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1. Introduction

Let FG be the group algebra of a finite group G over a finite field F and let U(FG) be the group
of units of F'G. Determining the structure of U(FG) is a classical problem that has already generated
considerable interest in the study of group algebra [1, 10, 12, 14]. In recent years, units of a group
algebra were also used as a tool to tackle many research problems in some other areas including coding
theory [5—8] and combinatorial number theory [4].

Many researchers have investigated the structure of U(FG) under different conditions.
Sandling [17] completely determined U(FG) when G is a finite p-group and F is a field of
characteristic p. Creedon [2] and Tang et al. [19] studied the unit groups of group algebras of some
small groups. Tang and Gao [18] described the unit group of FG with |G| = 12. Maheshwari [11]
determined the unit group of group algebras F'SL(2,Z;). Monaghan [13] investigated the units of
group algebras of non-abelian groups of order 24 over any finite field of characteristic 3. Sahai and
Ansari [15] discussed the unit groups of group algebras of some dihedral groups. In a recent paper,
Sahai et al. [16] characterized the unit group of FG when G is an abelian group of order at most 16.
In this paper we focus our investigation on the group of units of FG of an abelian group G and
determine the structure of U(FG) when G is an abelian group of order between 17 and 20.
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This paper is organized as follows. In section 2, we provide some preliminary results. Section 3
deals with the unit group of FG when G is a group of prime order (17 or 19). In the last two sections,
we determine the structure of U(FG) when |G| = 18 and |G| = 20, respectively.

2. Preliminaries

Let F be a finite filed of characteristic p having ¢ = p”" elements and G be a finite abelian group.
Denote by C, the cyclic group of order n and by G* the direct sum of k copies of an abelian group G. Let
F" be the direct sum of n copies of F and let F, be the extension of F of degree n. Let V(FG), w(FG),
and J(F'G) be the group of the normalized unit group, the augmentation ideal and the Jacobson radical
of FG, respectively. For a subgroup H of G, we denote by w(G, H) the left ideal of FG generated by
theset{h—1|he H}.

The number of simple components of FG/J(FG) has been given by Ferraz in [3]. Anelement g € G
is called p-regular, if p 1 o(g). In this article we use the same symbols m, n and T as in [3] to represent
the least common multiple of the orders of p-regular elements of G, a primitive mth root of unity over
the field F, and the set

T = {t: n — 7' is an automorphism of F(n) over F}.

Let y, be the sum of all conjugates of g € G. If g is a p-regular element, then the cyclotomic F-class
of y, is
SF()’g) = {yg’ HEAS T}

Lemma 2.1. /3, Proposition 1.2] The number of simple components of FG/J(FG) is equal to the
number of cyclotomic F-classes in G.

Lemma 2.2. [3, Theorem 1.3] Suppose that Gal(F(n)/F) is cyclic. Let t be the number of cyclotomic
F-classes in G. If K, K, ..., K, are the simple components of Z(FG/J(FG)) and S+, S, ...,S; are the
cyclotomic F classes of G, then with a suitable re-ordering of indices,

ISi = [K; : F,

fori=1,2,...,t.

Remark 2.3. By Lemmas 2.1 and 2.2, we conclude that if G is a finite abelian group and p 1 |G|, then
FG = &K;, where K;’s are defined in Lemma 2.2.

We also need the following results.

Lemma 2.4. [16, Lemma 4.1] Let F be a finite field of characteristic p with |F| = g = p" and let
G = C,yi, where k, p are distinct primes and i is a positive integer. Let V = 1 + J(FG). Then

UFG) =V x U(FCy),

and
~ n(p=Dk
V= CnrhE,
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Lemma 2.5. [9, Lemma 1.17] Let G be a locally finite p-group, and let F be a field of characteristic

p. Then
J(FG) = w(FG).

Lemma 2.6. [14, Theorem 7.2.7] Let F be a finite field and let H be a normal subgroup of G with
[G:H]=n< . Then
(J(FG))" C J(FH)FG C J(FG).

If in addition n # 0 in F, then
J(FG) = J(FH)FG.
3. Groups of order 17 and 19

In this section, we describe the structure of U(FG) when the order of the abelian group G is 17
or 19. We need the following two lemmas.

Lemma 3.1. [2, Lemma 4.1] Let F be a finite field of characteristic p with |F| = g = p", where p is a
k
prime number. Then U(FC;‘,) = C;l,p X Coney.

Lemma 3.2. [16, Lemma 2.2] Let F be a finite field of characteristic p with |F| = q = p". If p 1 k,then
F*, ifg=1 mod k;
-1
FC,={FoF ifg=-1 mod k and k is odd,
-2
F*eF,>, ifg=-1 mod kandkis even.

x~

(5]
=~ N‘
-

Now we can state our first result.

Theorem 3.3. Let F be a finite field of characteristic p with |F| = g = p". Then

ClO % Crpy,  ifp=1T;

Colys ifg=1 mod 17;

Cpoy X Ciz,l_l, ifg=-1 mod 17;

Cpoy X C?) ifg=+2,48 mod 17;

Cpor X Chyy o ifg=%4 mod 17;

Cpot X Cpion_y, ifq=+3,4£5,+£6,+7 mod 17.

U(FCyy) =

3n_1°

Proof. 1f p = 17, applying Lemma 3.1 with k = 1, we get
U(FCy7) = C{8" X Cy7n_y.

Next we assume that p # 17. Let C7 = (x). Obviously, m = 17.
We divide the rest of the proof into several cases according to the value of ¢ module 17.
Case 1. g = +1 mod 17. By Lemma 3.2, we obtain that

c7 ifg=1 mod 17;

U(FCpp)={ 7"
(Few) {c,,n_lxci ifg=-1 mod 17.

2n_1°
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Case 2. g = £2,+8 mod 17. It is easy to verify that
T =1{1,2,4,8,9,13,15,16} mod 17.
By an easy calculation we obtain that

Srty1) = {ynih
SEY) = Vo ¥as Vots Vass V95 Vi3, Vs, Yoo
SF(y,@) = {7x357x577x6’ Y75 Yx105 Yxll, Yxi2, 7}:14}-

It follows from Remark 2.3 that
FCr=Fe& F%

So
U(FCi7) = Cproy X Cpy .-

Case 3. g = +4 mod 17. Then
T ={1,4,13,16} mod 17,

and thus,

Srly1) = {yih

SF(Y) = {Vas Vits Va3, Vars}s
SF(yxe) = ¥z Vass Voo Yaishs
SFr(Y) = ¥, Vass Va2, Vae},
S r(yxe) = {yse, Va1, Va0, Yari ).

It follows from Remark 2.3 that FC; = F& F i‘. Therefore,

UFCi7) = Cpy X C24n_1-

T =1{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} mod 17.

Thus,

Sr(y) =tyih
SF(yx) :{yxa Y2 Vi3 Vs Vs> Yx6s Vs Vb
V9 Yxl0s Yalls Vil2s Volds Ylds Vl5, Vil6 )

As above, we obtain that FC;; = F @ F¢, and thus
U(FC]7) = Cpn_] X Cplﬁn_l.

This completes the proof.

O

AIMS Mathematics Volume 6, Issue 7, 7305-7317.



7309

Using a similar method as in the proof of Theorem 3.3, we obtain the following result.

Theorem 3.4. Let F be a finite field of characteristic p with |F| = g = p". Then

C}S” X Cion_i, ifp=19;
C;S_l, ifg=1 mod 19;
Cprog X C?ﬂn—r ifg=-1 mod 19;

U(FCio) = {Cp_y X Cpn_y, ifq=2,3,10,13,14,15 mod 19;

Cpioy X Cign_l, ifg=4,56,9,16,17 mod 19;
Cpoy X Cgh_], ifg=7,11 mod 19;
Cpor X C . ifg =812 mod 19.

4. Groups of order 18

In this section, we deal with the unit group of F'G, when |G| = 18. Note that if G is an abelian group

of 18, then G = Ci3 or G = C; ® Cs. We need a few lemmas.
Lemma 4.1. [2] Let F be a finite field of characteristic p with |F| = q = p". Then

Cy X Cony, if p=2;
Crys ifp #2.

IR

U(FCy)

Lemma 4.2. [16, Theorem 3.6] Let F be a finite field of characteristic p with |F| = g = p". Then

C3" X C3" X Can_y, ifp=3;
Czn_l, ifg=1 mod9;
U(FCo) = {Cp_ X C;zn_l, ifg=-1 mod9;

Cpot XCpny XCpony, ifg=2,—-4 mod 9;

Cf,n_l X Clzﬁn_l, ifg=-2,4 mod?9.
Lemma 4.3. [16, Theorem 3.7] Let F be a finite field of characteristic p with |F| = g = p". Then
CY x Cyy, if p=73;
U(FC3) =1C,,_, ifg=1 mod 3;
Cp"—l X C;zn_l, lfq =—-1 mod 3.

We now state our result on U(FCg).
Theorem 4.4. Let F be a finite field of characteristic p with |F| = g = p". Then
(1) If p = 2, then

Cy'xC)._,, ifg=1 mod?9;
Cl X Con_y XC%, | ifg=-1 mod9;
CY"' X Cyioy X Cyon_y X Coen_y,  ifg=2,—4 mod 9;
Cg” X C3,_, %X C§3n_l, ifg=-2,4 mod?9.

AIMS Mathematics Volume 6, Issue 7, 7305-7317.



7310

(2) If p = 3, then
U(FCg) = C¥"x C3" x C3,_,.

(3) If p 1 6, then

C[l,f_l, ifg=1 mod 18;
U(FCyy) = clz,n_l X C§2n_1, 2 l:fq f —-1 mod 18; |

Ch X Co X C2, . ifg=511 mod 18;

Criy X Crays ifg=7,13 mod 18.

PVOOf LetCig = ()C) andV =1+ J(Fclg)
(1) If p = 2, then applying Lemma 2.4 to G = C;3, we obtain

U(FCi3) = VX U(FCy),

and
V=Co.
By Lemma 4.2, we obtain
Cy'xC),_,, ifg=1 mod?9;
CY' X Cyn_y X C, | ifg=-1 mod9;
U(FCig) = 5 #o T . 1
C2n X Czn_] X C22n_1 X C26n_1, lfq = 2, -4 mod 9,
Cy'xC3,_, X C;n_l, ifg=-2,4 mod?9.

(2) Suppose p = 3. Let C, = (x°) = {1, b} and Cy = (x*) = (a).
Note that
[Cig : Co]=2#0€F.

By Lemmas 2.5 and 2.6,
J(FCig) = J(FCo)FC13 = w(FCo)FC13 = w(Cig, C),
and
FC]g/J(FClg) = FC2

From the ring epimorphism
FC 18 —™ F Cg,

we deduce a group epimorphism
¢ U(FCig) = U(F(Cy),

and
keI'(,D =V=1+JFCi3) =1+ w(FCy)FCig =1+ w(Cig, Co).

The ring monomorphism
FC2 4 Fclg
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given by
Q) +a1b — Q) +C81b

induces a group monomorphism
o:UWFCy) — UFCys).

And we can verify that o = 1y c,). Thus U(FC\3) is an extension of U(FC,) by V. So

UWFCig)=VXUWFC,).
By Lemma 4.1 we have U(FC,) = C%,,_l. We next determine V.

Note that
a= Z}ZO aix' € J(FCg) = w(FC9)FC3 = w(C)g, Co) if and only if Z?:o aj+i =0,1=0,1.
If @ € J(FC\3), a straight forward computation shows that
@ = Y@ +ay, +al, )X,
and
@ =Y, Z?‘:O agj+ix9i =0.
It follows that V = 1 + J(FCjs) is an abelian 3-group with exponent dividing 9. Let
o s
= C3l X C92.

It remains to determine ¢; and ¢5.
Since dimg(V) = dimg(J(FC;3)) = dimp(FC,3/FC,) = 16, we have |V| = 3'%". So ¢, + 2(, = 16n.
Let
S ={a e J(FCp)la®’ =0, and 3 8 € w(FCo) such that & = °}.
Then
S = {Z_o(anx” + azinex” 0 + 2az; + 2a3,6)x"" %) 1 aj € F}.

It follows that |S| = 3*", and thus £, = 4n. So £, = 8n and hence
V=CYxCy.
Therefore,
U(FCig) = C¥" x Cy" x C3,_,.

3)If p {6, thenm = 18.
We divide the following proof into several cases according to the value of ¢ module 18.
Case 3.1. ¢ = +1 mod 18. By Lemma 3.2, we can get

C'8 ifg=1 mod 18;

U(FCig) ={ 7V
(FCus) {Cin_GCi ifg=-1 mod 18.

2n_1°

Case 3.2. ¢ = 5,11 mod 18. Then T = {1,5,7,13,11,17} mod 18. It follows from Remark 2.3
that

Sr(y1) = {y1}, Sr(ye) = {yol
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7312

SF(yx) = {Yx’ Y55 YT Vil Yxl3, 7):17},
SF()/XZ) = {7x2’ Yts Va8s Vx10, Y x4, 7x15}»
Sr(yw) =y vash Sr(ywe) = (¥, v}

Therefore,
FCy=F@F, ®F:.
So
UFC) = Clz,n_l X C1272n_1 X C§,6n_1'
Case3.3.¢g=7,13 mod 18. Then T = {1,7,13} mod 18. Thus,

SF()/I) = {)’1}, SF(’)/xz) = {7x3}’

SF(’)/x") = {7x°}’ SF(’)/X") = {7x9}’

SF(Yxlz) = {7x12}, SF(’}/)CIS) = {YXIS }’

SF()/x) = {7x’ Y7, 7x13}’ SF(sz) = {7x2’ Vs> '}’x14},

SF(Vx“) = {yﬁ, Y x10, yxlﬁ}’ SF(VP) = {’)/XZ, Yl 7x17}-
Therefore,

FCi3=F° @ F;.
Thus
U(FCig) = Cp_y X Chi_y-
This completes the proof.
Next we determine the structure of U(F(C3z X Cg)).
Theorem 4.5. Let F be a finite field of characteristic p with |F| = g = p" and let G = C3 X Cg.
(1) If p =2, then

CxCy, . ifg=1 mod 3;
an X Czn_] X C4 lfq =-1 mod 3.

UFG) = {
221
(2) If p = 3, then

UFG)=Ci*" x C3,_,.

(3) If p 1 6, then
c® ifg=1 mod 6;
vFGy=rr
Cly X sz,,_l, ifg=-1 mod 6.
Proof. LetG = {(x,y | x* =y =1,xy=yx)and V = 1 + J(FG).
(1)If p = 2, then let H = (y*). We know that [G : H] =9 # 0 € F. By Lemmas 2.5 and 2.6,

J(FG) = J(FH)FG = o(FH)FG = w(G, H),

and
FG/J(FG) = F(C; x C3).
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From the ring epimorphism
FG - F(C3 X C3),

we deduce a group epimorphism
¢ U(FG) = U(F(C3 X (3)),

and
kero=V=1+J(FG) =1+ w(G, H).

The ring monomorphism
F(C3x C3) = FG,
induces a group monomorphism
o : UF(C; X C3)) = UFG).
It is not hard to show that 9o~ = 1y(r(csxcy). Thus U(FG) 1s an extension of U(F(Cz X C3)) by V. So
UFG) =2 VX U(F(C; X Cy)).

By Lemma 4.3 we have

9

C_is =1 d 3;
uFcHy = e 470 O
C2n_1 x C q= -1 mod 3.

22m_1?
We next determine V. It is clear that
2 5
a = Z Z asi+jx'y’ € w(G, H)
i=0 j=0

if and only if
ai+a; =0, i=0,1,2,6,7,8,12,13,14.

A straight forward calculation gives that > = 0. Thus, it is not hard to show that dimz(J(FG)) = 9,
and V = CJ". Therefore

CIxC s ifg=1 mod3;

CY' X Cyn_y X C‘Z‘Zn_l, ifg=-1 mod 3.

UFG) = {

(2) If p = 3, then let H = {x) X (y*). We know [G : H] =2 # 0 € F. As in the proof of (1) we can
show that
UFG) = VXUFC,).

By Lemma 4.1 we have U(FC,) = C gn_l. We next determine V. It is clear that
a=32, Z?:o agir jX'y’ € w(FH) if and only if ¥, axy+j=0,j=0,1.
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It is not hard to show that o = 0. Thus we obtain that dimz(J(FG)) = 16, and V = C}*". Therefore,
UFG)=Ci"x 3, _,.

(3)If p {6, then m = 6.
Ifg=1 mod 6,then T = {1} mod 6. Thus,

Sr(ys) =1{ys), ¥x€G.
So
FG = F'8.
Therefore,
U(FG) = C, ).
Ifg=-1 mod 6,then 7 = {1,5} mod 6. Thus,

Sr(yD) = {1} Sr(yyp) = {ypl,

Sr(yy) =y vl SE(y2) =y, v},
Sr(Vn) = Y Y SE(¥V2) = {¥2, Yaryths
Sr(Yu) = Vo2 Yyl SF(rey) = ey, Yosh
S r(Ya2y2) = V22 Yirhs SE(Y2) = (¥ vk

Therefore,
FG=F*oF}.
Thus
UFG) = Cp_y X Ch_.
This completes the proof. O

5. Groups of order 20

In this section, we investigate the unit group of FG when |G| = 20. Since G is an abelian group of
20, G = C20 orG = C2 @Clo.

Lemma 5.1. [16, Theorem 2.3] Let F be a finite field of characteristic p with |F| = q = p". Then
an X Cpn_], lfp = 5,

C;,,_l, ifg=1 mod?5;

Cpot XCpin_y, ifg=+2 mod5;

Cproy X Cfﬂn_l, ifg=-1 mod 5.

Lemma 5.2. [16, Theorem 3.1] Let F be a finite field of characteristic p with |F| = g = p". Then

CIXCIX Cyyy ifp=2;
U(FC,) = Cin_], ifg=1 mod 4;
Cﬁn_l X Cpmn_y, ifg=-1 mod 4.
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Lemma 5.3. [16, Theorem 3.2] Let F be a finite field of characteristic p with |F| = q = p". Then

C3n X C2n_1 lfp =2;

2 ~ 2 b b
vre) = {C4 ifp#2
p”—l’ p .

The next two theorems provide complete characterizations of the structures of U(FCyy) and
U(F(C, & Cyy)), respectively. As their proofs are very much similar to those of Theorem 4.4 and
Theorem 4.5, we omit the detailed computation and state only the results.

Theorem 5.4. Let F be a finite field of characteristic p with |F| = g = p".
(1) If p = 2, then

C"x Cy' x C5,_,, ifg=1 mod5;

U(FCa) 23CT" X C3" X Cyr_y X Cyun_y, ifg=+2 mod 5;
C" X CY" X Cy_y X C2 ifg=-1 mod 5.

2211

(2) If p = 5, then

Cy x C,_y, fg=1 mod 4;
UFCyy = {3 7 T Fa=1 mo
G X an_l X Csn_y, ifg=-1 mod 4.
3) If p#2and p + 5, then
c® ifg=1 mod 20;
p'l_l’ b
Clzjn_l X C[9)2,,_1’ ifg=-1 mod 20;
U(FCy) = Coy X Cpuy X Ch,, 1, ifg=3,7 mod 20;
B (AT o ifq=13,17 mod 20;
Cpy X C, s ifg=9 mod 20;
Cp X Co s ifg=11 mod 20.

Theorem 5.5. Let F be a finite field of characteristic p with |F| = g = p" and let G = C, X C.
(1) If p =2, then

CéS” X Cg,,_l, ifg=1 modS5;
U(FG) = C;Sn X C2n_1 X C24n_1, l‘fq =+2 mod 5,
C" x G5, ifg=-1 mod 5.

(2) If p =5, then
UFG) = CI*" x C%,_,.

(3) If p#2and p #5, then

C}%S_l, ifg=1 mod 10;
U(FG) = C;t"_l X C[8)2n_l’ l:f‘q = _1 mOd 10;
C?,n_l X C24n_1, ifg=3,7 mod 10.
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