al. method [24], Ashraf et al. [25]
method to compare with established work. The overall score values and their ranking results for all
these methods are given in Table 11.

Table 10. Information based on SFSs:Ns.

! H2 3 Hq s
B, ((0.7,01,02))  ((0.7,0.1,04))  ((0.4,04,04))  ((05,0.6,01))  ((0.4,0.4,0.4))
B, ((04,03,04))  ((0.506,04))  ((0504,06))  ((04,0503))  ((0.2,0.6,0.5))
B, ((05,05,03))  ((0.505,07)  ((0.2,07,03))  ((0.1,0705)  ((0.3,0.4,0.5))
B, ((03,03,06))  ((0.505,05)  ((0.2,080.1)  ((03,06,0.2)  ((0.50.6,0.3))
B ((0.6,01,04))  ((0.4,03,06))  ((0.9,02,02))  ((0505,04)  ((0.4,0.7,0.4))
Table 11. Overall results for all methods.
Methods Score values Ranking
results
! 2 3 <z s
Garg method [20] Failed Failed Failed Failed Failed Cannot be
calculated
‘Wei method [21] Failed Failed Failed Failed Failed Cannot be
calculated
PFS; WA Failed Failed Failed Failed Failed Cannot be
calculated
PFS;;,OWA Failed Failed Failed Failed Failed Cannot be
calculated
PFS; HA Failed Failed Failed Failed Failed Cannot be
calculated
Jin et al. method 0.4583 0.3781 0.3798 0.3831 0.4286 Hy > Hg
[24] >, > n,
> i3
Ashraf et al. 0.4321 0.4150 0.3925 0.4221 0.4230 Hy > Hg
method [25] >, > H,
> i3
SFS; WA operator 0.4709 0.4150 0.4125 0.4327 0.4379 Hy > Hs
(Proposed work) >y > Hy
> i3
SFS;OWA 0.5198 0.4062 0.3930 0.4604 0.5026 Hy > Hs
operator (Proposed >y > Hy
work) > u3
SFS;HA operator 0.3302 0.2737 0.2685 0.2977 0.3135 Hy > Hs
(Proposed work) >y > Hy
> i3
AIMS Mathematics Volume 6, Issue 7, 7798-7832.
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(1) Tt is clear that when decision-makers provide their assessment value in the form of SFS;Ns
then the Garg method [20], Wei method [21], PFS;;WA operator, PFS;;OWA operator and
PFS;HA operator fails to tackle such kind of information because when decision-maker provides
the data as (0.5,0.4,0.6), where 0.5 is MG, 0.4 is an AG and 0.6 is a NMG, then necessary
condition i.e., sum (0.5,0.4,0.6) must belong to [0, 1] fail to hold that is the necessary condition
for the Garg method [20], Wei method [21], PFS;:WA operator, PFS;;OWA operator and
PFS;HA operator, while establishing work along with Jin et al. [24] method and Ashraf et al, [25]
method can cope with this situation. So introduced work is more efficient.

(2) Also, the Garg method [20], Wei method [21], Jin et al. [24] method, and Ashraf et al. [25]
method cannot consider the parameterization structure while the established work can do so. Also
proposed work provides more space to decision-makers to deal with MCDM problems. Hence,
established work is more superior to existing literature.

Furthermore, Figure 2 shows the graphical representation of the data given in Table 11.
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Figure 2. Graphical representations of data given in Table 11.

Example 9. Let an American movie production company want to select the best movie of the year

from a set of five alternatives
(»#, = Bad education, », = The invisible man, x; = Birds of prey,x, = Onward) under the
set of parameters given as
(p, = Casting, p, = Originality, p; = Dialogues, p, = Overall story, ps = Discipline) . Let
w = {0.12,0.26,0.16,0.22,0.24} be the \\AY of "e;" experts and

p = {0.15,0.21,0.28,0.13,0.23} denote the WV of "p,;" parameters. These different parameters of
SFSgNs have been aggregated by using Eq (1) with «w = {0.12,0.26,0.16,0.22,0.24} and get
overall decision matrix for different alternatives »;(4< = 1,2,3,4) given in Table 12. We still use
the Garg method [20], Wei method [21], Jin et al. method [24], Ashraf et al. [25] method to compare
with established work. The overall score values and their ranking results for all these methods are
given in Table 13.
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Table 12. Overall decision matrix based on SFS¢/N's.

B, <(0 1762,0.79611, )> <(0 2342,0.7133, )> <(o 3138, 0.6985, )> <(0 2867, 0. 7224 )
0.6786 0.6471 0.6249 0.6047
B, < 0 1144,0. 7166, ) <(o 2573, 0. 7094,)> <(o 1850,0. 7018,)) <(0 2517,0. 7435 )
0.6843 0.6105 0.6849 0.6121
B, < o 1159, 0. 7123, ) <(0 1919,0. 7366,)) <(o 1588, 0. 7036,)) <(0 2310,0. 7446 )
0.6553 0.6409 0.6578 0.6247
B, <(0 16783,0. 7020,)> <(o 1615,0. 7314,)> <(0 1638, 0. 7493,)> <(0 1633, 0. 74936,))
0.6618 0.6619 0.6376 0.6398
B < 0 2461,0.6879, )> <(o 1018,0.7445, )> <(0 2620,0.7113, )> <(o 2620,0. 7055 )
0.6714 0.6367 0.6153 0.6458
Table 13. Overall results for all methods.
Methods Score values Ranking results
! H2 3 a4
Garg method Failed Failed Failed Failed Cannot be
[20] calculated
‘Wei method [21] Failed Failed Failed Failed Cannot be
calculated
PFS; WA Failed Failed Failed Failed Cannot be
calculated
PFS;,OWA Failed Failed Failed Failed Cannot be
calculated
PFS;HA Failed Failed Failed Failed Cannot be
calculated
Jin et al. method 0.3158 0.3312 0.3498 0.3323 Hy > Hy > Uy
[24] >y
Ashraf et al 0.2999 0.3102 0.3223 0.3192 Hy > My > Uy
method [25] >
SFS; WA 0.3706 0.3733 0.3752 0.3742 Hy > Hy > K,
operator > nq
(Proposed work)
SFS;OWA 0.3731 0.3740 0.3762 0.3748 Hy > Hy > K,
operator > nq
(Proposed work)
SFS;HA 0.2479 0.2491 0.2504 0.2496 Hy > Hy > K,
operator > nq
(Proposed work)

It is clear that the overall information given in Table 12 again consist of SFS;:Ns and this type
of information cannot be tackles by the Garg method [20], Wei method [21], PFS;:WA operator,
PFS;;OWA operator and PFS;:HA operator, because necessary condition i.e.,
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sum(0.1919,0.7366,0.6409) fail to hold for all above-given methods for the data
(0.1919,0.7366,

0.6409
So, the proposed work is more general. Also, we can see from Table 13 that the Garg method [20],

Wei method [21], Jin et al. method [24], and Ashraf et al method [25] cannot consider
parameterization structure, while established work can do so. Hence, the proposed operators are
more superior to that of the existing operators. Also, graphical representation of data given in Table
13 is given in Figure 3.

) given in Table 12, while established work can handle this kind of information.
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Figure 3. Graphical representations of data given in Table 13.

Table 14. Information based on SFSs:Ns.

() (%) () (C7) ()
T (O) (O%5) () (%) (Che™)
(%) () (C2Em) (CRET) (O5em)
o (ORE)(C%E) () () (C%55)
S (Csem) (%) (C7E5) (7)) (k™)

Example 10. During the pandemic situation of Covid-19, the selection of Covid-19 vaccine is
difficult challenge for the countries. Let the a country X want to import the best vaccine for their
Covide-19 patients. Let the set P = {x; = Pfizer — BioNTech,x, = Sinopharm,»; =
Oxford — Astrazeneca, »#, = Novavax,us; = Moderna} denote the set of different vaccines as
an alternative under the parameter set given as p = {p; = Protection against disease,p, =
Side ef fects, p; = Delivery time, p, = Ef fectiveness, ps = Experimental results}. Let
w = {0.22,0.26,0.11,0.28,0.13} be the \VAY of "e;" experts and

p = {0.25,0.19,0.24,0.10,0.22} denote the WV of "p;" parameters. We use the Garg method [20],
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Wei method [21], Jin et al. method [24], Ashraf et al. [25] method and Deli and Broumi
methods [51-52] to compare with established work. Now we use the data given in Table 14 provided
by the experts in the form of SFS¢.Ns and overall score values and their ranking results for all above
given methods are given in Table 15.

Table 15. Overall results for all methods.

Methods Score values Ranking
results
! 2 3 2 s
Garg method [20] Failed Failed Failed Failed Failed Cannot be
calculated
‘Wei method [21] Failed Failed Failed Failed Failed Cannot be
calculated
PFS; WA Failed Failed Failed Failed Failed Cannot be
calculated
PFS; ,OWA Failed Failed Failed Failed Failed Cannot be
calculated
PFS; HA Failed Failed Failed Failed Failed Cannot be
calculated
Jin et al. method [24] 0.4634 0.3833 0.3437 0.3926 0.4359 Hy > Hg
>, > n,
> i,
Ashraf et al. method 0.4521 0.4323 0.4125 0.4401 0.4424 Hy > Hg
[25] >, > K,
> i,
Deli and Broumi 0.69 0.72 0.53 0.90 0.83 Hy > Hg
Method [51] > u3 > Hy
>,
Deli and Broumi 0.4516 0.4100 0.2292 0.0270 0.2640 Hy > n,
Method [52] > us > H3
>,
SFS; WA operator 0.5123 0.4424 0.4413 0.4621 0.4724 ny > Hs
(Proposed work) >y > Hy
> i,
SFS;OWA operator 0.5524 0.44314 0.4312 0.4923 0.55414 ny > Hs
(Proposed work) >y > Hy
> i,
SFS; HA operator 0.3549 0.2912 0.2908 0.3181 0.3379 Hy > Hs
(Proposed work) > ny > Hy
> i,

(1) It is clear that the best alternative i.e., »#; = Pfizer — BioNTech for Jin et al. method [24],
Ashraf et al. method [25], SFS;,WA,SFS;;OWA and SFS; HA aggregation operators are the same

that show the validity of introduced work.
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(2) Also note that the results for Deli and Broumi [51] and Deli and Broumi [52] are slightly different
from the results for the introduced operators. It is because the methods that are given in [51] and [52]
are based on neutrosophic soft set (NSf:S) and NS;.S do not consider the refusal grade (RG)
while computing the scores. Infect there is no concept of RG in the neutrosophic soft set, while the
established work can do so. That is the reason that the introduced work and methods that are given
in [51] and [52] produce different results.

5.3. Conclusion

In the basic notions of FS¢.S, [FSs, P,FS; S and q — ROFS;.S, the yes or no type of aspects
have been denoted by MG or NMG. But note that, in real-life problems, human opinion is not

restricted to MG and NMD but it has AG or RG as well. So the all above given methods cannot cope
with this situation, while SFS;.S has the characteristics to handle this situation. Since the MCDM

method is a renowned method for the selection of the best alternative among a given one and
aggregation operators are very efficient apparatus to convert the overall information into a single
value so based on spherical fuzzy soft set SFS¢.S, the notions of SFS;, average aggregation

operators are introduced like spherical fuzzy soft weighted average aggregation (SF SftWA)
operator, spherical fuzzy soft ordered weighted average aggregation (SF SftOWA) operator and
spherical fuzzy soft hybrid average aggregation (.S'F SftHA) operator. Moreover, the properties of
these aggregation operators are discussed in detail. An algorithm is established and a numerical
example is given to show the authenticity of established work. Furthermore, a comparative study is

proposed with other existing methods to show the strength and advantages of established work.
In the future direction, based on the operational laws for SFS.S, some other aggregation

operators and similarities measure for medical diagnosis and pattern recognition can be defined as
given in [47-48]. Furthermore, this work can be extended to a T-spherical fuzzy set and real-life
problems can be resolved as given in [49-50].
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