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1. Introduction and preliminaries

Let (U,d) be a metric space. For ¢ € U and B € U, let db(’[l,,Bl) = inf{dh(?l,?z) : /{72 € B}
Denote N(U), CL(U), CB(U) by the class all nonempty subsets of U, the class of all nonempty closed
subsets of U and the class of all nonempty closed and bounded subsets of U respectively. Define the
Hausdorff-Pompeiu metric A, induced by d, on CB(U) as follows:

H,(B1,5,) = max {fup db(z,ﬂz), sup db(?bﬁl)}
(1€ EGBZ

for all 81,8, € CL(D). A point £ € U is said to be a fixed point of 7 : U — CL(D), if € € TC.If, for
¢y € U, there exists a sequence {{;} in U such that ¢; € T¢;_;, then O(T, €y) = {£o, {1, (s, ...} is said to be
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anorbitof T : U —» CL(U). A mapping f : U — R is said to be T- -orbitally lower semi-continuous
(0.ls.c) if {¢;} is a sequence in O(T, £) and €; — o implies f(0) < liminf; f(f)
From now on, Nadler [13] realized the following multivalued version of BCP:

Theorem 1.1. [13] Let (U,d,) be a complete metric space and T : U — CB(U) be a Nadler
contraction, i.e., there is y € [0, 1) such that

H,(Tt,, T) < ydy(Cy, 6) for all €, 6, € U.

Then T possesses at least one fixed point.
We start the following results for main sequel.

Lemma 1.2. [13] Let (U, d,) be a metric space, 3, € CB(U) and € € U. Then, for each € > 0, there
exists v € 8, such that

dy(L,v) < dy(C. ) + €.

Lemma 1 3 [19] Let (U dy) be a metrlc space and 3,3, € CB(U) with Hb(,b’l,ﬁz) > 0. Then for all
h>1land?{ e B, there exists v = v(f) € 3, such that

dy(€,v) < hBy(B1, B2)-

There after, many researchers worked on existence of fixed point theorems of single valued
mappings can improve in the module of multi-valued mappings that satisfying various classes of
contractive mappings (see [1-4,6,9,10,12,15,17-20]).

Definition 1.4. [8] A b-metric space on a nonempty set M is a function b : U x U — R* such that for
all fl, 52, {’3 eUanda given real number s > 1, the following conditions hold:
(b;) dy (61, 62) = 0 if and only if £, = £3;

(bi) dy (61, 62) = dy (€2, 01)
(bi) dy (€1, 63) < sldy (€1, 62) + dy (62, G3)).

The pair (U , db) is known as b-metric space.

The following examples present the context of b-metric spaces, which are essentially larger than the
context of metric spaces [8].

Example 1.5. [8] Let U = I, (R) with p € (0, 1) where [, ®) = {{f} C R : 2 H” < o). A function
b:UxU — R is given by b(A,fz = (Z H )p where {’1 = E and 52 = 5 Then the pair (U db) 1S
known as b-metric space with s = 25,

Example 1.6. [8] Let U= L, [0, 1] be the space of all real valued functions ?(r), O<r<linsucha
way that Ofll?(r)"l’ dr < oo. A function b : U x U — R* is given by b(?l,?z) = (Ofly?l (r) —’{Z(r)‘p)%.

Then the pair (U , d;,) is known as b-metric space with s = 27,
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Definition 1.7. [8] A sequence {f } in b-metric space U is said to be convergent if there is el
such that d, (Al,ﬁ) — 0 asi — +oo and write hm,_,+o<,(€) =7 A sequence {5} in (U db) is said to

be Cauchy if d, (Z, {y ) — 0 as i, i’ = +o0o. A b-metric space (U, db) is said to be complete if every
Cauchy sequence in U converges.

Note that, in general, the b-metric is not a continuous functional. Recently, Liu et al. [12] produced
the following classical function:

Definition 1.8. Let ¢ : (0, +00) — (0, +00) satisfy the following conditions:
(¢a)  1s nondecreasing;

(¢p) for all { ;1 in (0, +00), lim;_, 0 <p(€ ) = 01if and only if hm,_>+w(€ ) =
(¢) ¢ 1s continuous.

From now on, we denote by ¢* the set of all function that satisfying (¢,) — (¢.). The following well
known two lammas of ¢ functions will be needed in our forthcoming sequel:

Lemma 1.9. []2] Let { } be a bounded sequence of real numbers and all its convergent subsequences

—

have the same limit y. Then {é’,-}i is convergent and hm,_>+oo(€,) =

Lemma 1.1/(\). Let ¢ L (0, +0) — (0,+00) be a nondecreasing and continuous function with
inf70 100y #(0) = 0 and {} € (0, +0). Then

lim ¢(¢;) = 0 ifand only if lim (¢;) = 0
i—+00 [—+00

Proof. (=) Suppose lim;_, ga(f ) = 0. Then we claim that the sequence {f } is bounded. In fact, if the

sequence is unbounded, then we may assume that € — +oo and so forall § > 0, there is iy € N such that
f > ¢ for all i > iy. Hence ¢(0) < go(f ;) and so ¢(0) < lim,_, cp(€ ;) = 0, which contradicts to ¢(6) > 0.
Thus {{’ } is bounded. Hence there exists a subsequence {5 } - {5 } such that lim;_, {{’ } k (where

k is nonnegative number). Clearly k > 0. If k£ > 0, then there is iy € N such that {fi,-} (k 3k ) for all
i > io. By (¢,), we deduce that (%) < lim;_,,o {?} = 0, which contradicts to ¢(5) > 0. Consequently,

setting k = 0 and by the above lemma, we have llm,_>+oo(€ ) =
(<) Suppose that infz m)ga(f) =0.If {’ — 0, then for any given € > 0, there is £k > 0 such that

wk) € (0,€) an(Lthere exists i; € N such that f, < k for all i > i;. Therefore, 0 < gp(f,) < ¢(k) < € for
i > i;. Hence ¢({;) = 0 asi — +oo. O

Throughout this paper E denotes an interval on R* containing 0, that is, an interval of the form
[0, R], [0, R), or [0, +c0). Proinov [14] introduced the following:

Lemma 1.11. [i14] Let?o € A (A is a closed subset of U) such that
dy(to. Tty) € E,

and’f; € A for some i > 0. Then we have db(z, F{Z) e E.

Definition 1.12. [14] Suppose £ € A and dj(fo, o) € E. Then for an iterate ¢; (i > 0) which belongs
to A, we define the closed ball b(¢;, p) with center ¢; and radius p > 0.
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Lemma 1.13. [14] Ifan element 50 € A satisfies db({’o, Tfo) € E and b(&,p) C A for some i > 0, then
Li1 € A and b(l;,1,p) C (L, p).

Definition 1.14. [14] Leti > 1. A function ¢ : E — E is said to be a gauge function of order i on E if
E satisfies the following conditions: (a) &(A€) < A'&(€) for all A € (0,1) and € € E; (b) &(£) < ¢ for all
e E-{0}.

It is easy to see that the first condition of Definition 1.14 is equivalent to the following: £(0) = 0
and f(f) / {' is nondecreasing on E — {0}.

Definition 1.15. [14] A gauge function ¢ : E — E is said to be a B-GGF on FE if

+00
0'(?) = Zf"(’f\) < oo, for all{ € E.

i=0

Note that a B-GGF also satisfies the following functional equation:
o(0) = o &(0) +¢.

Proinov [14] proved his main results by assuming B-GGF ¢ and the mapping 7 : A — X satisfying
the contractive condition d(T (x) T? (x)) < &(d(x; Tx)) when the underlying space is endowed with a
metric. But from now on, in the context of b-metric space for some technical dialectics, Samreen et
al. [16] introduced the following class of GF.

Definition 1.16. [16] A nondecreasing function ¢ : E — E is said to be a »-B-GGF on E if

+00
0'(’[”\) = Z s’f"(’{”\) < oo, for al{ € E

i=0

where s is the coeflicient of h-metric space. Moreover, note that a b-B-GGF also satisfies the following
functional equation:

o () = so (&) + L.

Remark 1.17. Every b-B-GGF is also a B-GGF [7] but the converse may not hold. Furthermore, in [16],
Samreen et al. introduced gauge functions in a b-metric space of the form

~ S"f“’) if Ce E-{0
£0) = 0
O, 1f =0

where s is the coeflicient of b-metric space. For instance, we refer the following simple examples of
gauge | functions of order i as:

(a) f(f) = M for all A € (0, 1) is a gauge function of order 1 on le E;
1

(b) f(f) = % (1> 0, k> 0) 1s a gauge function of order k on E = [0, ) where [ = (%)m

In 2015, Khojasteh et al. [11] introduced the concept of simulation function as follows:
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Definition 1.18. [11] A functionI : R* x R* — Riscalled an S F if
(T'1) T(0,0) = 0;

([2) T(6y, £y) < & — €, for all €, ¢, > 0;

(T3) if {€,;},{C;) € (0, +00) such that lim;_, e £1; = lim;_,,e £ > 0, then

lim sup F(?l,-,?z,-) < 0.

i—+00

Due to (I'2), we have F(Z,Z) < 0 for all ?1 > (. From now on, we denote by V the set of all
functions satisfying (I'1)-(I'3). Some well known examples of I" functions presented in the existing
exposition are as follows:

Eyﬁlmple 1.19. [11]Fori=1,2,1letd; : R* —» R* be continuous functions with 19[(?]) = 0 if and only
if £; = 0. The following functions I'; : R* X R* - R(j=1,---,6)arein V:

(@) T1(€1, 62) = 91(6) — 92(6y) for all €, 6, > 0, where 9 (£;) < &1 < (£) for all £; > 0;
(b) F6(E,E) = /{72 - fo “ ¢(u)du for all?l,?z > 0, where ¢ : R* — R* is a function such that

f ¢(u)du exists andf s(u)du > € Ye > 0.
0 0

Let (U, d») be a metric space, T be a self mapping on U and T € V. T is said to be a V-contraction with
respect to I, if

T(dy(Tt,, Tt), dy(l1, ) >0, forallty,6, € 0.

Due to (I';), we have d;,(TE, T’{”;) * db(a,@) for all distinct points E,?z € U. Thus T is not an
isometry, whenever 7T is a V-contraction with respect to I'. Conversely, if a V-contraction mapping T
on a metric space possesses a fixed point, then it is necessarily unique.

In the recent year, Ali et al. [5] initiated the following definition which is a modification of the
notion of a-admissible.

Definition 1.20. [5] Let (U, d,) be a metric space and A be a nonempty subset of U. A mapping
T : A - CB(D) is called a-admissible if there exists a function @ : A X A — [0, +00) such that

a(a,by>1 = a(Zv)Zl,

forallf € TanAandv e ThNA.

In this manuscript, we prove the notion of multi-valued Suzuki (SU) type fixed point results via @;-
contraction mapping and (V, — &)-contraction mapping in the module of b-metric spaces, where £ is a
b-B-GGF on an interval E with some tangible examples and certain important corollaries are adopted
subsequently. Our newly proved results over recent ones chiefly due to Proinov [14] and Ali et al. [1].
As the end results of a succession, we promote our main results to prove the existence of solution for
the system of integral inclusion.
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2. Multivalued SU-type ¢.-contraction

In this section, motivated by the notion of multivalued Suzuki type ¢-contraction, we define the
notion of multivalued Suzuki type ¢¢-contraction as follows:

Definition 2.1. Let (U, d,,) be a b-metric space with s > 1, A be a closed subset of U and & be a b-B-
GGF on an interval E. A mapping T T : A — CB(D) is said to be a multivalued SU- -type ¢-contraction
if there exists ¢ € ¢* such that for TENA#0

1 —_— _ —
5 min {db(f, TENA),dy(v, Ty N A)} < dy(C,v)

implies that R N _
o| BTN ATy 0 )| < p|EQ(EV))|. 2.1)

where

Q(¢,v) = max {db(f, V), dp (£, TO), dy(v, TV), dy(C, Tv) + dp(v, f)}

2s
forallf € A, ve TCN A with dy(6,v) € E, and H, (Tt N A, Ty 0 A) > 0.

Clearly in a class b-metric space, if f an element 50 € A such that O(fo) C A satisfies db(fo, Tfo) eE
and b({’,,p,) C A for some i > 0, then €,+1 € A and b(&ﬂ,pl“) - b(é’,,p,)
Our first main result is as follows:

Theorem 2.2. Let (U, d,) be a complete b-metric space with s > 1, A be a closed subset of U and
T:A— CB(U) be a multivalued SU-type p-contraction. Assume € € A such that db(fo,c ) € E for
some c* € T[O N A. Then there exist an orbit {{;} of T in A and o* € A such that hm,_proo {’ = o
Moreover, o™ is a fixed point ofT if and only lfthefunctlon g(f) = db(f TtN A) is T-o.Ls.c at 0.

Proof Choose fl =c" € T{’O N A. In the presence of this manner db(fo, 51) =0, 50 is a fixed point of
T. Thus we assume that db(fo, {’1) # 0. On the other hand, we have

1 — —_ —
5 min {dh(fo, Tt N A),dy(Cy, T N A)} < dy(Co, ). (2.2)
)

Define p= g(db(’{%,/{a)). From (1.16), we have o(r) > r. Hence db(?o,?l) < p and so ?1 € E(?o,p).
Since dj,({y, £1) € E, from (2.1) and (2.2) it follows that
¢ |Hy(Tl N A TE N )| < 0]6@(G, 0)] < o] Q. ).
By the property of right continuity of ¢, there exists a real number /; > 1 such that
o [mHyTl N ATE N A)| < o6, )] (23)

From
dy(61, T6 N A) < Hy(TE N A, TE NA) < hiHy (Tl N A TE N A),

by Lemma 1.3, there exists ?z € TZ N A such that db(/fl,@) < thb(T?O N A, T?] N A). Since ¢ is
nondecreasing, by (2.3), this inequality gives that

o|(d(l1, &) < el Hy(Tl 0 A TE 0 A)] < o[ Q0. £1)]
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where
L A (6, T + dy(Cy, T
Q(by, t)) = max{db(fo,fl),db(fo,Tfo),db(fl,Tf1), ot 1)2+s bty O)}
o — dy(b, T

< max {cwo, 2. (6. TE, b((’—sl)}

< max {dy(Co, £1), dy(61, TE))
Now, we claim that

o[yt &) < @l Hy(Tl 0 A TE 0 A)] < @ [dy(Eo. £1))]. (2.4)

Let A = max {db(?o,?]), db(?], TE)} . Assume that A = db(?], TZ). Since?z € T?l N A, we have
o[ (@(61. )] < @l Hy(Tl 0 AT N A)] < g [dy(61. 5))].

which is a contradiction. Hence (2.4) holds true. We assume that db(z ,?2) # 0, otherwise, ?1 is a fixed
point of 7. From (¢,), (2.4) implies that

dy(t1,6) < dy(lo, 01).
and so db(?],@) eE. Next,?z € E(?o,p) since

sdy(Co, 1) + s2dy(C1, £2)
sdy(lo, 1) + s2E(dy(Lo, 1))
s |du(to, €1) + s&(dy(Co, €1))|
sody(Co, €1)

dy(lo, €1) + so(dy(Co, £1))

o (dy(lo, 01)) = p.

dy(lo, o) < sdy (Lo, 1) + sdp(L1, )

(/AN VAN | R VANS VAN

Since |
5 min{dy(@, T6 0 A). (6. TG0 M) < dy(01. L),
N

from (2.1), we have
¢ [Hy(TONATEN )| < 0@, 0)] < o |20, 0))].
Since ¢ is right continuous, there exists a real number 4, > 1 such that
¢ [mHN(T6 N A TGN A] < 0|60, 6)). 25)

Next, from
dy(6, TONAN) S H (T NANTOHNAN) <hho H(TENA, T NA),
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by Lemma 1.3, there existsz € T?z N A such that db(?g,?g) < thb(T?l N A, T?Z N A). By (2.5), this
inequality gives that

¢ |6, )] < | mHYTE N A TO NN < 0[Q(0, )],

where

dy(€1, T + dy (0, TE)}
2s

max {d(ty, &), d(6, TE),

IA

0F. T = max{dbm),d,,(a,m,db@,m,
{ s

A, Tt)
2

IA

max (00 ). 4. TE).
This implies that
¢[(d(6r. )| < el Hy(TE N ATl 0 A)] < o[d(6r, B))]. (2.6)
Let A = max {db(’f\l,?z), db(?z, 7@)} . Assume that A = db(?z, ﬂ’;). Sincea € T?z N A, we have
o|(d(62. )| < @lh Hy(TE 0 A TE N A)] < @ |dy(6a. 63)]

which is a contradiction. Hence (2.6) holds true. We assume that db(?z,?s) # 0, otherwise, ?2 is a fixed
point of 7. From (¢,), (2.6) implies that

dy(6r, 63) < dy(l1, ).

and so db(?z,?g) € E. Also, we have?g € E(?o,p), since

dy(lo, 63) < sdy(lo, €1) + (01, ) + (o, ) = s |dy(Co, 01) + sdy(1, 6) + 5°dy(6r, )|

s [do(Co, €1) + Edy(lo, £1)) + E(dy(Co, €1)))
sody(lo, £1)

dy(lo, &) + sor(dy(Co, 1))

o (dy(lo, 1)) = p.

IA

IA A

Continuing this manner, we build two sequences {Z} C E(?O, p) and {h;} C (0, +00) such that Z‘+1 €
T6O A, € # Gy with dy(€, €i1) € E and

¢ | (@l )| < @ [WH (Tl N ATEN N < @|doCr, 6]

for all i € N. Then L s
o|dp (€. )| < @ | (dy(Co. £)]. foralli € N.

Since ¢ : (0, +00) — (0, +00), it follows from (2.6) that
0 < lim ¢[dy(G; )| < lim o[&'(dy(Co. 0))] = 0,
i—+00 1—+00
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which implies that L
lim ¢ |dy(€:, Cr)| = 0.

By (¢5) and Lemma 1.2, we have L
lim dy(6;, L) = 0.
i—+00

(2.7)

Next, we prove that {Z-} is a Cauchy sequence in U. Arguing by contradiction, we assume that there are

€ > 0 and sequences {6;};] and {k;};~] of natural numbers such that

i >k >0, dy(ls,6,) > e and dy(ls_1, £,,) < € forall i € N.

Therefore,
e < dyls.Ly)
< s|dy(lor lor) + dp(Cs-1. 6|

sdy(Ls,, Cs,-1) + se.

IA

Setting i — +o0 in (2.8), L
€ < lim d,(€s,, ¢,.) < se.
i—+00

From the trianguler inequality, we have
db(/{%i’/{;ﬁ) < db(/{;," 275,'+1) + db(/{%i+l ’Z(i)

and L L L
dy(ls,1, Ce) < 5| dy(s,, Lsn) + d(Cs, €]

Letting the upper limit as i — +oco in (2.10) and applying (2.7) and (2.9), we obtain
< Jim supdy(Ca, £) < s lim supds(@.1,7,)].
i—+00 1—+00
Again, setting the upper limit as i — +oc0 in (2.11), we get

lim sup db(@i_*,],zq) <s [.lim sup db(zgi,?,q)] < 5.5€ = s°€.
i—+00 [—+00

Therefore,
€ ) —~ =
- = .hm sup db(£5i+1$ gK,') < SZE’
kY i—+00

equivalently, we have
€ ) —~ =
- < lim supdy(Ls;, biv1) < s%e.
Ky [—+00

By the trianguler inequality,
Cib(/f:sm,a,v) <s [db(/f:sﬁlazqn) + db(aﬁla?:q)] .
Setting the limit as i — +oc0 in (2.14), using (2.7) and (2.12), we have

6 . — —
— < lim supdp(s+1, C1)-
S 1—+00
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Owing to above process, we find

llm Supdb({’5+1, Kz+1) < S €. (216)

From (2.15) and (2.16), we have
_2 < lim Supdb(&i +1 Kl+1) < S €.

Y i—+00

Owing to (2.7) and (2.9), we can choose a positive integer j, > 1 such that
1 —_ —~ v - =
—— min {dy (G5, Tl;, 0 A) dy(C, T, O N)) < o= < dy(@a, )
2s 13 1 1 1 2S 1 1
for all i > jy. From (2.1), we have

0 < @[dy(ls,n1, bosn)| < @ [Hy(TEs, 0 A TE, N N)| < ¢ [6Q(E, B

where
— - db(ZS,-’E,-), db(a,-a 7‘:?5,')’ db(Z(i’ 7F:?k,-),
Qs be) = max{ dy(Co, Tl )+ (L TCs)
2s
db(&s,fk,) db(&s,&m) db(fk, 5K,+1)
< max dy @, T+l (G T 01)
2s

Setting the limit as i — +oco and by (2.7), (2.9), (2.12) and (2.13), we have

1(e+e)
max<{e, — |-+ —
2s\s s

lim sup Q(%s,, £y,)
1—+00

max {SG, % (S26 + SZE)} = S€.

€
ol
hm sup db(fa +15 Ly, [

l—)

lim ¢ [édy(65,, L)

= ¢[é(se)]
< @[sel,

m
Il

IA

IA

By (2.15) and (¢;), we have

¢ [s€]

IA

IA

which is a contradiction. Therefore, we deduce that {E } is a Cauchy sequence in the closed ball b({’o, 0).
Slnce b(fo, p) is closed in U, there exists a o* € b(€0 p) such that [ — o*. Note that o* € A, since
€,+1 € T{’ N A. Next, we claim that

1 —_ _ —
5 min {d,,({’,-, T¢,NA),dy(o", To* N A)} < dy(t;, o), (2.17)
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or
1 . — —_ —_
5, min{dy(@". To" 0 A). dy(Cisr. Ty 0 N} < dy(ir. )
s

for all i € N. Assume, on contrary, there exists i’ € N such that
1 — . — —
5 min {dy(@. Tl 0 A). (0" . To" 0 A} 2 dy(ly. o)
Ry

and
1 — — —
55 min{dy(@". To" O A).dyC. Tl 0 D)) 2 dy(Crar, ).
S

By (2.18), we have

2sdy, (€, 0)

IA

min {dy(€y, T N A),dy(0", To* N A)}

min {s [db(?,.,, o) + dy (o, Ty N A)] .dy(c", To* N A)}
s|dy(@r. o) + dy(o" . Tl N A

s | (@, o) + dy(0”, TE)|

s |dy(C, ) + dy(o™ Cn) |

IA

IA

IAN A

which implies that _ _
db(gi’a O-*) < db(o-*a gi’-f—l)'

This together with (2.19) implies

dy(Cr,0*) < dy(0, Crsr)

IA

1 _ .
5 min {db(a*, To* N A),dy(Crsr, Tlrsy N A)} .
S

So
1 . o _
s min {db(fi', Tt NA),dy(lysr, TCri1 N A)} < dy(ly, liyy).
s

From the contractive condition (2.1), we have

0 < ¢|dp(lri1, bria)| < @ |Hy(TE 0 ATl 0 A)| < g |y, 1))

where
— - Ayl Crs1)s dy(C, T), dy (L1 Tl yy),
Q([i’, fi’+l) = max{ dh@f@+1)+db(?,m,ﬁ,-/)
2s
dy(lr, Lo 1)y dp(Crats 1),
S max B Ty.)
2s

< max {dy(ly, Crar), dp(lisr, Gr10)}

which yields

¢|dy(li1, tr2)| < | HUTE 0 ATl 0 A)| < o |dy(@, 61|

(2.18)

(2.19)

(2.20)
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Let A = max {db(?iu?ﬂﬂ),db(Z'Jrl,Zurz)}~ Assume that A = dy(l11, &y 1). Since Crig € Tlyyy N A, we
have
¢ |dy(Cr1, G| < @[ H(Tl 0 ATy 0 N)| < 0 dy(Cran, b))

which is a contradiction. Owing to (¢,), we have
dy(lr i1 bri2) < dy(l, Crs). (2.21)
From (2.19), (2.20) and (2.21), we obtain
dy(Cy, L)
5| (@, ) + dy(0 Cii)
s min {dy(*, To* 0 A), dy(Cra. Tlra 1 A)]

+3min {dy(o”, To* 0 A), dy(Cr, Tt 0 A}
min {dy (0", o™ O A). dy(Crar. G2
= dy(lrsr, bra),

db(Z’HsZHZ)

A

IA

IA

IA

which is a contradiction. Hence (2.17) holds true, that is,
zis min {dy(€, TC; N A),dy(0", To* N A)} < dy(Ci, ™) for all i 2 2. (2.22)
Owing to (2.22), we have
o min (d, @, TE 0 ), dyGor, Tt 0 A < G, G

Moreover, we know that db(Z,ZH) € E for all i. Thus, from (2.1), we have
G[Hy(TE 0 A, Ty O A)]
o [£Q(E, E)))

| Q. G

@ [dy(Cier T N )]

IAN A

A

where

Q(;, Civ1)

dp (€1, T i) +dp(lis1,TC)
2s

{ db(Z,EJrl),db(ZJrl,Zﬂ), }
max

{ dy (. Cir1), dp (G, TC), dp(Civ1, Trsy), }
max

IA

dp(Ci.Cir2)
2s

max {db(Z,ZH), db(Z’+bZ+2)} ,

IA

which implies L R - L
¢|dy(lir, Gi2)| < @ [H(TE N A T 0 A)| < @] dy(C, 601))]
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Let A = max {db(Z,Z+1), db(ZH,ZJrZ)} . Assume that A = db(Z+[,Z+2). Since Z+2 € TZH N A, we have

o |dy(Cir1, )| < @ [HUTE N AT 0N < @ [di(Cinr, Giv))]
which is a contradiction. Also, by (¢,), we deduce that
dy(liar, Tiar N A) < dy(bi, Cir). (2.23)
Taking the limit i — +oo in (2.23), we get

lim dy(i1, Tl NA) =0

i—+0o
Since g(?) = db(?, TN A)is T-0.l.s.c at o,

dy(c*, To* N A) = g(o™) < liminf g(€;1,) = liminf dy (€1, Ty N A) = 0

Since To™* is closed, we have o* € To™. Conversely, if o is a fixed point of T then glc") =0<
liminf; g(¢;), since o* € A. |

Corollary 2.3. Let (U, d,) be a b-metric space with s > 1, A be a closed subset of U and & be a b-B-
GGF on an interval E. A mapping T T : A - CB(0) is said to be a multivalued SU- type p-contraction
if there exists ¢ € ¢* such that for TCNA %0

1 — _ —~
5, min {d,,({’, TN A),d,(v,TvN A)} < dy(t,v)
S

implies that - _ _
PH)(TEN A, Ty 0 A)] < [, M),

for all € € A, vEe TC N A with db(f v) € E, where Hb(Tf N A, Tv N A) > 0. Assume 50 € A such that
d;,(fo, c ) € E for some c* € T[O N A. Then there exist an orbit {{;} of T in A and o€ A such that

lim; 4o 5 = 0". Moreover, 0" is a fixed point of T if and only if the function g(€) = db(f TN A) is
T-o.ls.c at o,

Corollary 2.4. Let (U, d,) be a b-metric space with s > 1, A be a closed subset of U and & be a b-B-
GGF on an interval E. A mapping T T : A — CB(D) is said to be a multivalued SU- type p-contraction
if there exists ¢ € ¢* such that for TCAA+0

1 —— _ —
5, min {d (€. TCN A),dy(, Ty 0 A)} < dy(€,v)
implies that
e[H, (TN A, Tv N A)] < plé(dy(L,v)))],

for all le U,ve TC with db(€ v) € E. Suppose that €0 € U such that db(fo, c*) € E for some c € Tfo
Then there exists an orbit {{;} of T in U which converges to the fixed point o* € F = {f e U :
dy(t,0") e E} of T.
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Example 2.5. Let U = [0, 1] be endowed with the metric d, with coefficient s > Zz—j > 1 [where a > 3
— 2 — R —
is any positive integers] as defined by d,(¢,v) = l?— v' for all £,v € U but not a metric b,. For £; = 0,

> = L and ¢; = 1, we obtain

=3
- 11 — _
bd(?l,&) =1> 747 = bd(?l,fz) +bd(?2,€3)
and let E = [0, +00). Consider the mapping T : U — CB(U) defined by T(¢) = [0, £2]. Clearly,
1 —_ _ —
5 min {d(@.TENA). dy(v. Ty 0 A} < dy(C.v)
S
if and only if?, v € [0,1]. Let?o = 1. Then we have ¢* = % € T?o such that db(?o, c*) € E and
—~—— 2 |~ 2 —
o [H(TETV)| = [Pﬁ -7 ] <y Df +| ay(@, v)] .

Set ¢(r) = re” for all » > 0 and suppose that £(r) = r? is a b-B-GGF of order 2 on E = [0, w+1] with
For any = [0,1]and v € TZ we get

2+7

coeflicient &+ .
ar—1

—_—— 2~ > T —
¢ |H(TET)| < []?+ v' NG y)] G |edn(@.v))].
Thus, all the conditions of Corollary 2.3 are fulfilled and 0 is a fixed point of T.
3. Main results

In this section, motivated by the notion of multivalued Suzuki type V-contraction, we define the
notion of multivalued Suzuki type (V, — &)-contraction as follows:

Definition 3.1. Let (U, d,) be a b-metric space with s > 1, A be a closed subset of U and & be a

b-B-GGF on an interval E. A mapping 7 : A — CELU) is said to be a multivalued Suzuki type
(V, — &)-contraction if there exists I' € V such that for T¢ N A # 0

1 ——— — —_
on min {db(é’, TN A),dy(v, Ty N A)} < dy(t,v)

implies that
Ta(€.»H,TEN A, Tv 0 A), EQE V)] 2 0, (3.1

where

Q(¢,v) = max {db(f, V). dy (. TO). dy(v, Tv), dy(¢, V)2+ dp(v, f)}
s

forall € € A, v e T¢ N A with dy(¢,v) € E.

The second one of our results is as follows.
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Theorem 3.2. Let (U, d,) be a complete b-metric space with s > 1, A be a closed subset of U and
T : A — CB(U) be a multivalued SU-type (a-V)-contraction. Suppose that the following conditions
are satisfied:

(D) T is a- admzsszble
(i) there exists fo € A with db(fo, {’1) € E for some 51 € T[O N A such that o (?, {’1) > 1.

Then there exist an orblt i} of T in A and 0" € A such that lim;, .« 5 = 0. Moreover, 0™ is a fixed
point ofT if and only lfthefunctlon g(f) = db({’ TN A)is T-o.Ls.c at 0.

Proof.AOwing to the hypothesis, there exists é’o € A with d;,(ﬁo, 7 1) € E for some?l € T?O N A such that
a (?0, {’1) > 1. On the other hand, we have

1 —_ —_ —
5 min {db(&), Tt N A),dy(Cy, T N A)} < dy(lo, ). (3.2)
S

If dh(fo,fl) = 0, then 50 is a fixed point of T. Thus we assume that dh(fo,fl) # 0. Define p =
o(dy (Lo, €1)). From (1.16), we have o(r) > r. Hence dy (£, £1) < pand so ; € b(£y. p). Since a (€. 1) 2

1 and db({’o, 51) € E, from (3.1) and (3.2), it follows that

0 < Tla(Co, 6)H,(TE N A, Tl 0 A), Edy (Lo, 1))]
< &Q(Lo, 1)) — a(lo, LOHW(Tl N A TE N A),

which implies L R R L
(o, COH(TL N AT N A) < £, 61)).

We can choose an €; > 0 such that
a(bo, EDHNTl N A TE NA) + & < EQ(6, 1)).
Thus

< Hy(TlNATEHNA) + 6 (3.3)
< a(lo, (HHNTENATE N A) + €
< EQ(ly, ).

dp(€1, T6 N A) + €

It follows from Lemma 1.2 that there exists /{72 € T?] N A such that
dy(t1,6) < dy(C1, TE N A) + 6. (34)

From (3.3) and (3.4), we have L L
dy(t1, 62) < ULy, £1)),

where

lo, ) S oo dy (6, TE) + dy(6. Th
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e — A6 TE,
< max {dbwo, 7). dy(6. T8, b(;—sl)}
< max{dy(bo. 01). dp(C1, T6)))

We claim that L L
dp(t1, €y) < E(dp(lo, £1)).

Let A = max {db(?o,?l), d;,(?l, TZ)} . Assume that A = db(?l, TA&). Since?z € T/{a N A, we have

(dp(r, £2) < E(dp (1, 6)),

(3.5)

which is a contradlctlon Hence (3 5) holds true. We assume that db(f 1s {’2) # | 0, otherwise, R 4 isa ﬁxed
point of T. Since db(fl, {’2) < f(db(fo, 51)) < db(fo, {’1) we deduce that db(fl,fg) € E. Next, {’2 € b([o,p)

since

sdy(lo, 01) + $2dy(C1, )
sdy(Co, €1) + sE(dy(lo, 1))
s |dy(lo, €1) + sé(dy(lo, €1)]
sody(lo, 1)

dy(Co, €1) + so(dy(Co, £1))

o (dy(bo, ) = p

dy(Co, 6) < sdy(lo, 1) + sdy(C1, 62)

(VAN | B VAN VAN

IA

Since T is a-admissible, a (?,/{72) > 1. Also, since

1 — —_ ——
5 min{dy(61. T6 0 A). dy(6a. TG 0 A < dy(61, ).
s
from the contractive condition (3.1), we get

0 < Ia(ty, &)HL(TE N A, T N A), EQ(L, 6))]
< &Q(L, 6)) — by, )HNTE N A, Tl N A).

This implies that
a(C, H(TE N A TH N A) < QL ).

Now choose an & > 0 such that
(b, HYTO NATLNA) + & < EQ0, 6)).
Thus,

< H(TOLNATHNA) + 6
< all, OHN(THNATLAN) + 6
< EQ(, 6)).

dy(o, TGN A) + &

(3.6)
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It follows from Lemma 1.2 that there exists E € T?g N A such that
dy(6, 03) < Ay, THNA) + 6. (3.7)

From (3.6) and (3.7), we obtain s s
dy(tr, £3) < (UL, 6r)),

where

QU 6) = max{d, (6, &), dy(ly, TE), dy(ls, TE),

dy(€1, TG + dy (b, TE)}
2s

IA

e 4@ Th
max {db(fl’ ), dp(lr, Tt), ¥}

IA

max {dy(61, 6a), dy(Ca, TE)}

This implies that L L
dy(lr, 63) < &dp(ty, £2)). (3.8)
Let A = max {db(?l,/@), db(?z, 7:’{72)} . Assume that A = d;,(?z, T@). Since/{% € T?z N A, we have

dy(2, 63) < Ed(br, 63)),

which is a contradiction. Hence (3. 8) holds true. We assume that db(fz, {’3) # 0, otherwise, {’2 isaf fixed
point of T. From (3.8), we have db(ﬁz, {’3) < db(t’], 52) and so db({’z, 53) € E. Also, we have €3 € b({’o,p)
since

dy(lo, 63) < sdy(lo, €1) + (01, &) + (b0, ) = s |dy(Co, £1) + sdy(lr, 6) + 5°dy(6, 63) |

s [dy(o. €0) + £y, €1)) + E(dy(o. £1)) |
sody(Co, €1)

dy(Co, €1) + so(dy(lo, £1))

o (dy(lo, 01)) = p

IA

IA

IA

Continuing this manner, we obtain a sequence{ } C b(fo, p) such that €,+1 € Tf N A, {’ * €,+1 with
alt;, [M) >1, a’b(&-,f,-H) € E and by the above hypothesis, we have

dy(li, b)) < €(dy(G, £))), foralli e N. (3.9)
For any g € N, by using the triangular inequality and (3.9), we get

dp(Ci, Civg) < S'dp(lr, Cin) + 8 dp(Crat, Gian) + -+ 879 dy (i g1, Ling) (3.10)
< $'E(dy (Lo, 0)) + S E (dy (Lo, €)) + - - + $71E TN dy (Lo, 6))

< " SEdy (Lo, 1)) < oo

j=i
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Assume that

H; = § s/E/(dy(Co, £1)) and lim H; = H. (3.11)
—d i—+00
J=i
By (3.10) and (3.11), we get
dp(Ci, Cirg) < (Hivg1 — Hy). (3.12)

Due to (3.11), (3.12) implies that db(Z,E+q) — 0asi — +co. Hence {Z} is a Cauchy sequence in the
closed ball B(&), p)/.\SinceME\(fo, p) is closed in U, there exists an o € E(t’o, p) such that £; — o*. Note
that o € A, since ¢;;1 € T¢; N A. By the same argument as in Theorem 2.2, we have

1 —— —_ —
5 min{dy(@. TG0 A, dyCier, Tt 0N < dy(G. Ci).
R
Also, we know that f,-,ZH) > 1 and d;,(Z,ZH) € FE for all n. Thus, from (3.1), we have
0 < T, £ ) HWTE N A, Tyt 0 A, EQUE, L))
< EQ €e1)) — ally Co)HY(TE N A, Ty N A),

which gives that
(i, G DVHp (TN A, T NA) < EQUE, i)

Since ZH € TZ N A, from (3.9), we get
a(C, Ga)Hy (T N A, Tl N A) (3.13)

{CACNY)
EN(dy (Lo, 0))).

dy(liv1, Tl N A)

IN A A

Taking the limit i — +oo in (3.13), we obtain

lim dy (€1, Ty N A) = 0.

i—-+oo
Since g(?) = d;,(?, TN A)is T—orbitally lower semi-continuous at o™,
dy(c*, To* N A) = g(c) < lim inf g(Ciy) = lim inf dy(Civ1, T N A) = 0.
Since Ta'iis closed, we have o* € To™. Conversely, if o* is a fixed point of T then gc*) =0 <
lim inf; g(¢;), since o € A. O
Setting I'(r, s) = 5 — for ¢(t)dt for all r, s > 0 in Theorem 3.2, we get the following result.

Corollary 3.3. Let (U, d,) be a complete b-metric space with s > 1, A be a closed subset of U, £ be a

b-B-GGF on an interval E and let T:A— CBU)bea given multivalued mapping. Suppose that for
T¢N A # 0 such that

1 —_ _ —
5 min {db(f, TENA),dy(v, Ty N A)} < dy(C,v)
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implies that
a(C,v)Hy(TCNATYNA) N
f c(dt < A, )
0

for all € € A, vE TN A with afl\(’{”\, v) € E, where ¢ : R* — R* is a function such that foe s(t)dt exists
and foe s(t)dt > € for all € > 0. Suppose that the following conditions are satisfied:

(i) T is a- adWLlSSlble
(i) there exists fo € A with a’b(fo, fl) € E for some 51 € Tfo N A such that o (E, fl) > 1.

Then there exist an orblt i} of T in A and 0" € A such that lim;_, € = o*. Moreover, o is a fixed
point ofT if and only lfthefuncnon g([) = db({’ TN A) is T-o.ls.c at 0.

Corollary 3.4. Let (U, d,) be a complete b-metric space with s > 1, £ be b -B-GGF on an interval E
and let T : U — CB(U) be a given multivalued mapping. Suupose that there exist y € ® and T € V
such that

1 o . N
5 min {db(f, TN A),d,(v,TvN A)} < dy(t,v)

implies that _ . _
T'|a(€,v)Hy(TE, Tv), &dy(, )| = 0

for allte U ,VE T¢ with db(?, v) € E. Suppose that the following conditions are satisfied:

(i) T is a-admissible; L S —
(ii) there exists £y € U with d,(€,, t,) € E for some €, € Tty such thata (50’51) 2 L.

Then there exists an orblt t} of T in U which converges to the fixed point o € F = {{ € U :
db(f,O' )€ E} ofT.

4. An application

In the recent past, Banach’s fixed point theorem has a broad family of important applications to an
iteration methods for the system of linear algebraic equation and the most publicized application of
Banach’s fixed point theorem emarge in the module of function spaces. This yields the existence of
solution for the system of differential and integral equations (see [3]). In this section, we investigate
Corollary 2.4 to stabilize the existence of solution for the system of integral inclusions.

Consider the following system of integral inclusion:

s(r)ex+ UfrD(t,g(t))dt, 4.1)

o

where k € (—o0, +00), U is a bounded compact subset of (—co, +00) and the operator D (z, ¢ (¢)) is lower
semi-continuous. Let U = C(I) be the space of all continuous real valued functions (C(I) is complete
with respect to the metric d,) endowed with the b-metric defined by

dy (61,%) = sup [t (0 = T (1)

rel
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Assume that there exists D : (—oo, +00) X (—00, +00) — (—00, +00) which is continuous on

h—2
al 1 Clz
- d — < —| =
“}1'_1] and ls =4l < 2 (al)}

where a; = max,y |U|, 0 < @y < a; and & > 2 such that

I'= {(ng): lr —rol <

1D (r,61(r)) =D (r,62 ()] < Z—; 51 () =2 (NI,

where D is bounded as

1 (0%) g
ID(t,§)|<§ —| -
ag

Moreover, let C = {g eCl): % (¢,k) < ﬁ} be a closed subspace of C(/) and the operator g be defined

by
glc(r) e+ Uf V(1,5 (1)) dt.

1o

Set Vi () = [ V(1,6 (1)) dt. Note that

H,[g(s1 (1), 8(s2 ()]

Hylk + UVy (r) ,k + UV, ()]

< Hy[UVy(r),UV,(n)]
= max{ max d a,UV,(r)), max d B,UVA .
{aEUVf](r) b( y( )) beUV,(r) b( v (r))}
Then
max d, (5, Uv, (r)) = max min d, (E, E)

acUVy(r) acUVy(r) ZEUV).(r)

= maxmind, @V (.61 (1), (.62 ()

= maxminsup [uV(r,¢;(r) —vV(r,e2(r))

uclU veU jef

max min sup[[uV (r, ¢, (r)) = vV (r, 53 (1))

uelU veU ,¢p

iV (1.2 () = 0V (rogy ()]
ax min(fi sup |V (7,52 (1) = V (.61 (1)

rel

IA

IA

u

+u—v|sup |V (r,¢2 ()]

rel

= max [ul sup |V (r, 62 (r)) = V (r, 61 (1))

rel

= asup|V (e (nN) = V(e (N).

rel

This implies that
max d(ﬁ, Uv, (r)) <aysup|V(r,62 (1) = V(r,¢1(0)l.

acuvy(r rel

The third one of our results is as follows:

(4.2)

4.3)
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Theorem 4.1. Let U = C(I) be the space of all continuous real valued functions and g (C‘ , d) -

(V (C‘ ) , H;,) be a lower semi-continuous mapping. Suppose that the following assumptions hold:
(i) g is defined for all ¢ € C;

(ii) g(s (r)) is a compact subset of C‘for all ¢ € C;

Then the integral equation (4.3) has a solution on

a’f‘z a/}l"2
I=|ry— — Tt —/—|-
a; @

a,h—Z
Proof. Letx € I. Then |x — ry| < [a},—_.] . Hence we have |¢ (%) — k| < %(Z—f) If (%, 5 (%)) € (—00, +00),
1

then the integral equation in (4.1) exists. Since k € (—o0, +00) is continuous, x is defined for all x € C.
Next, let ¥ (r) € g(s (r)). Then 9 (r) = k + uVy (r) foru € U and so

[avy (| = |V ()
ijvmgmMﬂ

ro

ijVMgmmh
< 1 (0%) "
Q’12 (03]
< L),
2 g
Thus [ () - k] < £ (2) for all #(r) € g(s (r)). So g(s (1)) is a subset of C. Now, let {5} C g(s ().

Then ¢ = k+u;Dy (r) for u; € U. Since U is compact, there exists a subsequence i+ € i; such that {i;: }
is convergent tou € U. Letu = k + uVy (r). Then

d(iz,u) = su?(lﬁii -4} [Vy (1))

|12; —ﬁl sup|VU (r)| — 0,asi" — +oo.
rel

|9 (r) = «|

IA

IA

IA

Hence g(¢ (7)) is a compact subset of C for all ¢ € C. Next,

V(i () =V ne () < fWV@ga»—V@Qamm

a r
S-ika%Qth
ay Jy,
a 7
< Zswplg (- " | drt
ay rel ro
(0%
= 2 -rolldy (51, 60)]"
aj
1 o h=2
1
< —(—) [dy (51, 6)]" .
) \Qr
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Therefore, we get

h-2
max d, (5, Uv, (r)) < (ﬂ) [dy (s1.62)]" .

acuvy(n ;
Similarly,
3 o 2 -
max d, (b, UVy(r)) <|— dy (€1, 6)| .
a0 B00)=() o 59)
Hence (4.2) implies that

Hy [dy(g (@1) , g (@2))] < (ﬂ
an

h

h-2
) [Jb (15 5‘2)]

h=2
Taking ¢ (§) = 5, ¢ > 0and £(¢) = (&) "¢, ¢ € E with dy (61.62) < 2, we get

elHydy(g (1) , g (@2))] < ¢ [é (dy(w1, @,))] for all @, @, € C withd,, (s1,¢,) € E.

Hence the requied conditions (i)-(ii) are equivalent to (a)-(b) of Corollary 2.3. So there exists a fixed
point c*(€ A) in C , which is a bounded solution of (4.1). O

5. Conclusions

The paper deals with the pre-existing results of fixed point for multi-valued maps satisfying ¢-
contraction via b-B-GGF in the context of b-metric space. Within this frame work, we introduced two
related fixed point results in b-metric space. Afterwards, the results have been explained by rendering
concrete examples and some foremost corollaries have been deduced from the main results. At the
end, we have proved existence theorem for the system of multi-valued integral inclusion.
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