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1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C, H(D) denote the class of all
analytic functions in D. Let φ be a complex-valued function in the plane C. The superposition operator
S φ defined as follow (see [2]):

Definition 1. Let X and Y be two metric spaces of H(D) and φ denote a complex-valued function in
the plane C such that φ ◦ f ∈ Y whenever f ∈ X, we say that φ acts by superposition from X into Y and
the superposition operator S φ on X is defined by

S φ( f ) = φ ◦ f , f ∈ X. (1.1)

Observe that if, X contains the linear functions and S φ maps X into Y, then S φ must be an entire
function.

The problem of boundedness and compactness of S φ has been studied in many Banach spaces
of analytic functions and the study of such operators has recently attracted the most attention (see
[1, 6–8, 15, 16] and others).
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Now, we will introduce a class of nonlinear operators as follows:

Definition 2. Let n be a nonnegative integer, u ∈ H(D) and φ is a non constant analytic self-map of D.
The weighted differentiation superposition operators (Dn

uS φ f )(z) defined as

(Dn
uS φ f )(z) = u(z)φ(n)( f (z)), z ∈ D, f ∈ H(D). (1.2)

The Bloch type space defined as follows (see [13, 16]).

Definition 3. An analytic function f is said to belong to the Bloch space B if

sup
z∈D

(1 − |z|2)| f ′(z)| < ∞, (1.3)

while the little Bloch spaces B0 ⊂ B consisting of all functions analytic in D for which

lim
|z|→1−

(1 − |z|2)| f ′(z)| = 0.

Now we present the needed spaces and some facts. The Hardly space can be defined as follows
(see [17]).

Definition 4. The space H∞ denotes the space of all bounded analytic functions f on the unit disk D
such that

|| f ||∞ = sup
z∈D
| f (z)| < ∞.

Definition 5. LetZ denote the space of all f ∈ H(D) ∩C(D̄) such that

|| f ||Z = sup
z∈D

| f (eiθ+h) + f (eiθ−h − 2 f (eiθ)|
h

< ∞,

where the supremum is taken over all eiθ ∈ ∂D which denote the boundary of D and h > 0. By the
Zygmund theorem and the closed-graph theorem (see [5], Theorem 5.3), we see that f ∈ Z if and only
if

sup
z∈D

(1 − |z|2)| f ′′(z)| < ∞.

Moreover, the following asymptotic relation holds:

|| f ||Z � sup
z∈D

(1 − |z|2)| f ′′(z)| < ∞, (1.4)

Therefore,Z is called the Zygmund class. Since the quantities in (1.4) are semi norms, it is natural
to add them the quantity | f (0)| + | f ′(0)| to obtain two equivalent norms on the Zygmund class.The
Zygmund class with such defined norm will be called the Zygmund space. Some information on
Zygmund type spaces on the unit disk and some operators on them can be found in ( see [3, 10–12]).
This norm will be again denoted by ‖ . ‖Z. The little Zygmund space Z0 was introduced by Li and
Stević (see [9]) in the following natural way:
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f ∈ Z0 ⇔ lim
|z|→1
|(1 − |z|2)| f ′′(z)| = 0.

It is easy to see thatZ0 is a closed subspace ofZ and the set of all polynomials is dense inZ0.
Now, we will introduce the definition of boundedness and compactness of the operator Dn

uS φ :
H∞ → Z.

Definition 6. The operators Dn
uS φ : H∞ → Z is said to be bounded, if there is a positive constant C

such that ||Dn
uS φ f ||Z ≤ C|| f ||∞ for all f ∈ H∞.

Definition 7. The operators Dn
uS φ : H∞ → Z is said to be compact, if it maps any function in unit disk

in H∞ onto a pre-compact set inZ.

The notation a � b means that there is a positive constant C such that a � Cb. Also, the notation a
� b means that a � b and b � a hold.

In this paper, we study a concerned class of weighted differentiation superposition operators Dn
uS φ.

Furthermore, It has made the discussions on the boundedness and compactness property of the new
class of operators from H∞ to Zygmund spaces. Finally, it has also provided the conditions which
grant the product operators Dn

uS φ be bounded and compact.

2. The Boundedness of Dn
uS φ : H∞ → Z

Now we characterize the boundedness of the operators Dn
uS φ : H∞ → Z.

First we enumerate several useful lemmas. The first one below is well-known.

Lemma 1. (see( [13])) Assume that f ∈ H∞. Then for each n ∈ N, there is a positive constant C
independent of f such that

sup
z∈D

(1− | z |)n | f (n)(z) | ≤‖ f ‖∞ .

The following lemma is introduced in (see [18]).

Lemma 2. Assume that f ∈ B. Then for each n ∈ N.

‖ f ‖B�
n−1∑
j=0

| f ( j)(0)| + sup
z∈D

(1− | z |2)n | f (n)(z) |.

Theorem 1. Suppose φ be an entire function and u ∈ H(D). Then Dn
uS φ : H∞ → Z bounded if and

only if the following conditions are satisfied,

sup
z∈D

(1− | z |2) | u
′′

(z) |
(1− | z |2n)n < ∞, (2.1)

sup
z∈D

(1− | z |2) | 2nzn−1u
′

(z) + n(n − 1)zn−2u(z) |
(1− | z |2n)n+1 < ∞, (2.2)
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and

sup
z∈D

(1− | z |2) | n2z2n−2u(z) |
(1− | z |2n)n+2 < ∞. (2.3)

Proof. First direction, we assume that conditions (2.1) – (2.3) hold. So, for every z ∈ D and f ∈ H∞,
by using Lemma 1, we have

sup
z∈D
| (1− | z |2)(Dn

uS φ f )
′′

(z) |

= sup
z∈D

(1− | z |2) | (u(z)φ(n)( f (z)))
′′

|

+ u(z) f
′′

(z)φ(n+1)( f (z)) + u(z)( f
′

(z))2φ(n+2) |

≤ sup
z∈D

(1− | z |2) | u
′′

(z) | φ(n)( f (z)) + (1− | z |2) | 2u
′

(z) f
′

(z)

+ u(z) f
′′

(z) | φ(n+1)( f (z)) + (1− | z |2) | u(z)( f
′

(z))2 | φ(n+2)( f (z))

≤ sup
z∈D

C(1− | z |2)
[
| u

′′

(z) |
(1− | f (z) |2)n +

| 2u
′

(z) f
′

(z) + u(z) f
′′

(z) |
(1− | f (z) |2)n+1

+
| u(z)( f

′

(z))2 |

(1− | f (z) |2)n+2

]
‖ φ ‖∞. (2.4)

Since, if we take f (z) = zn, we have

sup
z∈D
| (1− | z |2)(Dn

uS φ f )
′′

(z) | ≤ C(1− | z |2)
[
| u

′′

(z) |
(1− | z |2n)n

+
| 2nzn−1u

′

(z) + n(n − 1)zn−2u(z) |
(1− | z |2n)n+1 +

| n2z2n−2u(z) |
(1− | z |2n)n+2

]
‖ φ ‖∞.

On the other hand, we obtain

| (Dn
uS φ f )(0) | = | u(0)Dn

uS φ( f (0)) |

≤ C
| u(0) |

(1− | f (0) |2)n ‖ φ ‖∞,

and

| (Dn
uS φ f )

′

(0) | = | u
′

(0)φ(n)( f (0)) + u(0) f
′

(0)φ(n+1)( f (0)) |

≤ C
(
| u

′

(0) |
(1− | f (0) |2)n +

| u(0) f
′

(0) |
(1− | f (0) |2)n+1

)
‖ φ ‖∞ .

From the fact | f (0) |< 1 and by applying the conditions (2.1) – (2.3), it follows that the operators
Dn

uS φ : H∞ or B → Z is bounded.
Now, we will prove the second direction, assume that Dn

uS φ : H∞ → Z is bounded, this means that
there exists a constant C such that

‖ Dn
uS φ f ‖

Z
≤ C ‖ f ‖∞ .
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For all f ∈ H∞. From the above inequality and by taking the function φ(z) = zn we have

sup
z∈D

(1− | z |2)| u
′′

(z) | ≤ C. (2.5)

By taking the function φ(z) = zn+1. From the fact that ‖ φ ‖∞≤ 1 and using (2.5), it follows that

sup
z∈D

(1− | z |2) | 2u
′

(z) f
′

(z) + u(z) f
′′

(z) |

≤ sup
z∈D

(1− | z |2) | u
′′

(z) f (z) | + sup
z∈D

(1− | z |2) | 2u
′

(z) f
′

(z) + u(z) f
′′

(z) |

≤ C + C sup
z∈D

(1− | z |2) | 2u
′

(z) f
′

(z) + u(z) f
′′

(z) |

≤ C. (2.6)

Similarly, by taking the function φ(z) = zn+2. From the fact that ‖ φ ‖∞≤ 1 and by using (2.5) , (2.6), it
follows that

sup
z∈D

(1− | z |2) | u(z)( f
′

(z))2 |

≤ sup
z∈D

(1− | z |2) | u
′′

(z) f (z) | + sup
z∈D

(1− | z |2) | 2u
′

(z) f
′

(z) + u(z) f
′′

(z) |

+ sup
z∈D

(1− | z |2) | u(z)( f
′

(z))2 |

≤ C + sup
z∈D

(1− | z |2) | u(z)( f
′

(z))2 |

≤ C. (2.7)

For a fixed w ∈ D, we consider the following test functions

φ∗f (w)(z) =
(n + 2)(n + 3)(1− | f (w) |2)

1 − f (w)z
−

2(n + 3)(1− | f (w) |2)2

(1 − f (w)z)2

+
2(1− | f (w) |2)3

(1 − f (w)z)3
. (2.8)

By the triangle inequality, we can see that

|φ∗f (w)(z)| ≤
(n + 2)(n + 3)(1− | f (w) |2)

1 − | f (w)z|
+

2(n + 3)(1− | f (w) |2)2

(1 − | f (w)z|)2

+
2(1− | f (w) |2)3

(1 − | f (w)z|)3

≤
(n + 2)(n + 3)(1− | f (w) |2)

1 − | f (w)|
+

2(n + 3)(1− | f (w) |2)2

(1 − | f (w)|)2

+
2(1− | f (w) |2)3

(1 − | f (w)|)3

≤ (2n2 + 18n + 52).
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Hence

sup
z∈D
‖ φ∗f (w) ‖∞≤ (2n2 + 18n + 52).

φ∗(n)
f (w)(z) =

(n + 2)(n + 3)n!(1− | f (w) |2)( f (w))n

(1 − f (w)z)n+1

−
2(n + 3)(n + 1)!(1− | f (w) |2)2( f (w))n

(1 − f (w)z)n+2

+
(n + 2)!(1− | f (w) |2)3( f (w))n

(1 − f (w)z)n+3
, (2.9)

φ∗(n+1)
f (w) (z) =

(n + 3)!(1− | f (w) |2)( f (w))n+1

(1 − f (w)z)n+2

−
2(n + 3)!(1− | f (w) |2)2( f (w))n+1

(1 − f (w)z)n+3

+
(n + 3)!(1− | f (w) |2)3( f (w))n+1

(1 − f (w)z)n+4
,

φ∗(n+2)
f (w) (z) =

(n + 2)(n + 3)!(1− | f (w) |2)( f (w))n+2

(1 − f (w)z)n+3

−
2(n + 3)(n + 3)!(1− | f (w) |2)2( f (w))n+2

(1 − f (w)z)n+4

+
(n + 4)!(1− | f (w) |2)3( f (w))n+2

(1 − f (w)z)n+5
,

and we have

φ∗(n)
f (w)( f (w)) =

2n! f (w)
n

(1− | f (w) |2)n , φ
∗(n+1)
f (w) ( f (w)) = 0, φ∗(n+2)

f (w) ( f (w)) = 0.

(2.10)

Which follows that

(2n2 + 18n + 52)‖ Dn
uS φ∗ ‖ ≥ ‖ Dn

uS φ∗φ
∗
f (w) ‖Z

≥ (1− | w |2) | u
′′

(w)φ∗(n)
f (w)( f (w))

+

(
2u

′

(w) f
′

(w) + u(w) f
′′

(w)
)
φ∗(n+1)

f (w) ( f (w))

+ u(w)( f
′

(w))2φ∗(n+2)
f (w) ( f (w)) |
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= (1− | w |2) |
2n!u

′′

(w) f (w)
n

(1− | f (w) |2)n | . (2.11)

If we take f (w) = wn, we get

(2n2 + 18n + 52)‖ Dn
uS φ∗ ‖ ≥ (1− | w |2) |

2n!u
′′

(w)(wn)
n

(1− | wn |2)n | .

For a fixed δ ∈ (0, 1) and by using (2.1), (2.5), we obtain

sup
w∈D

∣∣∣∣∣2n!(1− | w |2)u
′′

(w)
(1− | wn |2)n

∣∣∣∣∣
≤ sup

|wn |>δ

∣∣∣∣∣2n!(1− | w |2)u
′′

(w)
(1− | wn |2)n

∣∣∣∣∣ + sup
|wn |≤δ

∣∣∣∣∣2n!(1− | w |2)u
′′

(w)
(1− | wn |2)n

∣∣∣∣∣
≤

1
δn sup
|wn |>δ

∣∣∣∣∣2n!(1− | w |2)u
′′

(w)(wn)
n

(1− | wn |2)n

∣∣∣∣∣ +
2n!

(1 − δ2)n sup
|wn |≤δ

(1− | w |2) | u
′′

(w) |

≤ C. (2.12)

It follows that the condition(2.1) holds as desired.
Next, we prove the condition (2.3). To see this, for a fixed w ∈ D, put

φ∗∗f (w)(z) =
(n + 2)(n + 1)(1− | f (w) |2)

1 − f (w)z
−

2(n + 2)(1− | f (w) |2)2

(1 − f (w)z)2

+
2(1− | f (w) |2)3

(1 − f (w)z)3
, (2.13)

It is easy to prove that

sup
z∈D
‖ φ∗∗f (w) ‖∞≤ (2n2 + 14n + 36). (2.14)

φ∗∗(n)
f (w) (z) =

(n + 2)!(1− | f (w) |2)( f (w))n

(1 − f (w)z)n+1

−
2(n + 2)!(1− | f (w) |2)2( f (w))n

(1 − f (w)z)n+2

+
(n + 2)!(1− | f (w) |2)3( f (w))n

(1 − f (w)z)n+3
, (2.15)

φ∗∗(n+1)
f (w) (z) =

(n + 1)(n + 2)!(1− | f (w) |2)( f (w))n+1

(1 − f (w)z)n+2

−
2(n + 2)(n + 2)!(1− | f (w) |2)2( f (w))n+1

(1 − f (w)z)n+3
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+
(n + 3)!(1− | f (w) |2)3( f (w))n+1

(1 − f (w)z)n+4
,

φ∗∗(n+2)
f (w) (z) =

(n + 1)(n + 2)(n + 2)!(1− | f (w) |2)( f (w))n+2

(1 − f (w)z)n+3

−
2(n + 2)(n + 3)!(1− | f (w) |2)2( f (w))n+2

(1 − f (w)z)n+4

+
(n + 4)!(1− | f (w) |2)3( f (w))n+2

(1 − f (w)z)n+5
,

and we have

φ∗∗(n+2)
f (w) ( f (w)) =

2(n + 2)! f (w)
n+2

(1− | f (w) |2)n+2 , φ
∗∗(n)
f (w) ( f (w)) = 0, φ∗∗(n+1)

f (w) ( f (w)) = 0.

Which follows that

(2n2 + 14n + 36)‖ Dn
uS φ∗∗ ‖ ≥ ‖ Dn

uS φ∗∗φ
∗∗
f (w) ‖Z

≥ (1− | w |2) | u
′′

(w)φ∗∗(n)
f (w) ( f (w))

+

(
2u

′

(w) f
′

(w) + u(w) f
′′

(w)
)
φ∗∗(n+1)

f (w) ( f (w))

+ u(w)( f
′

(w))2φ∗∗(n+2)
f (w) ( f (w)) |

= (1− | w |2)
∣∣∣∣∣2(n + 2)!u(w)( f

′

(w))2 f (w)
n+2

(1− | f (w) |2)n+2

∣∣∣∣∣. (2.16)

If we take f (w) = wn, we get

(2n2 + 14n + 36)‖ Dn
uS φ∗∗ ‖

≥ (1− | w |2)
∣∣∣∣∣2n2(n + 2)!u(w)w2n−2(wn)

n+2

(1− | wn |2)n+2

∣∣∣∣∣, (2.17)

For a fixed δ ∈ (0, 1) and by using (2.7) , (2.17), we obtain

sup
w∈D

∣∣∣∣∣ (1− | w |2)2n2(n + 2)!u(w)w2n−2

(1− | wn |2)n+2

∣∣∣∣∣
≤ sup

|wn |>δ

∣∣∣∣∣ (1− | w |2)2n2(n + 2)!u(w)w2n−2

(1− | wn |2)n+2

∣∣∣∣∣
+ sup

|wn |≤δ

∣∣∣∣∣ (1− | w |2)2n2(n + 2)!u(w)w2n−2

(1− | wn |2)n+2

∣∣∣∣∣
≤

1
δn+2 sup

|wn |>δ

∣∣∣∣∣2n2(n + 2)!u(w)w2n−2(wn)
n+2

(1− | wn |2)n+2

∣∣∣∣∣
AIMS Mathematics Volume 6, Issue 7, 7749–7765.



7757

+
2n2(n + 2)!w2n−2

(1 − δ2)n+2 sup
|wn |≤δ

(1− | w |2) | u(w) |

≤ C, (2.18)

It follows that the condition (2.3) holds as desired.
Now, we will prove the condition (2.2), for a fixed w ∈ D, put

φ∗∗∗f (w)(z) =
(n + 1)(n + 3)(1− | f (w) |2)

1 − f (w)z
−

(2n + 5)(1− | f (w) |2)2

(1 − f (w)z)2

+
2(1− | f (w) |2)3

(1 − f (w)z)3
, (2.19)

It is easy to see that

sup
z∈D
‖ φ∗∗∗f (w) ‖∞≤ (2n2 + 16n + 42). (2.20)

φ∗∗∗(n)
f (w) (z) =

(n + 3)(n + 1)!(1− | f (w) |2)( f (w))n

(1 − f (w)z)n+1

−
(2n + 5)(n + 1)!(1− | f (w) |2)2( f (w))n

(1 − f (w)z)n+2

+
(n + 2)!(1− | f (w) |2)3( f (w))n

(1 − f (w)z)n+3
, (2.21)

φ∗∗∗(n+1)
f (w) (z) =

(n + 1)(n + 3)(n + 1)!(1− | f (w) |2)( f (w))n+1

(1 − f (w)z)n+2

−
(2n + 5)(n + 2)!(1− | f (w) |2)2( f (w))n+1

(1 − f (w)z)n+3

+
(n + 3)!(1− | f (w) |2)3( f (w))n+1

(1 − f (w)z)n+4
,

φ∗∗∗(n+2)
f (w) (z) =

(n + 1)(n + 3)!(1− | f (w) |2)( f (w))n+2

(1 − f (w)z)n+3

−
(2n + 5)(n + 3)!(1− | f (w) |2)2( f (w))n+2

(1 − f (w)z)n+4

+
(n + 4)!(1− | f (w) |2)3( f (w))n+2

(1 − f (w)z)n+5
,
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and we have

φ∗∗∗(n+1)
f (w) ( f (w)) =

−(n + 2)! f (w)
n+1

(1− | f (w) |2)n+1 , φ
∗∗∗(n)
f (w) ( f (w)) = 0, φ∗∗∗(n+2)

f (w) ( f (w)) = 0.

Which follows that

(2n2 + 16n + 42)‖ Dn
uS φ∗∗∗ ‖

≥ ‖ Dn
uS φ∗∗∗φ

∗∗∗
f (w) ‖Z

≥ (1− | w |2) | u
′′

(w)φ∗∗∗(n)
f (w) ( f (w))

+

(
2u

′

(w) f
′

(w) + u(w) f
′′

(w)
)
φ∗∗∗(n+1)

f (w) ( f (w))

+ u(w)( f
′

(w))2φ∗∗∗(n+2)
f (w) ( f (w)) |

= (1− | w |2)
∣∣∣∣∣ (n + 2)! f (w)

n+1
(
2u

′

(w) f
′

(w) + u(w) f
′′

(w)
)

(1− | f (w) |2)n+1

∣∣∣∣∣. (2.22)

If we take f (w) = wn, we get

(2n2 + 16n + 42)‖ Dn
uS φ∗∗ ‖

≥ (1− | w |2)
∣∣∣∣∣ (n + 2)!(wn)

n+1
(
2nwn−1u

′

(w) + n(n − 1)wn−2u(w)
)

(1− | wn |2)n+1

∣∣∣∣∣, (2.23)

from (2.6) and (2.23) simliar to (2.12) we obtain (2.2), finishing the proof of the theorem. �

3. The compactness of Dn
uS φ : H∞ → Z

Now we characterize the compactness of the operators Dn
uS φ : H∞ → Z. The next Lemma is often

used in dealing the compactness of operators on analytic function spaces. Since the proof standard (see
Proposition 3.11 in [4]).

Lemma 3. Suppose φ be an entire function and u ∈ H(D). Then Dn
uS φ : H∞ → Z is compact if and

only if Dn
uS φ : H∞ → Z is bounded and for any bounded sequence { fk} in H∞ which converges to zero

uniformly on compact subsets of D as k → ∞, we have ‖ Dn
uS φ fn ‖Z→ 0 as n→ ∞.

The second following lemma was introduced and proved in [9] which is similar to the corresponding
lemma in [14].

Lemma 4. A closed set KinZ0 is compact if and only if K is bounded and satisfies

lim
|z|→1

sup
f∈K

(1− | z |2) | f
′′

(z) |= 0.

Now, we begin with the sufficient and necessary condition for the compactness of Dn
uS φ : H∞ → Z
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Theorem 2. Suppose that φ be an entire function and u ∈ H(D). Thus Dn
uS φ : H∞ → Z is compact if

and only if Dn
uS φ : H∞ → Z is bounded and the following conditions are satisfied,

lim
|z|→1

(1− | z |2) | u
′′

(z) |
(1− | z |2n)n = 0, (3.1)

lim
|z|→1

(1− | z |2) | 2nzn−1u
′

(z) + n(n − 1)zn−2u(z) |
(1− | z |2n)n+1 = 0, (3.2)

and

lim
|z|→1

(1− | z |2) | n2z2n−2u(z) |
(1− | z |2n)n+2 = 0. (3.3)

Proof. Suppose that Dn
uS φ : H∞ → Z is bounded and that conditions (3.1) – (3.3) hold. For any

bounded sequence { fk} in H∞ with fk → 0 uniformly on compact subsets of D. To establish the
assertion, it suffices, in view of Lemma 3, to show that

||Dn
uS φ||Z → 0 as k → ∞.

We assume that || fk||∞ ≤ 1. From (3.1) – (3.3), we have given ε > 0, there exists a δ ∈ (0, 1), when
δ < | f (z)| < 1, we have

(1− | z |2)
[
| u

′′

(z) |
(1− | z |2n)n +

| 2nzn−1u
′

(z) + n(n − 1)zn−2u(z) |
(1− | z |2n)n+1 +

| n2z2n−2u(z) |
(1− | z |2n)n+2

]
< ε. (3.4)

From the boundedness of Dn
uS φ : H∞ → Z by Theorem 1 we see that (2.5) – (2.7) hold. Since

fk → 0 uniformly on compact subsets of D, Cauchy’s estimate gives that f
′

k , f
′′

k and f
′′′

k converges to 0
uniformly on compact subsets of D. Hence, there exists a K0 ∈ N such that for for k > K0.

|u(0)φn( fk(0))| + |u
′

(0)φn( fk(0))| + |u(0) f
′

k (0)φn+1( fk(0))|
+ sup

|z|≤δ
(1 − |z|2)|u

′′

(z)φn( fk(z))|

+ sup
|z|≤δ

(1 − |z|2)
∣∣∣∣∣[2u

′

(z)( f
′

k (z)) + u(z)( f
′′

k (z))
]
φn+1( fk(z) + u(z) f

′2(z)φn+2( fk(z))
∣∣∣∣∣

≤ Cε. (3.5)

From (3.4) and (3.5), we have

‖ Dn
uS φ fk ‖Z = sup

z∈D
|Dn

uS φ fk(0)| + |(Dn
uS φ fk)

′

(0)| + sup
z∈D

(1 − |z|2)|(Dn
uS φ fk)

′′

(z)|

≤ sup
z∈D
|u(0)φ(n)( fk(0))| + |u

′

(0)φ(n)( fk(0))| + |u(0) f
′

k (0)φ(n+1)( fk(0))|

+ sup
| f (z)|≤δ

(1 − |z|2)|u
′′

(z)φ(n)( fk(z))|

+ sup
| f (z)|≤δ

(1 − |z2|)
∣∣∣∣∣(2u

′

(z) f
′

k (z) + u(z) f
′′

k (z))φ(n+1)( fk(z))
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+ u(z) f
′2
k (z)φ(n+2)( fk(z))

∣∣∣∣∣
+ sup

δ<| f (z)|<1
(1 − |z|2)|u

′′

(z)φ(n)( fk(z))|

+ sup
δ<| f (z)|<1

(1 − |z|2)
∣∣∣∣∣(2u

′

(z) f
′

k (z) + u(z) f
′′

k (z))φ(n+1)( fk(z))

+ u(z) f
′2
k (z)φ(n+2)( fk(z))

∣∣∣∣∣

≤ Cε + C sup
δ<| f (z)|<1

(1− | z |2)
[

| u
′′

(z) |
(1− | fk(z) |2n)n

+
| 2nzn−1u

′

(z) + n(n − 1)zn−2u(z) |
(1− | fk(z) |2n)n+1 +

| n2z2n−2u(z) |
(1− | fk(z) |2n)n+2

]
.

If we take f (z) = zn, we get

‖ Dn
uS φ fk ‖Z ≤ Cε + C sup

δ<| f (z)|<1
(1− | z |2)

[
| u

′′

(z) |
(1− | zn |2n)n

+
| 2nzn−1u

′

(z) + n(n − 1)zn−2u(z) |
(1− | zn |2n)n+1 +

| n2z2n−2u(z) |
(1− | zn |2n)n+2

]
≤ 2Cε,

when k > K0. It follows that the operators Dn
uS φ : H∞ → Z is compact.

Conversely, suppos that Dn
uS φ : H∞ → Z is compact. Therefore it is clear that Dn

uS φ : H∞ → Z is
bounded. Let {zk} be a sequence in D such that | f (zk)| → 1 as k → ∞. If such a sequence does not exist,
thus (3.1) – (3.3) are automatically holding. Now, we consider the test functions

φ∗fk(z)(zk) =
(n + 2)(n + 3)(1− | fk(zk) |2)

1 − fk(zk)zk

−
2(n + 3)(1− | fk(zk) |2)2

(1 − fk(zk)zk)2

+
2(1− | fk(zk) |2)3

(1 − fk(zk)zk)3
. (3.6)

From (2.9) and (2.10), we have

sup
k∈N
‖ φ∗fk(zk) ‖∞≤ (2n2 + 18n + 52).

And

φ∗(n)
fk(zk)( fk(zk)) =

2n! fk(zk)
n

(1− | fk(zk) |2)n ,

φ∗(n+1)
fk(zk) ( fk(zk)) = 0, φ∗(n+2)

fk(zk) ( fk(zk)) = 0.
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For |z| = r < 1, we get

φ∗fk(zk)(zk) ≤
2(n + 2)(n + 3) + 8(n + 3) + 16

1 − r
(1 − |( fk(zk))|)→ 0 as (k → ∞),

that is, φ∗(n)
fk(zk) converges to 0 uniformly on compact subsets of D, using (2.11) and the compactness of

Dn
uS φ : H∞ → Z we get

(1− | zk |
2)
∣∣∣∣∣2n!u

′′

(zk) fk(zk)
n

(1− | fk(zk) |2)n

∣∣∣∣∣ = (1− | zk |
2) | u

′′

(zk)φ
∗(n)
fk(zk)( fk(zk))|

+ (1− | zk |
2)
∣∣∣∣∣(2u

′

(zk) f
′

k (zk)

+ u(zk) f
′′

k (zk)
)
φ∗(n+1)

fk(zk) ( fk(zk))

+ u(zk)( f
′

k (zk))2φ∗(n+2)
fk(zk) ( fk(zK))

∣∣∣∣∣
≤ ‖ Dn

uS φ fk ‖Z → 0 as k → ∞.

If we take fk(zk) = zn
k , we get

(1− | zk |
2)
∣∣∣∣∣2n!u

′′

(zk)(zn
k)

n

(1− | (zk)n |)2n

∣∣∣∣∣ ≤ ‖ Dn
uS φ fk ‖Z → 0 as k → ∞.

From this, and |zn
k | → 1, it follows that

lim
k→∞

(1− | zk |
2) | u

′′

(zk) |
(1− | zk |

2n)n = 0. (3.7)

We get (3.1).
In order to prove (3.2), consider

φ∗∗fk(z)(zk) =
(n + 2)(n + 1)(1− | fk(zk) |2)

1 − fk(zk)zk

−
2(n + 2)(1− | fk(zk) |2)2

(1 − fk(zk)zk)2

+
2(1− | fk(zk) |2)3

(1 − fk(zk)zk)3
.

It follows from (2.14) and (2.16) that

sup
k∈N
‖ φ∗∗fk(zk)(zk) ‖∞≤ (2n2 + 14n + 36),

and

φ∗∗(n+2)
fk(zk) ( fk(zk)) =

2(n + 2)! fk(zk)
n+2

(1− | fk(zk) |2)n+2 ,

φ∗∗(n)
fk(zk)( fk(zk)) = 0,

φ∗∗(n+1)
fk(zk) ( fk(zk)) = 0.
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That is, φ∗∗(n)
fk(zk) converges to 0 uniformly on compact subsets of D, using (2.11) and the compactness of

Dn
uS φ : H∞ → Z tends to

lim
k→∞
||Dn

uS φ∗∗fk (zk )
||Z = 0.

From (2.16), we obtain

(1− | zk |
2)
∣∣∣∣∣u(zk)( f

′

k (zk))2 fk(zk)
n+2

(1− | fk(zk) |2)n+2

∣∣∣∣∣ ≤ C||Dn
uS φ∗∗fk (zk )

||Z → 0 as k → ∞. (3.8)

If we take fk(zk) = zn
k we have

(1− | zk |
2)
∣∣∣∣∣n2z2n−2

k u(zk)zn
k

n+2

(1− | zk |
2n)n+2

∣∣∣∣∣ ≤ C||Dn
uS φ∗∗

zn
k
||Z → 0 as k → ∞.

Thus,

lim
k→∞

(1− | zk |
2)|n2z2n−2

k u(zk)zn
k

n+2
|

(1− | zk |
2n)n+2 .

Eq (3.3) satisfied. Next, consider

φ∗∗∗fk(zk)(zk) =
(n + 1)(n + 3)(1− | fk(zk) |2)

1 − fk(zk)zk

−
(2n + 5)(1− | fk(zk) |2)2

(1 − fk(zk)zk)2

+
2(1− | fk(zk) |2)3

(1 − fk(zk)zk)3
.

From (2.20) and (2.22), we get

sup
k∈N
‖ φ∗∗∗fk(zk)(zk) ‖∞≤ (2n2 + 16n + 42).

and

φ∗∗∗(n+1)
fk(zk) ( fk(zk)) =

−(n + 2)! fk(zk)
n+1

(1− | fk(zk) |2)n+1 ,

φ∗∗(n+1)
fk(zk) ( fk(zk)) = 0,

φ∗∗(n+2)
fk(zk) ( fk(zk)) = 0,

and φ∗∗∗fk(zk)( fk(zk)) converges to 0 uniformly on compact subsets of D, the compactness of Dn
uS φ : H∞ →

Z implies that
lim
k→∞
||Dn

uS φ∗∗∗fk (zk )
||Z = 0.

From this and (2.23), we obtain (3.2), the proof of the theorem is complete. �

Theorem 3. Suppose that φ be an entire function and u ∈ H(D). Thus, Dn
uS φ : H∞ → Z0 is compact

if and only if the following conditions are holding.

lim
|z|→11

(1− | z |2) | u
′′

(z) |
(1− | z |2n)n = 0, (3.9)
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lim
|z|→1−

(1− | z |2) | 2nzn−1u
′

(z) + n(n − 1)zn−2u(z) |
(1− | z |2n)n+1 = 0, (3.10)

and

lim
|z|→1−

(1− | z |2) | n2z2n−2u(z) |
(1− | z |2n)n+2 = 0. (3.11)

Proof. Suppose that conditions (3.9)–(3.11) are satisfied. Consider the supremum in inequality (2.4)
over all f ∈ H∞ such that || f ||∞ ≤ 1 and letting |z| → 1 yield

lim
|z|→1−

sup
|| f ||∞≤1

(1− | z |2) | (Dn
uS φ f )

′′

(z) |= 0.

Therfore , by Lemma 3, we see that the operators Dn
uS φ : H∞ → Z0is compact. Now suppose that

Dn
uS φ : H∞ → Z0 is compact. Then Dn

uS φ : H∞ → Z0 is bounded, and by considering the function
φ(z) = zn we have

lim
|z|→1−

(1− | z |2)| u
′′

(z) | = 0. (3.12)

By considering the function φ(z) = zn+1. We have

lim
|z|→1−

(1− | z |2) | u
′′

(z) f (z) + 2u
′

(z) f
′

(z) + u(z) f
′′

(z) |= 0. (3.13)

From (3.12), (3.13) and the fact that || f ||∞ ≤ 1, we get

lim
|z|→1−

(1− | z |2) | 2u
′

(z) f
′

(z) + u(z) f
′′

(z) |= 0. (3.14)

By taking the function φ(z) = zn+2. From (3.12), (3.14) and the fact that || f ||∞ ≤ 1, we get

lim
|z|→1−

(1− | z |2) | u(z)( f
′

(z))2 |= 0. (3.15)

By (2.12), (2.18), (2.23), and observing that Dn
uS φ∗φ

∗
f (w), Dn

uS φ∗∗φ
∗∗
f (w) and Dn

uS φ∗∗∗φ
∗∗∗
f (w) we know that

lim
|z|→1−

(1− | z |2) | u
′′

(z) |
(1− | z |2n)n = 0, (3.16)

lim
|z|→1−

(1− | z |2) | 2nzn−1u
′

(z) + n(n − 1)zn−2u(z) |
(1− | z |2n)n+1 = 0, (3.17)

and

lim
|z|→1−

(1− | z |2) | n2z2n−2u(z) |
(1− | z |2n)n+2 = 0. (3.18)
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We prove that (3.12) and(3.16) imply (3.9). The proof of (3.10) and (3.11) by the same way. Then,
it will be held.
From (3.16), it follows that for every ε > 0, there exists δ ∈ (0, 1) such that

(1− | z |2) | u
′′

(z) |
(1− | z |2n)n < ε, (3.19)

when δ < |z| < 1. Using (3.12), we see that there exists τ ∈ (0, 1) such that

(1− | z |2) | u
′′

(z) | < ε(1 − δ2n)n, (3.20)

when τ <| z |< 1.
Thus, when τ <| z |< 1 and δ < |z| < 1, by (3.19) we have

(1− | z |2) | u
′′

(z) |
(1− | z |2n)n < ε. (3.21)

On the other hand, when τ <| z |< 1 and |z| ≤ δ, by (3.20) we obtain

(1− | z |2) | u
′′

(z) |
(1− | z |2n)n ≤

(1− | z |2) | u
′′′

(z) |
(1 − δ2n)n < ε. (3.22)

From (3.21) and (3.22), we obtain (3.9) as desired. This is the end of the proof. �

4. Conclusions

The present study dealt with a radical study of a concerned class of weighted differentiation
superposition operators Dn

uS φ. Furthermore, It has made the discussions on the boundedness and
compactness property of the new class of operators from H∞ to Zygmund spaces. Finally, it has also
provided the conditions which grant the product operators Dn

uS φ be bounded and compact.

Acknowledgments

Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding
publication of this project. The authors would like to thank the anonymous concerned reviewers for
their valuable remarks on this study.

Conflict of interest

There is no any conflict.

References
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