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1. Introduction

Fractional calculus plays a significant role in various applied fields, such as electrochemistry,
viscoelasticity, rheology, biology and physics [1–4]. The idea of generalizing integer derivative to
fractional derivative has been proposed by Hospital in 1695. Since then, many types of fractional
derivatives have been introduced such as Riemann-Liouville, Caputo, Grünwald-Letnikov [5] and the
exact solutions of fractional partial differential equations in Riemann-Liouville or Caputo sense have
been provided in [6–10]. In 2014, Khalil proposed a new fractional differential operator named as
conformable fractional derivative in [11]. Researchers were taking keen interest to develop the theory
of this type fractional derivative as it possesses some satisfactory properties. Abdeljawad [12]
constructed the chain rule, formula of fractional integration by parts, Taylor power series
representation regarding to conformable fractional derivative. In [13], Zhao pointed out that the
physical interpretation of the conformable fractional derivative is a modification of classical velocity
in direction and magnitude. In addition, the exact solutions of some conformable fractional partial
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differential equations have been constructed using various methods, such as the modified Kudryashov
method [14–17], the first integral method [18, 19], the auxiliary method [20–22], the generalized
exp(−Φ(ξ))-expansion method [23–25] and so on.

It was acknowledged that the method of functional separation of variables is an effective and
systematic method for the construction of the exact solutions to the integer order partial differential
equation [26–29]. Furthermore, for conformable fractional partial differential equations, functional
separation variables method also is an effective method. In [30], some new exact solutions for the
conformable space-time fractional (4+1)-dimensional Fokas equation were constructed using several
methods, such as functional separation of variables, the generalized Kudryashov method and so on.
Recently, we constructed the exact solutions of conformable time fractional Airy equation,
conformable time fractional Telegraph equation and conformable time fractional inviscid Burgers
equation with the functional variables separation method and generalized variables separation
method [31].

Burgers equation is the simplest evolution equation to embody nonlinearity and dissipation and the
construction of its solutions attracts much attentions. In [32], Murray mentioned simply classical
Burgers equation of turbulence in the appendix. The integer-order (2+1)-dimensional generalized
Burgers equation [33], ut + uxy + uuy + ux∂

−1
x uy = 0, was firstly introduced as an integral model

through the Painlevé analysis [34]. In addition, if we set x = y, u = v, (2+1)-dimensional generalized
Burgers equation will degenerate into Burgers equation. Furthermore, Kurt [35] studied the exact
solution of the conformable time fractional Burgers equation with Hopf-Cole transform. The
approximate analytical solution of the time conformable fractional Burgers equation is determined by
using the homotopy analysis method. Çenesiz [36] used the first integral method to establish the exact
solutions for the conformable time-fractional Burgers equation, modified Burgers equation, and
Burgers-Korteweg-de-Vries equation. In [37], the rational fractional (Dξ

αG/G)-expansion method, the
exp-function method and the extended tanh method were employed to construct the closed-form
solutions of Burgers equation with conformable fractional derivative.

In this paper, we intend to utilize the method of separation of variables to construct the traveling
wave solutions of the following two conformable time fractional Burgers type equations. One is the
conformable time fractional Burgers equation

Tαlu +
∂u
∂x

u − ν
∂2u
∂x2 = 0, (1.1)

where u(x, t) is the velocity of the turbulent motion and ν represents the diffusion coefficient. And the
other is the (2+1)-dimensional generalized conformable time fractional Burgers equations Tαlu = uuy + γvux + βuyy + γβuxx,

ux − vy = 0,
(1.2)

where γ, β are given constants. u(x, y, t) denotes the physical field and v(x, y, t) denotes some
potential [33]. Tαl is the (left) conformable fractional differential operator with respect to t.

The rest of this paper is organized as follows. In section 2, we recall the definition and properties
of conformable fractional derivative and the steps of the separation variables method are presented.
We construct the explicit solutions of certain Riccati equation by modified tanh function method and
modified extended exp-function method in section 3. In section 4, functional separation variables
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method is applied to obtain the traveling wave solutions of the conformable time fractional Burgers
type equations (1.1) and (1.2). In section 5, the three dimensional diagrams of some exact solutions
are provided. In section 6, we draw a conclusion of this paper.

2. Preliminaries

In this section, we recall the definition of conformable fractional derivative and related properties.
In addition, we describe the precise process of functional separation variables method.

Definition 1. [12] Let α ∈ (0, 1], t > 0 and f (t) : [0,∞) → R. The (left) conformable fractional
derivative of function f (t) with order α is defined by

Tαl( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)
ε

.

In addition, if function f (t) has the (left) conformable fractional derivative with order α in (0,∞),
we call that f (t) is (left) α-differentiable in (0,∞). If f (t) is (left) α-differentiable in interval (0,∞) and
limt→0+ Tαl f (t) exists, then we define

Tαl f (0) = lim
t→0+

Tαl f (t).

Denote f ′(s) to be the derivative of f (s) with respect to independent variable s. Then the following
properties are held to be true.

Lemma 1. [11, 12] Let α ∈ (0, 1], f be differentiable and g be (left) α-differentiable for t > 0. Then
(1) Tαl( f )(t) = t1−α f ′(t).
(2) Let h(t) = f (g(t)). Then h(t) is (left) α-differentiable and

Tαl(h)(t) = f ′(g)(t)Tαl(g)(t). (2.1)

Next, we provide the details of the method of functional separation of variables introduced in [38].
Consider the following general conformable fractional differential equation

F(x, t,w,Tαlw,wx,wxx,wxxx, · · · ,wxn) = 0, (2.2)

where wxn means the n-th order partial derivative of function w(x, t) with respect to x and search for the
functional separable solutions with the form as follows

w(x, t) = F(z), z =

k∑
i=1

φi(x)ψi(t), (2.3)

where φi(x), ψi(t) (i = 1, 2, · · · , k) and F(z) are unknowns which will be determined later.
Substitute (2.3) into original Eq (2.2) to write out the following functional differential equation

m∑
i=1

Φi(z)Ψi(t) = 0,

AIMS Mathematics Volume 6, Issue 7, 7266–7284.



7269

where Φi(z), Ψi(t) (i = 1, 2, · · · ,m) are functionals of the unknowns and use the differentiation method
or the splitting method for even number m introduced in [38] to solve the determining system and find
the exact formulas of functions F(z), ψi(t) and φi(x) (i = 1, 2, · · · , k) then insert them into (2.3) to
obtain the presentation of the exact solution w(x, t).

In this paper, we assume that B, C, C1, C2, C3, C4, µ are arbitrary nonzero constants and A1 A2, A∗,
a, b, ai (i = −1, 0, 1) and b1 are arbitrary constants. And suppose that ϕ(x), ψ(t), φ(t), φ( tα

α
), F(z), F1(z)

and F2(z) are unknown functions which will be determined later.

3. Solutions of Riccati equation

Since we intend to draw support from the solutions of Riccati equation

F′(z) = AF(z) + BF2(z) (3.1)

to obtain the solutions of Burgers type equations (1.1) and (1.2), in this section we consider the
construction of the following types of solutions to the Riccati equation (3.1) by means of the modified
tanh function method used in [39] and the Modified extended exp-function method applied in [40].
Type 1 With the aid of the modified tanh function method and balancing the nonlinear term and the
highest derivative, we obtain that the value of the balance coefficient is 1. Thus, we set

F(ξ) = a0 + a1 tanh (ξ). (3.2)

Insert (3.2) into Riccati equation (3.1) and equate the coefficients of all powers of tanhi (ξ) (i = 0, 1, 2)
to be zero, we can obtain a system of algebraic equations for ai (i = 0, 1)

− a1 = Ba2
1,

0 = 2Ba1a0 + Aa1,

a1 = Ba2
0 + Aa0.

Solving the above system, we can determine the values of the coefficients for A = ±2

a0 = ∓
1
B
, a1 = −

1
B
. (3.3)

Plugging (3.3) into (3.2), we obtain the following exact solution of Riccati equation (3.1)

F1,2(ξ) = ±
1
B
−

1
B

tanh(ξ). (3.4)

Type 2 Suppose

F(ξ) = a−1eχ(ξ) + a0 + a1e−χ(ξ) + b1eχ(ξ), (3.5)

where χ(ξ) satisfies χ′(ξ) = e−χ(ξ) + aeχ(ξ) + b. By means of the modified extended exp-function
method [40], we can deduce the following results. When b2 − 4a > 0 and a , 0,

χ(ξ) = ln(
−
√

b2 − 4a tanh(
√

b2−4a
2 (ξ + A∗)) − b

2a
). (3.6)
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When b2 − 4a > 0, a = 0 and b , 0,

χ(ξ) = − ln(
b

eb(ξ+A∗) − 1
). (3.7)

Putting (3.5) into Riccati equation (3.1) and equating all the coefficients of the powers of ei (i =

χ,−χ, 0) to be zero, we get a system of algebraic equations for ai and b1 (i = −1, 0, 1)

− a1 = Ba2
1,

− a1b = Aa1 + 2Ba1a0,

aa1 + ab1 = a2
−1B + Bb2

1 + 2Ba−1b1,

a−1 + b1 − aa1 = Aa0 + Ba2
0 + 2Ba1a−1 + 2Ba1b1,

a−1b + bb1 = Aa−1 + Ab1 + 2Ba0a−1 + 2Ba0b1.

(3.8)

Solving system (3.8), we deduce the solutions as follows
Case 1

a−1 = a−1, a0 =
b − A

2B
, a1 = 0, b1 =

a
B
− a−1, a = a, b2 − 4a = A2. (3.9)

Case 2

a−1 = −b1, a0 = −
b + A

2B
, a1 = −

1
B
, b1 = b1, a = a, b2 − 4a = A2. (3.10)

Substituting (3.9) and (3.10) along with (3.6) and (3.7) into formula (3.5) separately, some new exact
solutions, listed as follow, are obtained for Riccati equation (3.1)

F3(ξ) = −
A

2B
(1 + tanh(

A(ξ + A∗)
2

)), (3.11)

F4,5(ξ) =
∓
√

A2 + 4a − A
2B

−
2a

−AB tanh( A(ξ+A∗)
2 ) ∓ B

√
A2 + 4a

, (3.12)

F6,7(ξ) =
∓
√

A2 + 4a − A
2B

−
±
√

A2 + 4a

Be±
√

A2+4a(ξ+A∗) − B
, (3.13)

where and whereafter A is an arbitrary nonzero constant.

Remark 1. The exact solutions to Riccati equation (3.1), listed as follows, were constructed using the
first integral method in [18].

F8(ξ) =
A

2B
(1 + cothθη(

A(ξ + A∗)
2

)), (3.14)

F9,10(ξ) =
A

2B
(1 + cothθη(A(ξ + A∗)) ± cschθη(A(ξ + A∗))), (3.15)
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F11,12(ξ) =
A

4B
(±2 + tanhθη(

A(ξ + A∗)
4

) ± cothθη(
A(ξ + A∗)

4
)), (3.16)

F13(ξ) =
A

2B
(−1 +

√
M2 + N2 − AM coshθη(A(ξ + A∗))

M sinhθη(A(ξ + A∗)) + N
), (3.17)

F14(ξ) =
A

2B
(−1 −

√
N2 − M2 + AM sinhθη(A(ξ + A∗))

M coshθη(A(ξ + A∗)) + N
), (3.18)

where M, N are two nonzero real constants satisfying N2−M2 > 0. And tanhθη(ξ) =
θeξ−ηe−ξ

θeξ+ηe−ξ , cothθη(ξ) =

θeξ+ηe−ξ

θeξ−ηe−ξ , sinhθη(ξ) =
θeξ−ηe−ξ

2 , coshθη(ξ) =
θeξ+ηe−ξ

2 , cschθη(ξ) = 2
θeξ−ηe−ξ .

Remark 2. In order to distinguish different solutions of Riccati equation (3.1) introduced above, we
numbered them with Fi(ξ), i = 1, 2 · · · 14.

4. Application of functional separation variables method

In this section, as the application of the functional separation variables method, we construct the
traveling wave solutions to conformable time fractional Burgers equation and (2+1)-dimensional
generalized conformable time fractional Burgers equations with the help of the formulas of solutions
to Riccati equation (3.1) provided in section 3.

4.1. Conformable time fractional Burgers equation

In this subsection, we establish the traveling wave solutions of conformable fractional Burgers
equation (1.1) by means of functional separation variables method.
Case 1 Suppose

u(x, t) = F(z), z = x + φ(t). (4.1)

Insert (4.1) into (1.1) to obtain the following functional differential equation

F′φ′t1−α + FF′ − νF′′ = 0. (4.2)

On separating the variables in (4.2), we obtain

t1−αφ′ = µ (4.3)

and
FF′ − νF′′ + µF′ = 0. (4.4)

Solving (4.3), we find

φ(t) =
µtα

α
+ A1. (4.5)

When (4.4) is integrated once with respect to z and the constant of integration is set to be zero, we get
the following Riccati equation

F′ =
µ

ν
F +

1
2ν

F2. (4.6)
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Due to (4.1), (4.5) and (4.6), the traveling wave solutions to Eq (1.1) can be written as follows according
to the different formulas of the solutions of Riccati equation (4.6).
Type 1 In terms of (3.4), we obtain the following kink solutions with µ = ±2ν

u1,2(x, t) = ±2ν − 2ν tanh(x +
µtα

α
+ A1). (4.7)

Type 2 By virtue of (3.11)–(3.13), we deduce the following five traveling wave solutions

u3(x, t) = −µ(1 + tanh(
µ(x +

µtα

α
+ A1 + A∗)
2ν

)). (4.8)

u4,5(x, t) = ∓
√
µ2 + 4aν2 − µ −

4aν2

−µ tanh(µ(x+
µtα
α +A1+A∗)

2ν ) ∓
√
µ2 + 4aν2

. (4.9)

u6,7(x, t) = ∓
√
µ2 + 4aν2 − µ −

±2
√
µ2 + 4aν2

e±
√
µ2+4aν2
ν (x+

µtα
α +A1+A∗) − 1

. (4.10)

Type 3 Applying (3.14)–(3.18) in Remark 1, we obtain the following seven types of traveling wave
solutions

u8(x, t) = µ(1 + cothθη(
µ(x +

µtα

α
+ A1 + A∗)
2ν

)). (4.11)

u9,10(x, t) = µ(1 + cothθη(
µ(x +

µtα

α
+ A1 + A∗)
ν

) ± cschθη(
µ(x +

µtα

α
+ A1 + A∗)
ν

)). (4.12)

u11,12(x, t) =
µ

2
(±2 + tanhθη(

µ(x +
µtα

α
+ A1 + A∗)
4ν

) ± cothθη(
µ(x +

µtα

α
+ A1 + A∗)
4ν

)). (4.13)

u13(x, t) = −µ +
µν
√

M2 + N2 − µ2M coshθη(
µ(x+

µtα
α +A1+A∗)
ν

)

Mν sinhθη(
µ(x+

µtα
α +A1+A∗)
ν

) + Nν
. (4.14)

u14(x, t) = −µ −
µν
√

N2 − M2 + µ2M sinhθη(
µ(x+

µtα
α +A1+A∗)
ν

)

Mν coshθη(
µ(x+

µtα
α +A1+A∗)
ν

) + Nν
. (4.15)

Case 2 We seek an exact solution in the form

u(x, t) = F(z), z =
tα

α
+ ϕ(x). (4.16)

Insert (4.16) into (1.1) to obtain the following functional differential equation

F′ + FF′ϕ′ − νF′′(ϕ′)2 − νF′ϕ′′ = 0. (4.17)

Divide (4.17) by F′ to yield

1 + Fϕ′ −
νF′′(ϕ′)2

F′
− νϕ′′ = 0. (4.18)
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Differentiating (4.18) with respect to z, we obtain

F′ϕ′ − ν(ϕ′)2 F′′′F′ − (F′′)2

(F′)2 = 0, ϕ′ , 0. (4.19)

On separating the variables in (4.19), we get

F′′′F′−(F′′)2

(F′)2 − µF′ = 0, (4.20)
1
νϕ′

= µ. (4.21)

When (4.20) is integrated once with respect to z and the constant of integration is set to be A1, we
derive

F′′

F′
= µF + A1. (4.22)

Putting (4.22) into Eq (4.17) yields A1 = µ2ν. Thus (4.22) can be rewritten as

F′′ = µ2νF′ + µFF′. (4.23)

When (4.23) is integrated once with respect to z and the constant of integration is set to be zero, we
achieve

F′ = µ2νF +
µ

2
F2. (4.24)

In addition, Solving (4.21) yields

ϕ(x) =
x + A2

µν
. (4.25)

In terms of (4.16), (4.24) and (4.25), the traveling wave solutions for Eq (1.1) can be written as follows.
Type 1 Thanks to (3.4), we derive the following kink solutions with ν = ±2µ2

u1,2(x, t) = ±
2
µ
−

2
µ

tanh(
tα

α
+

x + A2

µν
). (4.26)

Type 2 In view of (3.11)–(3.13), we gain the following five solutions

u3(x, t) = −µ3ν(1 + tanh(
µ2ν( tα

α
+ x+A2

µν
+ A∗)

2
)). (4.27)

u4,5(x, t) = µ(∓
√
µ4ν2 + 4a − µ2ν) −

±2
√
µ4ν + 4a

µ(e±
√
µ4ν2+4a( tα

α +
x+A2
µν +A∗)

− 1)
. (4.28)

u6,7(x, t) = ∓µ
√
µ4ν2 + 4a − µ3ν +

4a

µ(µ2ν tanh(
µ2ν( tα

α +
x+A2
µν +A∗)

2 ) ±
√
µ4ν2 + 4a)

. (4.29)
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Type 3 By virtue of (3.14)–(3.18) in Remark 1, we deduce the following seven types of traveling
wave solutions

u8(x, t) = µ3ν(1 + cothθη(
µ2ν( tα

α
+ x+A2

µν
+ A∗)

2
)). (4.30)

u9,10(x, t) = µ3ν(1 + cothθη(
tα

α
+

x + A2

µν
+ A∗) ± cschθη(

tα

α
+

x + A2

µν
+ A∗)). (4.31)

u11,12(x, t) = ±µ3ν +
µ3ν

2
tanhθη(

µ2ν( tα
α

+ x+A2
µν

+ A∗)

4
) (4.32)

±
µ3ν

2
cothθη(

µ2ν( tα
α

+ x+A2
µν

+ A∗)

4
).

u13(x, t) = µ3ν(−1 +

√
M2 + N2 − Mµ2ν coshθη(µ2ν( tα

α
+ x+A2

µν
+ A∗))

M sinhθη(µ2ν( tα
α

+ x+A2
µν

+ A∗)) + N
). (4.33)

u14(x, t) = µ3ν(−1 −

√
N2 − M2 + Mµ2ν sinhθη(µ2ν( tα

α
+ x+A2

µν
+ A∗))

M coshθη(µ2ν( tα
α

+ x+A2
µν

+ A∗)) + N
). (4.34)

4.2. (2+1)-dimensional generalized conformable time fractional Burgers equations

In this subsection, we consider the (2+1)-dimensional generalized conformable time fractional
Burgers equations (1.2) via functional separation variables method.
Assume

u(x, y, t) = F1(z), v(x, y, t) = F2(z), z = mϕ(x) + ny + l
tα

α
, (4.35)

where m, n and l ∈ R are non-zero constants. Inserting (4.35) into (1.2), we obtain the following
functional differential equations

− lF′1 + nF1F′1 + γmF2F′1ϕ
′ + βn2F′′1 + γβ

(
m2F′′1 (ϕ′)2 + F′1ϕ

′′
)

= 0, (4.36)

and
mF′1ϕ

′ − nF′2 = 0. (4.37)

In (4.37), for any constant µ , 0, it follows

ϕ′ = µ, (4.38)
nF′2 = µmF′1. (4.39)

When (4.38) and (4.39) are integrated once with respect to x and z respectively and the constants of
integration are set to be zero, we can achieve

ϕ(x) = µx, (4.40)
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nF2(z) = µmF1(z). (4.41)

Thanks to the arbitrariness of the value for µ, we might as well take µ = 1. Then (4.40) and (4.41) can
be written as

ϕ(x) = x, (4.42)
nF2(z) = mF1(z). (4.43)

Plugging (4.42) and (4.43) into (4.36) yields

− lF′1 + (n +
γm2

n
)F1F′1 + (βn2 + γβm2)F′′1 = 0. (4.44)

When (4.44) is integrated once with respect to z and the constants of integration are set to be zero, we
get the following Riccati equation

F′1 =
l

β(n2 + γm2)
F1 −

1
2βn

F2
1 . (4.45)

In view of (4.35), (4.41) and (4.45), the generalized traveling wave solutions to Eq (1.2) can be written
as follows.
Type 1 With the help of (3.4), we derive the following kink solutions with l = ±2β(n2 + γm2)

u1,2(x, y, t) = ±2βn + 2βn tanh(mx + ny + l
tα

α
),

v1,2(x, y, t) = ±2βm + 2βm tanh(mx + ny + l
tα

α
).

(4.46)

Type 2 Applying (3.11)–(3.13), we get the following five solutions
u3(x, y, t) =

ln
n2 + γm2 (1 + tanh(

l(mx + ny + l tα
α

+ A∗)
2β(n2 + γm2)

)),

v3(x, y, t) =
lm

n2 + γm2 (1 + tanh(
l(mx + ny + l tα

α
+ A∗)

2β(n2 + γm2)
)).

(4.47)



u4,5(x, y, t) =
ln

n2 + γm2 ± βn

√
l2

β2(n2 + γm2)2 + 4a

−
2a

l tanh(
l(mx+ny+l tα

α +A∗)

2β(n2+γm2)
)

2β2n(n2+γm2) ±

√
l2

β2(n2+γm2)2
+4a

2βn

,

v4,5(x, y, t) =
lm

n2 + γm2 ± βm

√
l2

β2(n2 + γm2)2 + 4a

−
2am

l tanh(
l(mx+ny+l tα

α +A∗)

2β(n2+γm2)
)

2β2(n2+γm2) ±

√
l2

β2(n2+γm2)2
+4a

2β

.

(4.48)
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u6,7(x, y, t) =
ln

n2 + γm2 ± βn

√
l2

β2(n2 + γm2)2 + 4a

+
±2βn

√
l2

β2(n2+γm2)2 + 4a

e
±

√
l2

β2(n2+γm2)2
+4a(mx+ny+l tα

α +A∗)
− 1

,

v6,7(x, y, t) =
lm

n2 + γm2 ± βm

√
l2

β2(n2 + γm2)2 + 4a

+
±2βm

√
l2

β2(n2+γm2)2 + 4a

e
±

√
l2

β2(n2+γm2)2
+4a(mx+ny+l tα

α +A∗)
− 1

.

(4.49)

Type 3 By virtue of (3.14)–(3.18) in Remark 1, we deduce the following seven types of traveling wave
solutions 

u8(x, y, t) = −
ln

n2 + γm2 (1 + cothθη(
l(mx + ny + l tα

α
+ A∗)

2β(n2 + γm2)
)),

v8(x, y, t) = −
lm

n2 + γm2 (1 + cothθη(
l(mx + ny + l tα

α
+ A∗)

2β(n2 + γm2)
)).

(4.50)



u9,10(x, y, t) = −
ln

n2 + γm2 (1 + cothθη(
l(mx + ny + l tα

α
+ A∗)

β(n2 + γm2)
))

∓
ln

n2 + γm2 (cschθη(
l(mx + ny + l tα

α
+ A∗)

β(n2 + γm2)
)),

v9,10(x, y, t) = −
lm

n2 + γm2 (1 + cothθη(
l(mx + ny + l tα

α
+ A∗)

β(n2 + γm2)
))

∓
lm

n2 + γm2 (cschθη(
l(mx + ny + l tα

α
+ A∗)

β(n2 + γm2)
)).

(4.51)



u11,12(x, y, t) = −
ln

2(n2 + γm2)
(±2 + tanhθη(

l(mx + ny + l tα
α

+ A∗)
4β(n2 + γm2)

))

± cothθη(
l(mx + ny + l tα

α
+ A∗)

4β(n2 + γm2)
)),

v11,12(x, y, t) = −
lm

2(n2 + γm2)
(±2 + tanhθη(

l(mx + ny + l tα
α

+ A∗)
4β(n2 + γm2)

))

± cothθη(
l(mx + ny + l tα

α
+ A∗)

4β(n2 + γm2)
)).

(4.52)
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

u13(x, y, t) = −
ln

(n2 + γm2)
(−1 +

√
M2 + N2 − lM

β(n2+γm2) coshθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) )

M sinhθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) ) + N

,

v13(x, y, t) = −
lm

(n2 + γm2)
(−1 +

√
M2 + N2 − lM

β(n2+γm2) coshθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) )

M sinhθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) ) + N

.

(4.53)



u14(x, y, t) = −
ln

(n2 + γm2)
(−1 −

√
N2 − M2 + lM

β(n2+γm2) sinhθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) )

M coshθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) ) + N

,

v14(x, y, t) = −
lm

(n2 + γm2)
(−1 −

√
N2 − M2 + lM

β(n2+γm2) sinhθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) )

M coshθη(
l(mx+ny+l tα

α +A∗)
β(n2+γm2) ) + N

.

(4.54)

5. Graphical simulations

In this section, we present the three-dimensional graphical interpretations for certain chosen
traveling wave solutions of the conformable time fractional Burgers equation (1.1) and
(2+1)-dimensional generalized conformable time fractional Burgers equations (1.2). The following
graphs are drawn by selecting suitable values of the involved parameters to visualize the underlying
mechanisms of the considered equation for selected values of the order α.

For the conformable time fractional Burgers equation (1.1), Figures 1–6 show the 3D graphs for
the solutions u5(x, t), u6(x, t), u8(x, t), u10(x, t), u13(x, t) and u14(x, t), respectively. Moreover, for
(2+1)-dimensional generalized conformable time fractional Burgers equations (1.2), Figures 7–11
demonstrate the 3D graphs for the solutions u3(x, y, t), u9(x, y, t), u10(x, y, t), u13(x, y, t) and u14(x, y, t),
respectively. Here we omit the graphs of v(x, y, t) in (2+1)-dimensional generalized conformable
fractional Burgers equations due to their similarity to u(x, y, t) respectively. Moreover, concrete
example of the influence of the fractional order α to the traveling wave solutions u14(x, t) is also
presented.

From Figure 12, we observe that the velocity of the turbulent motion u(x, t) tends to 0 when time
t → ∞ for any fixed fractional order α and x = 1. The time t when the velocity of the turbulent motion
u(x, t) arrives at the maximum value increases with the increase of the fractional order α from 0.2 to
0.999 for fixed x = 1. In addition, the physical interpretation of the conformable fractional derivative
is a modification of classical velocity in direction and magnitude [13]. And these solutions obtained
in whole paper must be helpful to explain some physical phenomena described by the conformable
time fractional Burgers equation (1.1) and (2+1)-dimensional conformable time fractional Burgers
equations (1.2).
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Figure 1. 3D polt of u5 obtained in (4.9) with µ=-1, ν=0.5, a=A∗=2, A1=1, α=0.999.

Figure 2. 3D polt of u6 obtained in (4.10) with µ=2, ν=0.5, a=0.9, A∗=A1=1, α=0.999.

Figure 3. 3D polt of u8 obtained in (4.11) with µ=-1,ν=0.5, η=2, θ=A∗=A1=1, α=0.999.
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Figure 4. 3D polt of u10 obtained in (4.12) with µ=θ=1, ν=0.5, A∗=A1=0, α=0.999.

Figure 5. 3D polt of u13 obtained in (4.14) with µ=2, ν=0.5, M=3, N=5, θ=1, η=2, A1=A∗ =

1, α=0.999.

Figure 6. 3D polt of u14 obtained in (4.15) with µ=-1, ν=0.5, M=3, N=5, θ=1, η=2, A1=A∗ =

0, α=0.999.
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Figure 7. 3D polt of u3 obtained in (4.47) with n=-1, m=0.01, l=1, γ=β=0.9, A∗=0, α=0.7.

Figure 8. 3D polt of u9 obtained in (4.51) with m=n=l=β=η=A∗=2, θ=γ=1, t=6, α=0.999.

Figure 9. 3D polt of u10 obtained in (4.51) with m=θ=1, n=-2, β=l=η=2, A∗=0, γ=0.001,
t=6, α=0.3.
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Figure 10. 3D polt of u13 obtained in (4.53) with m=n=β=γ=θ=A∗=1, η=2, l=-1, M=-3,
N=5, t=6, α=0.999.

Figure 11. 3D polt of u14 obtained in (4.54) with m=n=η=γ=N=2, M=l=β=θ=A∗=1, t=6,
α=0.999.

Figure 12. 2D polt of u14 obtained in (4.15) with µ=-1,υ=0.5, M=3, N=5, θ=1, η=2, A1=A∗ =

0, x=1.
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6. Conclusions

In conclusion, for conformable time fractional Burgers equation (1.1), we achieve twenty-eight
classes of solutions (4.7)–(4.15) and (4.26)–(4.34). And for (2+1)-dimensional generalized
conformable time fractional Burgers equations (1.2), we obtain fourteen classes of
solutions (4.46)–(4.54). Moreover, we demonstrate certain selected 3D graphs for the purpose of
visualization. And all graphics are drawn with the help of Maple software. The investigation of this
paper shows that functional separation of variables is an effective method to solve conformable
fractional nonlinear partial differential equations.
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