Research article

Unit groups of finite group algebras of Abelian groups of order 17 to 20

Yunpeng Bai ${ }^{1}$, Yuanlin Li ${ }^{2,3}$ and Jiangtao Peng ${ }^{1, *}$
${ }^{1}$ College of Science, Civil Aviation University of China, Tianjin, 300300, China
${ }^{2}$ Department of Mathematics and Statistics, Brock University St. Catharines, Ontario L2S 3A1, Canada
${ }^{3}$ School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
* Correspondence: Email: jtpeng1982@aliyun.com.

Abstract

Let F be a finite field of characteristic p having $q=p^{n}$ elements and G be an abelian group. In this paper, we determine the structure of the group of units of the group algebra $F G$, where G is an abelian group of order $17 \leq|G| \leq 20$.

Keywords: Unit group; group algebra; abelian group; finite field
Mathematics Subject Classification: 16S34, 20C05

1. Introduction

Let $F G$ be the group algebra of a finite group G over a finite field F and let $U(F G)$ be the group of units of $F G$. Determining the structure of $U(F G)$ is a classical problem that has already generated considerable interest in the study of group algebra $[1,10,12,14]$. In recent years, units of a group algebra were also used as a tool to tackle many research problems in some other areas including coding theory [5-8] and combinatorial number theory [4].

Many researchers have investigated the structure of $U(F G)$ under different conditions. Sandling [17] completely determined $U(F G)$ when G is a finite p-group and F is a field of characteristic p. Creedon [2] and Tang et al. [19] studied the unit groups of group algebras of some small groups. Tang and Gao [18] described the unit group of $F G$ with $|G|=12$. Maheshwari [11] determined the unit group of group algebras $F S L\left(2, Z_{3}\right)$. Monaghan [13] investigated the units of group algebras of non-abelian groups of order 24 over any finite field of characteristic 3. Sahai and Ansari [15] discussed the unit groups of group algebras of some dihedral groups. In a recent paper, Sahai et al. [16] characterized the unit group of $F G$ when G is an abelian group of order at most 16 . In this paper we focus our investigation on the group of units of $F G$ of an abelian group G and determine the structure of $U(F G)$ when G is an abelian group of order between 17 and 20.

This paper is organized as follows. In section 2, we provide some preliminary results. Section 3 deals with the unit group of $F G$ when G is a group of prime order (17 or 19). In the last two sections, we determine the structure of $U(F G)$ when $|G|=18$ and $|G|=20$, respectively.

2. Preliminaries

Let F be a finite filed of characteristic p having $q=p^{n}$ elements and G be a finite abelian group. Denote by C_{n} the cyclic group of order n and by G^{k} the direct sum of k copies of an abelian group G. Let F^{n} be the direct sum of n copies of F and let F_{n} be the extension of F of degree n. Let $V(F G), \omega(F G)$, and $J(F G)$ be the group of the normalized unit group, the augmentation ideal and the Jacobson radical of $F G$, respectively. For a subgroup H of G, we denote by $\omega(G, H)$ the left ideal of $F G$ generated by the set $\{h-1 \mid h \in H\}$.

The number of simple components of $F G / J(F G)$ has been given by Ferraz in [3]. An element $g \in G$ is called p-regular, if $p \nmid o(g)$. In this article we use the same symbols m, η and T as in [3] to represent the least common multiple of the orders of p-regular elements of G, a primitive m th root of unity over the field F, and the set

$$
T=\left\{t: \eta \rightarrow \eta^{t} \text { is an automorphism of } F(\eta) \text { over } F\right\} .
$$

Let γ_{g} be the sum of all conjugates of $g \in G$. If g is a p-regular element, then the cyclotomic F-class of γ_{g} is

$$
S_{F}\left(\gamma_{g}\right)=\left\{\gamma_{g^{t}}: t \in T\right\} .
$$

Lemma 2.1. [3, Proposition 1.2] The number of simple components of $F G / J(F G)$ is equal to the number of cyclotomic F-classes in G.

Lemma 2.2. [3, Theorem 1.3] Suppose that $\operatorname{Gal}(F(\eta) / F)$ is cyclic. Let t be the number of cyclotomic F-classes in G. If $K_{1}, K_{2}, \ldots, K_{t}$ are the simple components of $Z\left(F G / J(F G)\right.$) and $S_{1}, S_{2}, \ldots, S_{t}$ are the cyclotomic F classes of G, then with a suitable re-ordering of indices,

$$
\left|S_{i}\right|=\left[K_{i}: F\right],
$$

for $i=1,2, \ldots, t$.
Remark 2.3. By Lemmas 2.1 and 2.2, we conclude that if G is a finite abelian group and $p \nmid|G|$, then $F G \cong \oplus_{i}^{t} K_{i}$, where K_{i} 's are defined in Lemma 2.2.

We also need the following results.
Lemma 2.4. [16, Lemma 4.1] Let F be a finite field of characteristic p with $|F|=q=p^{n}$ and let $G=C_{p k^{i}}$, where k, p are distinct primes and i is a positive integer. Let $V=1+J(F G)$. Then

$$
U(F G) \cong V \times U\left(F C_{k^{i}}\right),
$$

and

$$
V \cong C_{p}^{n(p-1) k^{i}}
$$

Lemma 2.5. [9, Lemma 1.17] Let G be a locally finite p-group, and let F be a field of characteristic p. Then

$$
J(F G)=\omega(F G)
$$

Lemma 2.6. [14, Theorem 7.2.7] Let F be a finite field and let H be a normal subgroup of G with $[G: H]=n<\infty$. Then

$$
(J(F G))^{n} \subseteq J(F H) F G \subseteq J(F G) .
$$

If in addition $n \neq 0$ in F, then

$$
J(F G)=J(F H) F G
$$

3. Groups of order 17 and 19

In this section, we describe the structure of $U(F G)$ when the order of the abelian group G is 17 or 19 . We need the following two lemmas.

Lemma 3.1. [2, Lemma 4.1] Let F be a finite field of characteristic p with $|F|=q=p^{n}$, where p is a prime number. Then $U\left(F C_{p}^{k}\right)=C_{p}^{n p^{k}-n} \times C_{p^{n-1}}$.

Lemma 3.2. [16, Lemma 2.2] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. If $p \nmid k$,then

$$
F C_{k} \cong \begin{cases}F^{k}, & \text { if } q \equiv 1 \quad \bmod k \\ F \oplus F_{2}^{\frac{k-1}{2}}, & \text { if } q \equiv-1 \quad \bmod k \text { and } k \text { is odd } ; \\ F^{2} \oplus F_{2}^{\frac{k-2}{2}}, & \text { if } q \equiv-1 \quad \bmod k \text { and } k \text { is even } .\end{cases}
$$

Now we can state our first result.
Theorem 3.3. Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{17}\right) \cong \begin{cases}C_{17}^{16 n} \times C_{17^{n}-1}, & \text { if } p=17 ; \\ C_{p^{n}-1}^{17}, & \text { if } q \equiv 1 \bmod 17 ; \\ C_{p^{n}-1} \times C_{p^{2 n}-1}^{8}, & \text { if } q \equiv-1 \quad \bmod 17 ; \\ C_{p^{n}-1} \times C_{p^{8 n-1}}^{2}, & \text { if } q \equiv \pm 2, \pm 8 \bmod 17 ; \\ C_{p^{n}-1} \times C_{p^{4 n}-1}^{4}, & \text { if } q \equiv \pm 4 \bmod 17 ; \\ C_{p^{n-1}} \times C_{p^{16 n-1}}, & \text { if } q \equiv \pm 3, \pm 5, \pm 6, \pm 7 \quad \bmod 17\end{cases}
$$

Proof. If $p=17$, applying Lemma 3.1 with $k=1$, we get

$$
U\left(F C_{17}\right)=C_{17}^{16 n} \times C_{17^{n}-1} .
$$

Next we assume that $p \neq 17$. Let $C_{17}=\langle x\rangle$. Obviously, $m=17$.
We divide the rest of the proof into several cases according to the value of q module 17 .
Case 1. $q \equiv \pm 1 \bmod 17$. By Lemma 3.2, we obtain that

$$
U\left(F C_{17}\right) \cong \begin{cases}C_{p^{n}-1}^{17}, & \text { if } q \equiv 1 \quad \bmod 17 \\ C_{p^{n}-1} \times C_{p^{2 n-1}}^{8}, & \text { if } q \equiv-1 \quad \bmod 17 .\end{cases}
$$

Case 2. $q \equiv \pm 2, \pm 8 \bmod$ 17. It is easy to verify that

$$
T=\{1,2,4,8,9,13,15,16\} \bmod 17 .
$$

By an easy calculation we obtain that

$$
\begin{aligned}
S_{F}\left(\gamma_{1}\right) & =\left\{\gamma_{1}\right\}, \\
S_{F}\left(\gamma_{x}\right) & =\left\{\gamma_{x}, \gamma_{x^{2}}, \gamma_{x^{4}}, \gamma_{x^{8}}, \gamma_{x^{9}}, \gamma_{x^{13}}, \gamma_{x^{15}}, \gamma_{x^{16}}\right\}, \\
S_{F}\left(\gamma_{x^{3}}\right) & =\left\{\gamma_{x^{3}}, \gamma_{x^{5}}, \gamma_{x^{6}}, \gamma_{x^{7}}, \gamma_{x^{10}}, \gamma_{x^{11}}, \gamma_{x^{12}}, \gamma_{x^{14}}\right\} .
\end{aligned}
$$

It follows from Remark 2.3 that

$$
F C_{17} \cong F \oplus F_{8}^{2} .
$$

So

$$
U\left(F C_{17}\right) \cong C_{p^{n}-1} \times C_{p^{8 n-1}}^{2} .
$$

Case 3. $q \equiv \pm 4 \bmod 17$. Then

$$
T=\{1,4,13,16\} \bmod 17,
$$

and thus,

$$
\begin{aligned}
S_{F}\left(\gamma_{1}\right) & =\left\{\gamma_{1}\right\}, \\
S_{F}\left(\gamma_{x}\right) & =\left\{\gamma_{x}, \gamma_{x^{4}}, \gamma_{x^{13}}, \gamma_{x^{16}}\right\}, \\
S_{F}\left(\gamma_{x^{2}}\right) & =\left\{\gamma_{x^{2}}, \gamma_{x^{8}}, \gamma_{x^{9}}, \gamma_{x^{15}}\right\}, \\
S_{F}\left(\gamma_{x^{3}}\right) & =\left\{\gamma_{x^{3}}, \gamma_{x^{5}}, \gamma_{x^{12}}, \gamma_{x^{4}}\right\}, \\
S_{F}\left(\gamma_{x^{6}}\right) & =\left\{\gamma_{x^{6}}, \gamma_{x^{7}}, \gamma_{x^{10}}, \gamma_{x^{11}}\right\} .
\end{aligned}
$$

It follows from Remark 2.3 that $F C_{17} \cong F \oplus F_{4}^{4}$. Therefore,

$$
U\left(F C_{17}\right) \cong C_{p^{n}-1} \times C_{p^{4 n-1}}^{4} .
$$

Case 4. $q \equiv \pm 3, \pm 5, \pm 6, \pm 7 \bmod 17$. Then

$$
T=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \bmod 17 .
$$

Thus,

$$
\begin{aligned}
S_{F}\left(\gamma_{1}\right)= & \left\{\gamma_{1}\right\}, \\
S_{F}\left(\gamma_{x}\right)= & \left\{\gamma_{x}, \gamma_{x^{2}}, \gamma_{x^{3}}, \gamma_{x^{4}}, \gamma_{x^{5}}, \gamma_{x^{6}}, \gamma_{x^{7}}, \gamma_{x^{8}},\right. \\
& \left.\gamma_{x^{9}}, \gamma_{x^{10}}, \gamma_{x^{11}}, \gamma_{x^{12}}, \gamma_{x^{13}}, \gamma_{x^{14}}, \gamma_{x^{15}}, \gamma_{x^{16}}\right\} .
\end{aligned}
$$

As above, we obtain that $F C_{17} \cong F \oplus F_{16}$, and thus

$$
U\left(F C_{17}\right) \cong C_{p^{n}-1} \times C_{p^{16 n}-1} .
$$

This completes the proof.

Using a similar method as in the proof of Theorem 3.3, we obtain the following result.
Theorem 3.4. Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{19}\right) \cong \begin{cases}C_{19}^{18 n} \times C_{19^{n}-1}, & \text { if } p=19 ; \\ C_{p^{n}-1}^{19}, & \text { if } q \equiv 1 \bmod 19 ; \\ C_{p^{n}-1} \times C_{p^{2 n-1}}^{9}, & \text { if } q \equiv-1 \bmod 19 ; \\ C_{p^{n}-1} \times C_{p^{18 n}-1}, & \text { if } q \equiv 2,3,10,13,14,15 \bmod 19 ; \\ C_{p^{n}-1} \times C_{p^{9 n}-1}^{2}, & \text { if } q \equiv 4,5,6,9,16,17 \bmod 19 ; \\ C_{p^{n}-1} \times C_{p^{3 n}-1}^{6}, & \text { if } q \equiv 7,11 \bmod 19 ; \\ C_{p^{n}-1} \times C_{p^{6 n-1}}^{3}, & \text { if } q \equiv 8,12 \bmod 19 .\end{cases}
$$

4. Groups of order 18

In this section, we deal with the unit group of $F G$, when $|G|=18$. Note that if G is an abelian group of 18 , then $G \cong C_{18}$ or $G \cong C_{3} \oplus C_{6}$. We need a few lemmas.
Lemma 4.1. [2] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{2}\right) \cong \begin{cases}C_{2}^{n} \times C_{2^{n}-1}, & \text { if } p=2 \\ C_{p^{n-1}}^{2}, & \text { if } p \neq 2\end{cases}
$$

Lemma 4.2. [16, Theorem 3.6] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{9}\right) \cong \begin{cases}C_{3}^{4 n} \times C_{9}^{2 n} \times C_{3^{n}-1}, & \text { if } p=3 ; \\ C_{p^{n-1}}^{9}, & \text { if } q \equiv 1 \bmod 9 ; \\ C_{p^{n-1}} \times C_{p^{2 n}-1}^{4}, & \text { if } q \equiv-1 \bmod 9 ; \\ C_{p^{n}-1} \times C_{p^{2 n}-1} \times C_{p^{6 n-1}}, & \text { if } q \equiv 2,-4 \bmod 9 ; \\ C_{p^{n}-1}^{3} \times C_{p^{3 n}-1}^{2}, & \text { if } q \equiv-2,4 \bmod 9 .\end{cases}
$$

Lemma 4.3. [16, Theorem 3.7] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{3}^{2}\right) \cong \begin{cases}C_{3}^{8 n} \times C_{3^{n}-1}, & \text { if } p=3 ; \\ C_{p^{n-1}}^{9}, & \text { if } q \equiv 1 \bmod 3 \\ C_{p^{n-1}} \times C_{p^{2 n-1}}^{4}, & \text { if } q \equiv-1 \bmod 3\end{cases}
$$

We now state our result on $U\left(F C_{18}\right)$.
Theorem 4.4. Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then
(1) If $p=2$, then

$$
U\left(F C_{18}\right) \cong \begin{cases}C_{2}^{9 n} \times C_{2^{n}-1}^{9}, & \text { if } q \equiv 1 \bmod 9 ; \\ C_{2}^{9 n} \times C_{2^{n}-1} \times C_{2^{2 n-1}}^{4}, & \text { if } q \equiv-1 \bmod 9 ; \\ C_{2}^{9 n} \times C_{2^{n-1}} \times C_{2^{2 n-1}} \times C_{2^{6 n-1}}, & \text { if } q \equiv 2,-4 \bmod 9 ; \\ C_{2}^{9 n} \times C_{2^{n}-1}^{3} \times C_{2^{3 n-1}}^{2}, & \text { if } q \equiv-2,4 \bmod 9 .\end{cases}
$$

(2) If $p=3$, then

$$
U\left(F C_{18}\right) \cong C_{3}^{8 n} \times C_{9}^{4 n} \times C_{3^{n}-1}^{2} .
$$

(3) If $p \nmid 6$, then

$$
U\left(F C_{18}\right) \cong \begin{cases}C_{p^{n}-1}^{18}, & \text { if } q \equiv 1 \bmod 18 ; \\ C_{p^{n}-1}^{2} \times C_{p^{2 n-1}}^{8}, & \text { if } q \equiv-1 \bmod 18 ; \\ C_{p^{n}-1}^{2} \times C_{p^{2 n-1}}^{2} \times C_{p^{6 n-1}}^{2}, & \text { if } q \equiv 5,11 \bmod 18 ; \\ C_{p^{n}-1}^{6} \times C_{p^{3 n-1}}^{4}, & \text { if } q \equiv 7,13 \bmod 18\end{cases}
$$

Proof. Let $C_{18}=\langle x\rangle$ and $V=1+J\left(F C_{18}\right)$.
(1) If $p=2$, then applying Lemma 2.4 to $G=C_{18}$, we obtain

$$
U\left(F C_{18}\right) \cong V \times U\left(F C_{9}\right),
$$

and

$$
V \cong C_{2}^{9 n} .
$$

By Lemma 4.2, we obtain

$$
U\left(F C_{18}\right) \cong \begin{cases}C_{2}^{9 n} \times C_{2^{n}-1}^{9}, & \text { if } q \equiv 1 \bmod 9 ; \\ C_{2}^{9 n} \times C_{2^{n}-1} \times C_{2^{2 n-1}}^{4}, & \text { if } q \equiv-1 \bmod 9 ; \\ C_{2}^{9 n} \times C_{2^{n}-1} \times C_{2^{2 n-1}} \times C_{2^{6 n-1}}, & \text { if } q \equiv 2,-4 \bmod 9 ; \\ C_{2}^{9 n} \times C_{2^{n}-1}^{3} \times C_{2^{3 n-1}}^{2}, & \text { if } q \equiv-2,4 \bmod 9 .\end{cases}
$$

(2) Suppose $p=3$. Let $C_{2}=\left\langle x^{9}\right\rangle=\{1, \bar{b}\}$ and $C_{9}=\left\langle x^{2}\right\rangle=\langle\bar{a}\rangle$.

Note that

$$
\left[C_{18}: C_{9}\right]=2 \neq 0 \in F .
$$

By Lemmas 2.5 and 2.6,

$$
J\left(F C_{18}\right)=J\left(F C_{9}\right) F C_{18}=\omega\left(F C_{9}\right) F C_{18}=\omega\left(C_{18}, C_{9}\right),
$$

and

$$
F C_{18} / J\left(F C_{18}\right) \cong F C_{2}
$$

From the ring epimorphism

$$
F C_{18} \rightarrow F C_{2}
$$

we deduce a group epimorphism

$$
\varphi: U\left(F C_{18}\right) \rightarrow U\left(F C_{2}\right),
$$

and

$$
\operatorname{ker} \varphi=V=1+J\left(F C_{18}\right)=1+\omega\left(F C_{9}\right) F C_{18}=1+\omega\left(C_{18}, C_{9}\right)
$$

The ring monomorphism

$$
F C_{2} \rightarrow F C_{18}
$$

given by

$$
\alpha_{0}+\alpha_{1} \bar{b} \rightarrow \alpha_{0}+\alpha_{1} \bar{b}
$$

induces a group monomorphism

$$
\sigma: U\left(F C_{2}\right) \rightarrow U\left(F C_{18}\right) .
$$

And we can verify that $\varphi \sigma=1_{U\left(F C_{2}\right)}$. Thus $U\left(F C_{18}\right)$ is an extension of $U\left(F C_{2}\right)$ by V. So

$$
U\left(F C_{18}\right) \cong V \times U\left(F C_{2}\right) .
$$

By Lemma 4.1 we have $U\left(F C_{2}\right) \cong C_{3^{n}-1}^{2}$. We next determine V.
Note that

$$
\alpha=\sum_{i=0}^{17} a_{i} x^{i} \in J\left(F C_{18}\right)=\omega\left(F C_{9}\right) F C_{18}=\omega\left(C_{18}, C_{9}\right) \text { if and only if } \sum_{j=0}^{8} a_{2 j+i}=0, i=0,1 .
$$

If $\alpha \in J\left(F C_{18}\right)$, a straight forward computation shows that

$$
\alpha^{3}=\sum_{i=0}^{5}\left(a_{i}^{3}+a_{6+i}^{3}+a_{12+i}^{3}\right) x^{3 i},
$$

and

$$
\alpha^{9}=\sum_{i=0}^{1} \sum_{j=0}^{8} a_{2 j+i}^{9} i^{9 i}=0 .
$$

It follows that $V=1+J\left(F C_{18}\right)$ is an abelian 3-group with exponent dividing 9. Let

$$
V \cong C_{3}^{\ell_{1}} \times C_{9}^{\ell_{2}} .
$$

It remains to determine ℓ_{1} and ℓ_{2}.
Since $\operatorname{dim}_{F}(V)=\operatorname{dim}_{F}\left(J\left(F C_{18}\right)\right)=\operatorname{dim}_{F}\left(F C_{18} / F C_{2}\right)=16$, we have $|V|=3^{16 n}$. So $\ell_{1}+2 \ell_{2}=16 n$. Let

$$
S=\left\{\alpha \in J\left(F C_{18}\right) \mid \alpha^{3}=0, \text { and } \exists \beta \in \omega\left(F C_{9}\right) \text { such that } \alpha=\beta^{3}\right\} .
$$

Then

$$
S=\left\{\Sigma_{i=0}^{1}\left(a_{3 i} x^{3 i}+a_{3 i+6} x^{3 i+6}+\left(2 a_{3 i}+2 a_{3 i+6}\right) x^{3 i+12}\right): a_{j} \in F\right\} .
$$

It follows that $|S|=3^{4 n}$, and thus $\ell_{2}=4 n$. So $\ell_{1}=8 n$ and hence

$$
V \cong C_{3}^{8 n} \times C_{9}^{4 n}
$$

Therefore,

$$
U\left(F C_{18}\right) \cong C_{3}^{8 n} \times C_{9}^{4 n} \times C_{3^{n}-1}^{2} .
$$

(3) If $p \nmid 6$, then $m=18$.

We divide the following proof into several cases according to the value of q module 18 .
Case 3.1. $q \equiv \pm 1 \bmod$ 18. By Lemma 3.2, we can get

$$
U\left(F C_{18}\right) \cong \begin{cases}C_{p^{n}-1}^{18}, & \text { if } q \equiv 1 \bmod 18 \\ C_{p^{n}-1}^{2} \times C_{p^{2 n}-1}^{8}, & \text { if } q \equiv-1 \bmod 18\end{cases}
$$

Case 3.2. $q \equiv 5,11 \bmod 18$. Then $T=\{1,5,7,13,11,17\} \bmod 18$. It follows from Remark 2.3 that

$$
S_{F}\left(\gamma_{1}\right)=\left\{\gamma_{1}\right\}, S_{F}\left(\gamma_{x^{9}}\right)=\left\{\gamma_{x^{9}}\right\},
$$

$$
\begin{aligned}
& S_{F}\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x^{5}}, \gamma_{x^{7}}, \gamma_{x^{11}}, \gamma_{x^{13}}, \gamma_{x^{17}}\right\}, \\
& S_{F}\left(\gamma_{x^{2}}\right)=\left\{\gamma_{x^{2}}, \gamma_{x^{4}}, \gamma_{x^{8}}, \gamma_{x^{10}}, \gamma_{x^{14}}, \gamma_{x^{16}}\right\}, \\
& S_{F}\left(\gamma_{x^{3}}\right)=\left\{\gamma_{x^{3}}, \gamma_{x^{15}}\right\}, S_{F}\left(\gamma_{x^{6}}\right)=\left\{\gamma_{x^{6}}, \gamma_{x^{12}}\right\} .
\end{aligned}
$$

Therefore,

$$
F C_{18} \cong F^{2} \oplus F_{2}^{2} \oplus F_{6}^{2} .
$$

So

$$
U\left(F C_{18}\right) \cong C_{p^{n}-1}^{2} \times C_{p^{2 n}-1}^{2} \times C_{p^{6 n-1}}^{2} .
$$

Case 3.3. $q \equiv 7,13 \bmod 18$. Then $T=\{1,7,13\} \bmod 18$. Thus,

$$
\begin{aligned}
& S_{F}\left(\gamma_{1}\right)=\left\{\gamma_{1}\right\}, S_{F}\left(\gamma_{x^{3}}\right)=\left\{\gamma_{x^{3}}\right\}, \\
& S_{F}\left(\gamma_{x^{6}}\right)=\left\{\gamma_{x^{6}}\right\}, S_{F}\left(\gamma_{x^{9}}\right)=\left\{\gamma_{x^{9}}\right\}, \\
& S_{F}\left(\gamma_{x^{12}}\right)=\left\{\gamma_{x^{12}}\right\}, S_{F}\left(\gamma_{x^{15}}\right)=\left\{\gamma_{x^{15}}\right\}, \\
& S_{F}\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x^{7}}, \gamma_{x^{13}}\right\}, S_{F}\left(\gamma_{x^{2}}\right)=\left\{\gamma_{x^{2}}, \gamma_{x^{8}}, \gamma_{x^{14}}\right\}, \\
& S_{F}\left(\gamma_{x^{4}}\right)=\left\{\gamma_{x^{4}}, \gamma_{x^{10}}, \gamma_{x^{16}}\right\}, S_{F}\left(\gamma_{x^{5}}\right)=\left\{\gamma_{x^{2}}, \gamma_{x^{11}}, \gamma_{x^{17}}\right\} .
\end{aligned}
$$

Therefore,

$$
F C_{18} \cong F^{6} \oplus F_{3}^{4} .
$$

Thus

$$
U\left(F C_{18}\right) \cong C_{p^{n}-1}^{6} \times C_{p^{3 n-1}}^{4} .
$$

This completes the proof.
Next we determine the structure of $U\left(F\left(C_{3} \times C_{6}\right)\right)$.
Theorem 4.5. Let F be a finite field of characteristic p with $|F|=q=p^{n}$ and let $G=C_{3} \times C_{6}$.
(1) If $p=2$, then

$$
U(F G) \cong \begin{cases}C_{2}^{9 n} \times C_{2^{n}-1}^{9}, & \text { if } q \equiv 1 \quad \bmod 3 \\ C_{2}^{9 n} \times C_{2^{n}-1} \times C_{2^{2 n-1}}^{4}, & \text { if } q \equiv-1 \quad \bmod 3\end{cases}
$$

(2) If $p=3$, then

$$
U(F G) \cong C_{3}^{16 n} \times C_{3^{n}-1}^{2} .
$$

(3) If $p \nmid 6$, then

$$
U(F G) \cong \begin{cases}C_{p^{n}-1}^{18}, & \text { if } q \equiv 1 \quad \bmod 6 \\ C_{p^{n}-1}^{2} \times C_{p^{2 n}-1}^{8}, & \text { if } q \equiv-1 \bmod 6 .\end{cases}
$$

Proof. Let $G=\left\langle x, y \mid x^{3}=y^{6}=1, x y=y x\right\rangle$ and $V=1+J(F G)$.
(1) If $p=2$, then let $H=\left\langle y^{3}\right\rangle$. We know that $[G: H]=9 \neq 0 \in F$. By Lemmas 2.5 and 2.6,

$$
J(F G)=J(F H) F G=\omega(F H) F G=\omega(G, H),
$$

and

$$
F G / J(F G) \cong F\left(C_{3} \times C_{3}\right) .
$$

From the ring epimorphism

$$
F G \rightarrow F\left(C_{3} \times C_{3}\right),
$$

we deduce a group epimorphism

$$
\varphi: U(F G) \rightarrow U\left(F\left(C_{3} \times C_{3}\right)\right),
$$

and

$$
\operatorname{ker} \varphi=V=1+J(F G)=1+\omega(G, H)
$$

The ring monomorphism

$$
F\left(C_{3} \times C_{3}\right) \rightarrow F G,
$$

induces a group monomorphism

$$
\sigma: U\left(F\left(C_{3} \times C_{3}\right)\right) \rightarrow U(F G)
$$

It is not hard to show that $\varphi \sigma=1_{U\left(F\left(C_{3} \times C_{3}\right)\right)}$. Thus $U(F G)$ is an extension of $U\left(F\left(C_{3} \times C_{3}\right)\right)$ by V. So

$$
U(F G) \cong V \times U\left(F\left(C_{3} \times C_{3}\right)\right) .
$$

By Lemma 4.3 we have

$$
U\left(F C_{3}^{2}\right) \cong \begin{cases}C_{2^{n-1}}^{9}, & q \equiv 1 \quad \bmod 3 ; \\ C_{2^{n}-1} \times C_{2^{2 n-1}}^{4}, & q \equiv-1 \quad \bmod 3 .\end{cases}
$$

We next determine V. It is clear that

$$
\alpha=\sum_{i=0}^{2} \sum_{j=0}^{5} a_{6 i+j} x^{i} y^{j} \in \omega(G, H)
$$

if and only if

$$
a_{i}+a_{3+i}=0, \quad i=0,1,2,6,7,8,12,13,14
$$

A straight forward calculation gives that $\alpha^{2}=0$. Thus, it is not hard to show that $\operatorname{dim}_{F}(J(F G))=9$, and $V \cong C_{2}^{9 n}$. Therefore

$$
U(F G) \cong \begin{cases}C_{2}^{9 n} \times C_{2^{n}-1}^{9}, & \text { if } q \equiv 1 \quad \bmod 3 \\ C_{2}^{9 n} \times C_{2^{n}-1} \times C_{2^{2 n-1}}^{4}, & \text { if } q \equiv-1 \quad \bmod 3\end{cases}
$$

(2) If $p=3$, then let $H=\langle x\rangle \times\left\langle y^{2}\right\rangle$. We know $[G: H]=2 \neq 0 \in F$. As in the proof of (1) we can show that

$$
U(F G) \cong V \times U\left(F C_{2}\right)
$$

By Lemma 4.1 we have $U\left(F C_{2}\right) \cong C_{3^{n}-1}^{2}$. We next determine V. It is clear that

$$
\alpha=\sum_{i=0}^{2} \sum_{j=0}^{5} a_{6 i+j} x^{i} y^{j} \in \omega(F H) \text { if and only if } \sum_{i=0}^{8} a_{2 i+j}=0, j=0,1 .
$$

It is not hard to show that $\alpha^{3}=0$. Thus we obtain that $\operatorname{dim}_{F}(J(F G))=16$, and $V \cong C_{3}^{16 n}$. Therefore,

$$
U(F G) \cong C_{3}^{16 n} \times C_{3^{n}-1}^{2} .
$$

(3) If $p \nmid 6$, then $m=6$.

If $q \equiv 1 \bmod 6$, then $T=\{1\} \bmod 6$. Thus,

$$
S_{F}\left(\gamma_{x}\right)=\left\{\gamma_{x}\right\}, \forall x \in G .
$$

So

$$
F G \cong F^{18}
$$

Therefore,

$$
U(F G) \cong C_{p^{n}-1}^{18} .
$$

If $q \equiv-1 \bmod 6$, then $T=\{1,5\} \bmod 6$. Thus,

$$
\begin{aligned}
& S_{F}\left(\gamma_{1}\right)=\left\{\gamma_{1}\right\}, S_{F}\left(\gamma_{y^{3}}\right)=\left\{\gamma_{y^{3}}\right\}, \\
& S_{F}\left(\gamma_{y}\right)=\left\{\gamma_{y}, \gamma_{y^{5}}\right\}, S_{F}\left(\gamma_{y^{2}}\right)=\left\{\gamma_{y^{2}}, \gamma_{y^{4}}\right\}, \\
& S_{F}\left(\gamma_{x y}\right)=\left\{\gamma_{x y}, \gamma_{x^{2} y^{5}}\right\}, S_{F}\left(\gamma_{x y^{2}}\right)=\left\{\gamma_{x y^{2}}, \gamma_{x^{2} y^{4}}\right\}, \\
& S_{F}\left(\gamma_{x y^{3}}\right)=\left\{\gamma_{x y^{3}}, \gamma_{x^{2} y^{3}}\right\}, S_{F}\left(\gamma_{x^{2} y}\right)=\left\{\gamma_{x^{2} y}, \gamma_{x y^{5}}\right\}, \\
& S_{F}\left(\gamma_{x^{2} y^{2}}\right)=\left\{\gamma_{x^{2} y^{2}}, \gamma_{x y^{4}}\right\}, S_{F}\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x^{2}}\right\} .
\end{aligned}
$$

Therefore,

$$
F G \cong F^{2} \oplus F_{2}^{8} .
$$

Thus

$$
U(F G) \cong C_{p^{n-1}}^{2} \times C_{p^{2 n-1}}^{8} .
$$

This completes the proof.

5. Groups of order 20

In this section, we investigate the unit group of $F G$ when $|G|=20$. Since G is an abelian group of $20, G \cong C_{20}$ or $G \cong C_{2} \oplus C_{10}$.
Lemma 5.1. [16, Theorem 2.3] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{5}\right) \cong \begin{cases}C_{p}^{4 n} \times C_{p^{n}-1}, & \text { if } p=5 ; \\ C_{p^{n}-1}^{5}, & \text { if } q \equiv 1 \bmod 5 ; \\ C_{p^{n}-1} \times C_{p^{4 n}-1}, & \text { if } q \equiv \pm 2 \bmod 5 ; \\ C_{p^{n-1}} \times C_{p^{2 n}-1}^{2}, & \text { if } q \equiv-1 \bmod 5\end{cases}
$$

Lemma 5.2. [16, Theorem 3.1] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{4}\right) \cong \begin{cases}C_{2}^{n} \times C_{4}^{n} \times C_{2^{n}-1}, & \text { if } p=2 \\ C_{p^{n}-1}^{4}, & \text { if } q \equiv 1 \bmod 4 \\ C_{p^{n}-1}^{2} \times C_{p^{2 n-1}}, & \text { if } q \equiv-1 \bmod 4\end{cases}
$$

Lemma 5.3. [16, Theorem 3.2] Let F be a finite field of characteristic p with $|F|=q=p^{n}$. Then

$$
U\left(F C_{2}^{2}\right) \cong \begin{cases}C_{2}^{3 n} \times C_{2^{n}-1}, & \text { if } p=2 ; \\ C_{p^{n}-1}^{4}, & \text { if } p \neq 2 .\end{cases}
$$

The next two theorems provide complete characterizations of the structures of $U\left(F C_{20}\right)$ and $U\left(F\left(C_{2} \oplus C_{10}\right)\right)$, respectively. As their proofs are very much similar to those of Theorem 4.4 and Theorem 4.5, we omit the detailed computation and state only the results.

Theorem 5.4. Let F be a finite field of characteristic p with $|F|=q=p^{n}$.
(1) If $p=2$, then

$$
U\left(F C_{20}\right) \cong \begin{cases}C_{4}^{5 n} \times C_{2}^{5 n} \times C_{2^{n}-1}^{5}, & \text { if } q \equiv 1 \bmod 5 ; \\ C_{4}^{5 n} \times C_{2}^{5 n} \times C_{2^{n}-1} \times C_{2^{4 n-1}}, & \text { if } q \equiv \pm 2 \bmod 5 ; \\ C_{4}^{5 n} \times C_{2}^{5 n} \times C_{2^{n}-1} \times C_{2^{2 n-1}}^{2}, & \text { if } q \equiv-1 \quad \bmod 5 .\end{cases}
$$

(2) If $p=5$, then

$$
U\left(F C_{20}\right) \cong \begin{cases}C_{5}^{16 n} \times C_{5^{n}-1}^{4}, & \text { if } q \equiv 1 \quad \bmod 4 \\ C_{5}^{16 n} \times C_{5^{n}-1}^{2} \times C_{5^{2 n}-1}, & \text { if } q \equiv-1 \quad \bmod 4\end{cases}
$$

(3) If $p \neq 2$ and $p \neq 5$, then

$$
U\left(F C_{20}\right) \cong \begin{cases}C_{p^{n}-1}^{20}, & \text { if } q \equiv 1 \bmod 20 ; \\ C_{p^{n-1}}^{2} \times C_{p^{2 n-1}}^{9}, & \text { if } q \equiv-1 \bmod 20 ; \\ C_{p^{n-1}}^{2} \times C_{p^{2 n-1}} \times C_{p^{4 n-1}}^{4}, & \text { if } q \equiv 3,7 \bmod 20 ; \\ C_{p^{n}-1}^{4} \times C_{p^{4 n-1}}^{4}, & \text { if } q \equiv 13,17 \bmod 20 ; \\ C_{p^{n}-1}^{4} \times C_{p^{2 n-1}}^{8}, & \text { if } q \equiv 9 \bmod 20 ; \\ C_{p^{n-1}}^{10} \times C_{p^{2 n-1}}^{5}, & \text { if } q \equiv 11 \bmod 20 .\end{cases}
$$

Theorem 5.5. Let F be a finite field of characteristic p with $|F|=q=p^{n}$ and let $G=C_{2} \times C_{10}$.
(1) If $p=2$, then

$$
U(F G) \cong \begin{cases}C_{2}^{15 n} \times C_{2^{n}-1}^{5}, & \text { if } q \equiv 1 \bmod 5 ; \\ C_{2}^{15 n} \times C_{2^{n}-1} \times C_{2^{4 n-1}}, & \text { if } q \equiv \pm 2 \bmod 5 ; \\ C_{2}^{15 n} \times C_{2^{n-1}}^{2}, & \text { if } q \equiv-1 \bmod 5\end{cases}
$$

(2) If $p=5$, then

$$
U(F G) \cong C_{5}^{16 n} \times C_{5^{n}-1}^{4} .
$$

(3) If $p \neq 2$ and $p \neq 5$, then

$$
U(F G) \cong \begin{cases}C_{p^{n-1}}^{20}, & \text { if } q \equiv 1 \quad \bmod 10 \\ C_{p^{n}-1}^{4} \times C_{p^{2 n-1}}^{8}, & \text { if } q \equiv-1 \quad \bmod 10 \\ C_{p^{n-1}}^{4} \times C_{p^{4 n-1}}^{4}, & \text { if } q \equiv 3,7 \quad \bmod 10\end{cases}
$$

Acknowledgments

The authors would like to thank the referees for very useful suggestions and for pointing out the work of R. Sandling to them. This research was supported in part by the Scientific research project of Tianjin Municipal Education Commission (Grant No. 2018KJ252), and was also supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN 2017-03093).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. A. Abdollahi, Z. Taheri, Zero divisors and units with small supports in group algebras of torsionfree groups, Commun. Algebra, 46 (2018), 887-925.
2. L. Creedon, The unit group of small group algebras and the minimum counter example to the isomorphism problem, arXiv: 0905.4295.
3. R. A. Ferraz, Simple components of the center of $F G / J(F G)$, Commun. Algebra, 36 (2008), 31913199.
4. W. D. Gao, A. Geroldinger, F. Halter-Koch, Group algebras of finite abelian groups and their applications to combinatorial problems, Rocky Mountain J. Math., 39 (2008), 805-823.
5. J. Gildea, A. Kaya, R. Taylor, B. Yildiz, Constructions for self-dual codes induced from group rings, Finite Fields Th. App., 51 (2018), 71-92.
6. B. Hurley, T. Hurley, Systems of MDS codes from units and idempotents, Discrete Math., 335 (2014), 81-91.
7. B. Hurley, T. Hurley, Codes from zero-divisors and units in group rings, IJICOT, 1 (2009), DOI: 10.1504/IJICOT.2009.024047.
8. P. Hurley, T. Hurley, Block codes from matrix and group rings, In: I. Woungang, S. Misra, S. C. Misra, (Eds), Selected topics in information and coding theory, Hackensack: World Scientific Publication, 2010, 159-194.
9. G. Karpilovsky, Unit groups of classical rings, New York: Oxford University Press, 1988.
10. I. Kaplansky, Problems in the theory of rings (revisited), Am. Math. Mon., 77 (1970), 445-454.
11. S. Maheshwari, The unit group of group algebras $F S L\left(2, Z_{3}\right)$, J. Algebra Comb. Discrete Appl., 3 (2016), 1-6.
12. C. P. Miles, S. Sehgal, An introduction to group rings, Dordrecht/Boston/London: kluwer Academic Publishers, 2002.
13. F. Monaghan, Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic 3, Int. Electron. J. Algebra, 12 (2012), 133-161.
14. D. S. Passman, The algebraic structure of group rings, New York, London, Sydney, Toronto: John Wiley and Sons, 1977.
15. M. Sahai, S. F. Ansari, Unit groups of group algebras of certain dihedral groups-II, Asian-Eur. J. Math., 12 (2018), 1950066.
16. M. Sahai, S. F. Sahai, Unit groups of finite group algebras of abelian groups of order at most 16, Asian-Eur. J. Math., 14 (2021), 2150030.
17. R. Sandling, Units in the modular group algebra of a finite abelian p-group, J. Pure Appl. Algebra, 33 (1984), 337-346.
18. G. H. Tang, Y. Y. Gao, The unit group of $F G$ of group with order 12, Int. J. Pure Appl. Math., 73 (2011), 143-158.
19. G. H. Tang, Y. J. Wei, Y. L. Li, Unit groups of group algebras of some small groups, Czech. Math. J., 64 (2014), 149-157. is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
