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1. Introduction

Let FG be the group algebra of a finite group G over a finite field F and let U(FG) be the group
of units of FG. Determining the structure of U(FG) is a classical problem that has already generated
considerable interest in the study of group algebra [1, 10, 12, 14]. In recent years, units of a group
algebra were also used as a tool to tackle many research problems in some other areas including coding
theory [5–8] and combinatorial number theory [4].

Many researchers have investigated the structure of U(FG) under different conditions.
Sandling [17] completely determined U(FG) when G is a finite p-group and F is a field of
characteristic p. Creedon [2] and Tang et al. [19] studied the unit groups of group algebras of some
small groups. Tang and Gao [18] described the unit group of FG with |G| = 12. Maheshwari [11]
determined the unit group of group algebras FS L(2,Z3). Monaghan [13] investigated the units of
group algebras of non-abelian groups of order 24 over any finite field of characteristic 3. Sahai and
Ansari [15] discussed the unit groups of group algebras of some dihedral groups. In a recent paper,
Sahai et al. [16] characterized the unit group of FG when G is an abelian group of order at most 16.
In this paper we focus our investigation on the group of units of FG of an abelian group G and
determine the structure of U(FG) when G is an abelian group of order between 17 and 20.
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This paper is organized as follows. In section 2, we provide some preliminary results. Section 3
deals with the unit group of FG when G is a group of prime order (17 or 19). In the last two sections,
we determine the structure of U(FG) when |G| = 18 and |G| = 20, respectively.

2. Preliminaries

Let F be a finite filed of characteristic p having q = pn elements and G be a finite abelian group.
Denote by Cn the cyclic group of order n and by Gk the direct sum of k copies of an abelian group G. Let
Fn be the direct sum of n copies of F and let Fn be the extension of F of degree n. Let V(FG), ω(FG),
and J(FG) be the group of the normalized unit group, the augmentation ideal and the Jacobson radical
of FG, respectively. For a subgroup H of G, we denote by ω(G,H) the left ideal of FG generated by
the set {h − 1 | h ∈ H}.

The number of simple components of FG/J(FG) has been given by Ferraz in [3]. An element g ∈ G
is called p-regular, if p - o(g). In this article we use the same symbols m, η and T as in [3] to represent
the least common multiple of the orders of p-regular elements of G, a primitive mth root of unity over
the field F, and the set

T = {t : η→ ηt is an automorphism of F(η) over F}.

Let γg be the sum of all conjugates of g ∈ G. If g is a p-regular element, then the cyclotomic F-class
of γg is

S F(γg) = {γgt : t ∈ T }.

Lemma 2.1. [3, Proposition 1.2] The number of simple components of FG/J(FG) is equal to the
number of cyclotomic F-classes in G.

Lemma 2.2. [3, Theorem 1.3] Suppose that Gal(F(η)/F) is cyclic. Let t be the number of cyclotomic
F-classes in G. If K1,K2, ...,Kt are the simple components of Z(FG/J(FG)) and S 1, S 2, ..., S t are the
cyclotomic F classes of G, then with a suitable re-ordering of indices,

|S i| = [Ki : F],

for i = 1, 2, . . . , t.

Remark 2.3. By Lemmas 2.1 and 2.2, we conclude that if G is a finite abelian group and p - |G|, then
FG � ⊕t

iKi, where Ki’s are defined in Lemma 2.2.

We also need the following results.

Lemma 2.4. [16, Lemma 4.1] Let F be a finite field of characteristic p with |F| = q = pn and let
G = Cpki , where k, p are distinct primes and i is a positive integer. Let V = 1 + J(FG). Then

U(FG) � V × U(FCki),

and
V � Cn(p−1)ki

p .
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Lemma 2.5. [9, Lemma 1.17] Let G be a locally finite p-group, and let F be a field of characteristic
p. Then

J(FG) = ω(FG).

Lemma 2.6. [14, Theorem 7.2.7] Let F be a finite field and let H be a normal subgroup of G with
[G : H] = n < ∞. Then

(J(FG))n ⊆ J(FH)FG ⊆ J(FG).

If in addition n , 0 in F, then
J(FG) = J(FH)FG.

3. Groups of order 17 and 19

In this section, we describe the structure of U(FG) when the order of the abelian group G is 17
or 19. We need the following two lemmas.

Lemma 3.1. [2, Lemma 4.1] Let F be a finite field of characteristic p with |F| = q = pn, where p is a
prime number. Then U(FCk

p) = Cnpk−n
p ×Cpn−1.

Lemma 3.2. [16, Lemma 2.2] Let F be a finite field of characteristic p with |F| = q = pn. If p - k,then

FCk �


Fk, if q ≡ 1 mod k;

F ⊕ F
k−1

2
2 , if q ≡ −1 mod k and k is odd;

F2 ⊕ F
k−2

2
2 , if q ≡ −1 mod k and k is even.

Now we can state our first result.

Theorem 3.3. Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC17) �



C16n
17 ×C17n−1, if p = 17;

C17
pn−1, if q ≡ 1 mod 17;

Cpn−1 ×C8
p2n−1, if q ≡ −1 mod 17;

Cpn−1 ×C2
p8n−1, if q ≡ ±2,±8 mod 17;

Cpn−1 ×C4
p4n−1, if q ≡ ±4 mod 17;

Cpn−1 ×Cp16n−1, if q ≡ ±3,±5,±6,±7 mod 17.

Proof. If p = 17, applying Lemma 3.1 with k = 1, we get

U(FC17) = C16n
17 ×C17n−1.

Next we assume that p , 17. Let C17 = 〈x〉. Obviously, m = 17.
We divide the rest of the proof into several cases according to the value of q module 17.
Case 1. q ≡ ±1 mod 17. By Lemma 3.2, we obtain that

U(FC17) �

C17
pn−1, if q ≡ 1 mod 17;

Cpn−1 ×C8
p2n−1, if q ≡ −1 mod 17.
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Case 2. q ≡ ±2,±8 mod 17. It is easy to verify that

T = {1, 2, 4, 8, 9, 13, 15, 16} mod 17.

By an easy calculation we obtain that

S F(γ1) = {γ1},

S F(γx) = {γx, γx2 , γx4 , γx8 , γx9 , γx13 , γx15 , γx16},

S F(γx3) = {γx3 , γx5 , γx6 , γx7 , γx10 , γx11 , γx12 , γx14}.

It follows from Remark 2.3 that
FC17 � F ⊕ F2

8 .

So
U(FC17) � Cpn−1 ×C2

p8n−1.

Case 3. q ≡ ±4 mod 17. Then

T = {1, 4, 13, 16} mod 17,

and thus,

S F(γ1) = {γ1},

S F(γx) = {γx, γx4 , γx13 , γx16},

S F(γx2) = {γx2 , γx8 , γx9 , γx15},

S F(γx3) = {γx3 , γx5 , γx12 , γx14},

S F(γx6) = {γx6 , γx7 , γx10 , γx11}.

It follows from Remark 2.3 that FC17 � F ⊕ F4
4 . Therefore,

U(FC17) � Cpn−1 ×C4
p4n−1.

Case 4. q ≡ ±3,±5,±6,±7 mod 17. Then

T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} mod 17.

Thus,

S F(γ1) ={γ1},

S F(γx) ={γx, γx2 , γx3 , γx4 , γx5 , γx6 , γx7 , γx8 ,

γx9 , γx10 , γx11 , γx12 , γx13 , γx14 , γx15 , γx16}.

As above, we obtain that FC17 � F ⊕ F16, and thus

U(FC17) � Cpn−1 ×Cp16n−1.

This completes the proof. �
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Using a similar method as in the proof of Theorem 3.3, we obtain the following result.

Theorem 3.4. Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC19) �



C18n
19 ×C19n−1, if p = 19;

C19
pn−1, if q ≡ 1 mod 19;

Cpn−1 ×C9
p2n−1, if q ≡ −1 mod 19;

Cpn−1 ×Cp18n−1, if q ≡ 2, 3, 10, 13, 14, 15 mod 19;
Cpn−1 ×C2

p9n−1, if q ≡ 4, 5, 6, 9, 16, 17 mod 19;

Cpn−1 ×C6
p3n−1, if q ≡ 7, 11 mod 19;

Cpn−1 ×C3
p6n−1

, if q ≡ 8, 12 mod 19.

4. Groups of order 18

In this section, we deal with the unit group of FG, when |G| = 18. Note that if G is an abelian group
of 18, then G � C18 or G � C3 ⊕C6. We need a few lemmas.

Lemma 4.1. [2] Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC2) �

Cn
2 ×C2n−1, if p = 2;

C2
pn−1, if p , 2.

Lemma 4.2. [16, Theorem 3.6] Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC9) �



C4n
3 ×C2n

9 ×C3n−1, if p = 3;
C9

pn−1, if q ≡ 1 mod 9;
Cpn−1 ×C4

p2n−1, if q ≡ −1 mod 9;

Cpn−1 ×Cp2n−1 ×Cp6n−1, if q ≡ 2,−4 mod 9;
C3

pn−1 ×C2
p3n−1, if q ≡ −2, 4 mod 9.

Lemma 4.3. [16, Theorem 3.7] Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC2
3) �


C8n

3 ×C3n−1, if p = 3;
C9

pn−1, if q ≡ 1 mod 3;
Cpn−1 ×C4

p2n−1, if q ≡ −1 mod 3.

We now state our result on U(FC18).

Theorem 4.4. Let F be a finite field of characteristic p with |F| = q = pn. Then

(1) If p = 2, then

U(FC18) �


C9n

2 ×C9
2n−1, if q ≡ 1 mod 9;

C9n
2 ×C2n−1 ×C4

22n−1, if q ≡ −1 mod 9;
C9n

2 ×C2n−1 ×C22n−1 ×C26n−1, if q ≡ 2,−4 mod 9;
C9n

2 ×C3
2n−1 ×C2

23n−1, if q ≡ −2, 4 mod 9.
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(2) If p = 3, then
U(FC18) � C8n

3 ×C4n
9 ×C2

3n−1.

(3) If p - 6, then

U(FC18) �


C18

pn−1, if q ≡ 1 mod 18;
C2

pn−1 ×C8
p2n−1, if q ≡ −1 mod 18;

C2
pn−1 ×C2

p2n−1 ×C2
p6n−1, if q ≡ 5, 11 mod 18;

C6
pn−1 ×C4

p3n−1, if q ≡ 7, 13 mod 18.

Proof. Let C18 = 〈x〉 and V = 1 + J(FC18).
(1) If p = 2, then applying Lemma 2.4 to G = C18, we obtain

U(FC18) � V × U(FC9),

and
V � C9n

2 .

By Lemma 4.2, we obtain

U(FC18) �


C9n

2 ×C9
2n−1, if q ≡ 1 mod 9;

C9n
2 ×C2n−1 ×C4

22n−1, if q ≡ −1 mod 9;
C9n

2 ×C2n−1 ×C22n−1 ×C26n−1, if q ≡ 2,−4 mod 9;
C9n

2 ×C3
2n−1 ×C2

23n−1, if q ≡ −2, 4 mod 9.

(2) Suppose p = 3. Let C2 = 〈x9〉 = {1, b̄} and C9 = 〈x2〉 = 〈ā〉.
Note that

[C18 : C9] = 2 , 0 ∈ F.

By Lemmas 2.5 and 2.6,

J(FC18) = J(FC9)FC18 = ω(FC9)FC18 = ω(C18,C9),

and
FC18/J(FC18) � FC2.

From the ring epimorphism
FC18 → FC2,

we deduce a group epimorphism
ϕ : U(FC18)→ U(FC2),

and
kerϕ = V = 1 + J(FC18) = 1 + ω(FC9)FC18 = 1 + ω(C18,C9).

The ring monomorphism
FC2 → FC18

AIMS Mathematics Volume 6, Issue 7, 7305–7317.



7311

given by
α0 + α1b̄→ α0 + α1b̄

induces a group monomorphism
σ : U(FC2)→ U(FC18).

And we can verify that ϕσ = 1U(FC2). Thus U(FC18) is an extension of U(FC2) by V . So

U(FC18) � V × U(FC2).

By Lemma 4.1 we have U(FC2) � C2
3n−1. We next determine V .

Note that

α =
∑17

i=0 aixi ∈ J(FC18) = ω(FC9)FC18 = ω(C18,C9) if and only if
∑8

j=0 a2 j+i = 0, i = 0, 1.

If α ∈ J(FC18), a straight forward computation shows that

α3 =
∑5

i=0(a3
i + a3

6+i + a3
12+i)x3i,

and

α9 =
∑1

i=0
∑8

j=0 a9
2 j+ix

9i = 0.

It follows that V = 1 + J(FC18) is an abelian 3-group with exponent dividing 9. Let

V � C`1
3 ×C`2

9 .

It remains to determine `1 and `2.
Since dimF(V) = dimF(J(FC18)) = dimF(FC18/FC2) = 16, we have |V | = 316n. So `1 + 2`2 = 16n.

Let
S = {α ∈ J(FC18)|α3 = 0, and ∃ β ∈ ω(FC9) such that α = β3}.

Then
S = {Σ1

i=0(a3ix3i + a3i+6x3i+6 + (2a3i + 2a3i+6)x3i+12) : a j ∈ F}.

It follows that |S | = 34n, and thus `2 = 4n. So `1 = 8n and hence

V � C8n
3 ×C4n

9 .

Therefore,
U(FC18) � C8n

3 ×C4n
9 ×C2

3n−1.

(3) If p - 6, then m = 18.
We divide the following proof into several cases according to the value of q module 18.
Case 3.1. q ≡ ±1 mod 18. By Lemma 3.2, we can get

U(FC18) �

C18
pn−1, if q ≡ 1 mod 18;

C2
pn−1 ×C8

p2n−1, if q ≡ −1 mod 18.

Case 3.2. q ≡ 5, 11 mod 18. Then T = {1, 5, 7, 13, 11, 17} mod 18. It follows from Remark 2.3
that

S F(γ1) = {γ1}, S F(γx9) = {γx9},
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S F(γx) = {γx, γx5 , γx7 , γx11 , γx13 , γx17},

S F(γx2) = {γx2 , γx4 , γx8 , γx10 , γx14 , γx16},

S F(γx3) = {γx3 , γx15}, S F(γx6) = {γx6 , γx12}.

Therefore,
FC18 � F2 ⊕ F2

2 ⊕ F2
6 .

So
U(FC18) � C2

pn−1 ×C2
p2n−1 ×C2

p6n−1.

Case 3.3. q ≡ 7, 13 mod 18. Then T = {1, 7, 13} mod 18. Thus,

S F(γ1) = {γ1}, S F(γx3) = {γx3},

S F(γx6) = {γx6}, S F(γx9) = {γx9},

S F(γx12) = {γx12}, S F(γx15) = {γx15},

S F(γx) = {γx, γx7 , γx13}, S F(γx2) = {γx2 , γx8 , γx14},

S F(γx4) = {γx4 , γx10 , γx16}, S F(γx5) = {γx2 , γx11 , γx17}.

Therefore,
FC18 � F6 ⊕ F4

3 .

Thus
U(FC18) � C6

pn−1 ×C4
p3n−1.

This completes the proof. �

Next we determine the structure of U(F(C3 ×C6)).

Theorem 4.5. Let F be a finite field of characteristic p with |F| = q = pn and let G = C3 ×C6.

(1) If p = 2, then

U(FG) �

C9n
2 ×C9

2n−1, if q ≡ 1 mod 3;
C9n

2 ×C2n−1 ×C4
22n−1, if q ≡ −1 mod 3.

(2) If p = 3, then
U(FG) � C16n

3 ×C2
3n−1.

(3) If p - 6, then

U(FG) �

C18
pn−1, if q ≡ 1 mod 6;

C2
pn−1 ×C8

p2n−1, if q ≡ −1 mod 6.

Proof. Let G = 〈x, y | x3 = y6 = 1, xy = yx〉 and V = 1 + J(FG).
(1) If p = 2, then let H = 〈y3〉. We know that [G : H] = 9 , 0 ∈ F. By Lemmas 2.5 and 2.6,

J(FG) = J(FH)FG = ω(FH)FG = ω(G,H),

and
FG/J(FG) � F(C3 ×C3).
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From the ring epimorphism
FG → F(C3 ×C3),

we deduce a group epimorphism

ϕ : U(FG)→ U(F(C3 ×C3)),

and
kerϕ = V = 1 + J(FG) = 1 + ω(G,H).

The ring monomorphism

F(C3 ×C3)→ FG,

induces a group monomorphism

σ : U(F(C3 ×C3))→ U(FG).

It is not hard to show that ϕσ = 1U(F(C3×C3)). Thus U(FG) is an extension of U(F(C3 ×C3)) by V . So

U(FG) � V × U(F(C3 ×C3)).

By Lemma 4.3 we have

U(FC2
3) �

C9
2n−1, q ≡ 1 mod 3;

C2n−1 ×C4
22n−1, q ≡ −1 mod 3.

We next determine V . It is clear that

α =

2∑
i=0

5∑
j=0

a6i+ jxiy j ∈ ω(G,H)

if and only if
ai + a3+i = 0, i = 0, 1, 2, 6, 7, 8, 12, 13, 14.

A straight forward calculation gives that α2 = 0. Thus, it is not hard to show that dimF(J(FG)) = 9,
and V � C9n

2 . Therefore

U(FG) �

C9n
2 ×C9

2n−1, if q ≡ 1 mod 3;
C9n

2 ×C2n−1 ×C4
22n−1, if q ≡ −1 mod 3.

(2) If p = 3, then let H = 〈x〉 × 〈y2〉. We know [G : H] = 2 , 0 ∈ F. As in the proof of (1) we can
show that

U(FG) � V × U(FC2).

By Lemma 4.1 we have U(FC2) � C2
3n−1. We next determine V . It is clear that

α =
∑2

i=0
∑5

j=0 a6i+ jxiy j ∈ ω(FH) if and only if
∑8

i=0 a2i+ j = 0, j = 0, 1.
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It is not hard to show that α3 = 0. Thus we obtain that dimF(J(FG)) = 16, and V � C16n
3 . Therefore,

U(FG) � C16n
3 ×C2

3n−1.

(3) If p - 6, then m = 6.
If q ≡ 1 mod 6, then T = {1} mod 6. Thus,

S F(γx) = {γx}, ∀x ∈ G.

So
FG � F18.

Therefore,
U(FG) � C18

pn−1.

If q ≡ −1 mod 6, then T = {1, 5} mod 6. Thus,

S F(γ1) = {γ1}, S F(γy3) = {γy3},

S F(γy) = {γy, γy5}, S F(γy2) = {γy2 , γy4},

S F(γxy) = {γxy, γx2y5}, S F(γxy2) = {γxy2 , γx2y4},

S F(γxy3) = {γxy3 , γx2y3}, S F(γx2y) = {γx2y, γxy5},

S F(γx2y2) = {γx2y2 , γxy4}, S F(γx) = {γx, γx2}.

Therefore,
FG � F2 ⊕ F8

2 .

Thus
U(FG) � C2

pn−1 ×C8
p2n−1.

This completes the proof. �

5. Groups of order 20

In this section, we investigate the unit group of FG when |G| = 20. Since G is an abelian group of
20, G � C20 or G � C2 ⊕C10.

Lemma 5.1. [16, Theorem 2.3] Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC5) �


C4n

p ×Cpn−1, if p = 5;
C5

pn−1, if q ≡ 1 mod 5;
Cpn−1 ×Cp4n−1, if q ≡ ±2 mod 5;
Cpn−1 ×C2

p2n−1, if q ≡ −1 mod 5.

Lemma 5.2. [16, Theorem 3.1] Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC4) �


Cn

2 ×Cn
4 ×C2n−1, if p = 2;

C4
pn−1, if q ≡ 1 mod 4;

C2
pn−1 ×Cp2n−1, if q ≡ −1 mod 4.
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Lemma 5.3. [16, Theorem 3.2] Let F be a finite field of characteristic p with |F| = q = pn. Then

U(FC2
2) �

C3n
2 ×C2n−1, if p = 2;

C4
pn−1, if p , 2.

The next two theorems provide complete characterizations of the structures of U(FC20) and
U(F(C2 ⊕ C10)), respectively. As their proofs are very much similar to those of Theorem 4.4 and
Theorem 4.5, we omit the detailed computation and state only the results.

Theorem 5.4. Let F be a finite field of characteristic p with |F| = q = pn.

(1) If p = 2, then

U(FC20) �


C5n

4 ×C5n
2 ×C5

2n−1, if q ≡ 1 mod 5;
C5n

4 ×C5n
2 ×C2n−1 ×C24n−1, if q ≡ ±2 mod 5;

C5n
4 ×C5n

2 ×C2n−1 ×C2
22n−1, if q ≡ −1 mod 5.

(2) If p = 5, then

U(FC20) �

C16n
5 ×C4

5n−1, if q ≡ 1 mod 4;
C16n

5 ×C2
5n−1 ×C52n−1, if q ≡ −1 mod 4.

(3) If p , 2 and p , 5, then

U(FC20) �



C20
pn−1, if q ≡ 1 mod 20;

C2
pn−1 ×C9

p2n−1, if q ≡ −1 mod 20;

C2
pn−1 ×Cp2n−1 ×C4

p4n−1, if q ≡ 3, 7 mod 20;

C4
pn−1 ×C4

p4n−1, if q ≡ 13, 17 mod 20;

C4
pn−1 ×C8

p2n−1, if q ≡ 9 mod 20;

C10
pn−1 ×C5

p2n−1, if q ≡ 11 mod 20.

Theorem 5.5. Let F be a finite field of characteristic p with |F| = q = pn and let G = C2 ×C10.

(1) If p = 2, then

U(FG) �


C15n

2 ×C5
2n−1, if q ≡ 1 mod 5;

C15n
2 ×C2n−1 ×C24n−1, if q ≡ ±2 mod 5;

C15n
2 ×C2

2n−1, if q ≡ −1 mod 5.

(2) If p = 5, then
U(FG) � C16n

5 ×C4
5n−1.

(3) If p , 2 and p , 5, then

U(FG) �


C20

pn−1, if q ≡ 1 mod 10;
C4

pn−1 ×C8
p2n−1, if q ≡ −1 mod 10;

C4
pn−1 ×C4

p4n−1, if q ≡ 3, 7 mod 10.
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