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Abstract: In this paper, we study the valuation of the bid and ask prices for European options under
the mixed fractional Brownian motion with Hurst index H > 3/4, which is able to capture the long
range dependence of the underlying asset returns in real markets. As we know, the classical option
pricing theories are usually built on the law of one price, while ignoring the impact of market liquidity
on bid-ask spreads. The theory of conic finance replaces the law of one price by the law of two prices,
allowing for market participants sell to the market at the bid price and buy from the market at the
higher ask price. Within the framework of conic finance, we then derive the explicit formulas for the
bid and ask prices of European call and put options by using WANG-transform as a distortion function.
Moreover, numerical experiment is performed to illustrate the effects of the Hurst index and market
liquidity level on bid and ask prices.
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1. Introduction

The issue of market liquidity has drawn much attention among academic researchers, institutional
professionals and financial regulators in various financial markets. However, there are few literatures
on how to incorporate liquidity costs into option pricing. From the framework of acceptability indices
proposed by [8], Madan and Cherny [19] developed the theory of conic finance which replaces the law
of one price by the law of two prices, allowing for market participants sell to the market at the bid
price and buy from the market at the higher ask price. The difference between the bid and ask prices is
usually called the bid-ask spread which is an indication of the market liquidity.

The bid price of a cash flow X is defined by its discounted distorted expectation and the ask price by
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minus the discounted distorted expectation of the cash flow −X.∗ Madan and Cherny [19] proposed to
model the liquidity of the market by a single market stress level γ and then presented the closed-form
expressions for bid and ask prices for European options. This conic option pricing model was further
extended and taken to the real market data (S&P 500 option), see [1, 9, 11, 20]. All of their empirical
results indicated that the market-implied liquidity was far from being constant. That is to say, there
is an implied liquidity risk premium. It is noteworthy that these papers are all studied on the premise
of allowing explicit forms for the distribution function of the underlying asset price, see for example
Black-Scholes and Variance Gamma models, such that the bid and ask prices can be further numerically
calculated. Recently, Guillaume et al. [12] and Sonono and Mashele [26] derived the explicit formulas
for the bid and ask prices of OTC interest rate options and European vanilla options, respectively, by
using WANG-transform, which is a distortion function induced by a distribution function, in a Black-
Scholes setting. Junike et al. [13] studied the convergence of bid and ask prices for various European
and American possible path dependent options in a binomial model, where bid and ask prices are
defined recursively using nonlinear expectations, which is closely related to discrete time conic finance
models, see [15, 17] for details. Based on the combination of Fourier cosine approximations and
numerical integration, Li et al. [16] exhibited an efficient and fast numerical method to calculate the
bid and ask prices for the European options.

However, the long-range dependence of the underlying asset returns was not considered in the
above mentioned researches. It is well known that the existence of long-range dependence in asset
returns has been an interesting subject for both academics and market professionals for a long time.
In addition, empirical evidence so far suggests that long-range dependence may be a characteristic of
both exchange rates and stock markets, see [3, 14, 25, 27, 28]. In this case, it is possible to choose
a fractional Brownian motion (hereafter fBm) to describe the dynamic of the financial asset price.
Rogers [23] demonstrated that while a fBm could capture the long-range dependence between returns
on different days, it also allowed arbitrage opportunities. To overcome this problem and to take into
account the long memory property, El-Nouty [10] and Mishura [18] had shown that it was reasonable
to use a mixed fractional Brownian motion(hereafter mfBm) to capture the fluctuations of the financial
assets from time to time. Cheridito [6] had demonstrated that the mfBm was equivalent to a Brownian
motion which means that no arbitrage was allowed. Whereafter, Xiao et al. [29] studied the problem
of equity warrants pricing under a mfBm environment and employed a hybrid intelligent algorithm to
solve the valuation of equity warrants. Sun [24] investigated pricing currency options when the driving
force is a mixed fractional Brownian motion. Ballestra et al. [4] presented an integral representation
for the pricing of the barrier options on an underlying asset driven by a mfBm. Both Prakasa Rao [22]
and Zhang et al. [31] assumed that the price of the underlying stock followed a mfBm and derived the
analytical pricing formula for the geometric Asian option. Recently, Zhang et al. [32] proposed a fuzzy
mixed fractional Brownian motion model with jumps, which was to capture the features of both long
memory and jump behaviour in financial assets under non-random uncertainty environment.

Motivated by the above mentioned insights, the main objective of this paper is to discuss the
valuation of the bid and ask prices for European options under the mixed fractional Brownian motion,
which is able to capture empirically observed patterns (the long range dependence of the underlying
asset returns in real markets). Within the framework of conic finance, we then derive the explicit
formulas for bid and ask prices of European call and put options by using WANG-transform as a

∗One can refer to Section 2.2 of this paper for more related information on distorted expectation.
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distortion function. Finally, we perform numerical experiment for illustrating the effects of the Hurst
index and market liquidity level on bid and ask prices.

The remainder of the paper proceeds as follows. In Section 2, we briefly introduce some basic
concepts and properties of mixed fractional Brownian motion, distortion function and distorted
expectation. Section 3 lays out the mixed fractional Brownian motion model for the underlying asset
price. In Section 4, we present the analytical formulas for the bid and ask prices of European options
within the framework of conic finance. Numerical experiment is performed in Section 5. Finally, some
conclusions are stated in Section 6.

2. Preliminaries

In this section, for better understanding the rest of this paper, we briefly review some basic concepts
and the properties of mixed fractional Brownian motion and distorted expectation.

2.1. Mixed fractional Brownian motion

Definition 1. A mixed fractional Brownian motion MH
t (α, β) is a linear combination of Brownian

motion and fractional Brownian motion(fBm), defined on a filtered probability space (Ω,F , {Ft, t ≥
0},P) by:

MH
t = αBt + βBH

t ,

where α and β are two real constants such that (α, β) , (0, 0), P is the physical probability measure,
Bt is a standard Brownian motion, BH

t is an independent standard fractional Brownian motion with
the Hurst exponent H ∈ (0, 1) and {Ft}t≥0 denotes the P-augmentation of the filtration generated by
(Bτ, BH

τ ) for τ ≤ t.

In what follows, some properties of the mfBm are given in the form of proposition described below.
For more detailed information about the properties of the mfBm, one can refer to [29, 30].

Proposition 1. The mfBm MH
t (α, β) for t ∈ R+ satisfies the following properties:

(i): MH
t (α, β) is a centered Gaussian process and not a Markovian one for all H ∈ (0, 1)\ 1

2 ;

(ii): MH
0 = 0 P–almost surely;

(iii): the covariation function of MH
t (α, β) and MH

s (α, β) for any t, s ∈ R+ is given by

cov(MH
t ,M

H
s ) = α2(t ∧ s) +

β2

2
(t2H + s2H − |t − s|2H);

(iv): the increments of MH
t are stationary and mixed-self-similar for any h > 0

MH
ht(α, β) , MH

t (αh
1
2 , βhH),

where , denotes “to have the same law”;

(v): the increments of MH
t are positively correlated if 1

2 < H < 1, uncorrelated if H = 1
2 negatively

correlated if 0 < H < 1
2 ;

(vi): the increments of MH
t are long-range dependent if and only if H > 1

2 .
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2.2. Distorted expectation

We fix a probability space (Ω,F ,P) and denote by L∞(Ω,F ,P) the space of all essentially bounded
and R-valued random variables on (Ω,F ,P).

Definition 2. (Distortion function). A function Ψ : [0, 1]→ [0, 1] is a distortion function if and only if
it is monotone, Ψ(0) = 0 and Ψ(1) = 1. The set function Ψ ◦ P defined by

Ψ ◦ P(A) = Ψ(P(A)), A ∈ F , (2.1)

is called the distortion of the probability measure P with respect to the distortion function Ψ, i.e. the
distorted probability measure.

With a probability distortion function Ψ is associated the complementary distortion function Ψ̂ given
by

Ψ̂(x) = 1 − Ψ(1 − x), x ∈ [0, 1]. (2.2)

Given the probability distortion function Ψ, the Choquet integral EΨ[X] of X ∈ L∞(Ω,F ,P) can be
defined by

EΨ[X] =

∫ +∞

0
(1 − Ψ(P(X ≤ x)))dx −

∫ 0

−∞

Ψ(P(X ≤ x))dx. (2.3)

Definition 3. (Distorted expectation). If we denote the distribution of random X by FX, then the
Choquet integral EΨ[X] can be rewritten as

EΨ[X] =

∫ +∞

−∞

xdΨ(FX(x)). (2.4)

Here, EΨ[X] is generally referred to as the distorted expectation of a random X with distribution
function FX relative to the distortion function Ψ. Note that if Ψ(u) = u, and thereby EΨ[X] is the
ordinary expectation.

In general, the distorted probability Ψ ◦P is no longer a probability measure. Nevertheless, it is still
a finite monotone set function that is submodular, when the distortion function Ψ is concave. Thus, it
is possible to define a risk measure based on distorted probability using Choquet integral. Let Ψ be a
concave distortion function and a risk X. The function %Ψ : L∞ → R given by

%Ψ(X) := −EΨ[X], ∀X ∈ L∞(Ω,F ,P), (2.5)

is called a distortion risk measure induced by Ψ. By the properties of the Choquet integral, we can see
that the function %Ψ is a coherent risk measure.

3. Models settings

Owing to a financial system is a complex system with great flexibility, investors do not make their
decisions immediately after receiving the financial information, but rather wait until the information
reaches to its threshold limit value. This behavior can lead to the features of “asymmetric leptokurtic”
and “long memory”. As mentioned above, the mixed fractional Brownian motion may be a useful tool
to capture this phenomenon. Thus, in this section, we introduce a mixed fractional Brownian motion
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model for describing the dynamic of the underlying asset prices, which is a useful tool to capture the
long memory of asset prices in real markets.

Let (Ω,F ,P) be a complete probability space with information filtration (Ft)t≥0 satisfying the usual
conditions, which is defined in Section 2.1. Suppose the underlying asset price S t takes the following
stochastic differential equation:

dS t = µS tdt + σS tdB̄t + σS tdB̄H
t , (3.1)

where the drift parameters µ and the volatility σ denote the expected return rate on the value of
the underlying asset, the standard deviation of the return rate on the value of the underlying asset,
respectively; B̄t is a standard Brownian motion and B̄H

t is an independent standard fractional Brownian
motion with Hurst index H > 3/4. In fact, the Hurst exponent H > 3/4 ensures that the financial
market does not allow arbitrage opportunity.

In addition, we also postulate that there are no transaction costs or taxes in purchasing or selling the
financial assets, which means the financial market is frictionless. Thus, the market is complete and the
risk-neutral martingale measure is unique under the aforementioned conditions, see [5–7] for details.

By using the fractional Girsanov theorem and the change of variables Bt + BH
t =

µ−r
σ

t + B̄t + B̄H
t , thus

under the risk-neutral measure Q we have

dS t = rS tdt + σS tdBt + σS tdBH
t , (3.2)

where r denotes the risk-free interest rate, Bt is a standard Brownian motion and BH
t is an independent

standard fractional Brownian motion under the risk-neutral measure Q.
It follows from the mixed fractional pattern of Itô Lemma that the solution of Eq (3.2) can be

expressed as

S t = S 0 exp
(
rt + σ

(
Bt + BH

t

)
−

1
2
σ2t −

1
2
σ2t2H

)
, (3.3)

Obviously, the underlying asset price S t is log-normally distributed with

ln S t ' N
(
ln S 0 + rt −

1
2
σ2t −

1
2
σ2t2H, σ2t + σ2t2H

)
, (3.4)

where N(µ̃, σ̃2) represents the Gaussian distribution with mean µ̃ and variance σ̃2.

4. Bid and ask prices for European options

As mentioned above, the conic finance theory originates from the framework of acceptability indices
developed by [8], where risk measures are defined in terms of distorted expectation of zero cash-flows
X. Based on the framework of indices of acceptability, we say that a risk X is acceptable or marketed
if

EQ[X] ≥ 0, ∀ Q ∈ M, (4.1)

whereM is a convex set. This convex setM consists of test measures under which the expected cash-
flow needs to have positive expectation in order for X to be acceptable. Under a larger setM, one has
a smaller set of acceptable risks since there are more tests to be passed.
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On the basis of this framework, cones of acceptability depend solely on the distribution function
FX(x) of X and on the parametric family of distortion functions {Ψγ, γ ≥ 0}, i.e., X is acceptable if its
distorted expectation relative to some distortion function Ψγ is positive:

∫ +∞

−∞

xdΨγ(FX(x)) ≥ 0, (4.2)

where the acceptability index γ quantifies the degree of the distortion. The higher the γ, the higher the
degree of distortion, i.e., the above obtained risk-adjusted distribution functions allocate more weight
to the downside (losses) than the original distribution function.

For a given distortion function Ψγ ∈ {Ψγ, γ ≥ 0} under which cash-flows are evaluated, and we can
also interpret γ as the market liquidity level. The higher the γ (i.e., the more illiquid the market is), the
higher the distorted probability measure. A liquidity level of zero (i.e., γ = 0) implies that there is no
distortion at all, which corresponds to the perfect liquidity and hence to the complete market. In this
case, the law of one price holds. As we know, the most prominent example of a family of distortion
function induced by a distribution function is the WANG-transform, i.e.,

Ψγ(u) = Φ(Φ−1(u) + γ), (4.3)

where Φ(·) denotes the standard normal cumulate distribution function. In the following, we will focus
on the valuation of the bid-ask prices for European options under the WANG-transform.†

In conic finance theory, Madan and Cherny [19] assumed that the market is taken as a counterparty
willing to accept all stochastic cash-flows X with an acceptability level γ. The ask price of a claim,
aγ(X), is defined by the smallest price for which the cash-flow of selling the claim is acceptable at level
γ for the market. Similarly, the bid price of a claim, aγ(X), is defined by the highest price for which the
cash-flow of buying the claim is acceptable at level γ for the market. Let X be the cash-flow generated
by the claim at the future maturity data T . Then, the bid and ask prices of payoff X are, respectively,
determined by

bγ(X) = sup
{
b : EΨγ

[e−rT X − b] ≥ 0
}

= e−rTEΨγ
[X]

= e−rT
∫ +∞

−∞

xdΨγ(FX(x))

= e−rT

[
−

∫ 0

−∞

Ψγ(FX(x))dx +

∫ +∞

0
(1 − Ψγ(FX(x)))dx

] (4.4)

†Moreover, there are many possible distortion functions, such as MINVAR, MAXVAR, MAXMINVAR and MINMAXVAR. For
more related information one can refer to [8, 21]. Unfortunately, there are basically no analytical expressionss for bid and ask prices
in these distortion functions. Even so, Li et al. [16] presented a numerical method consisting of Fourier cosine approximations and
numerical integration to calculate the bid and ask prices for European options as long as the characteristic function was known.
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and

aγ(X) = inf
{
a : EΨγ

[a − e−rT X] ≥ 0
}

= −e−rTEΨγ
[−X]

= −e−rT
∫ +∞

−∞

xdΨγ(F−X(x))

= −e−rT

[∫ 0

−∞

(1 − Ψγ(1 − FX(x)))dx +

∫ +∞

0
Ψγ(1 − FX(x))dx

]
.

(4.5)

We next consider a European call option C = (S T − K)+ and a put option P = (K − S T )+ with
strike price K and maturity T on the underlying S T . Based on the above general expressions for bid
and ask prices and the mixed fractional underlying asset price model (3.2), we can derive the analytical
formulas of bid and ask prices for European can and put options by using WANG-transform. The
results are given in the form of theorems stated below.

Theorem 1. If the underlying asset price S t satisfies the mfBm model (3.2) and the distortion function
Ψγ(u) is the WANG-transform, then the bid and ask prices of the European call option with strike price
K and maturity T are, respectively, given by

bγ(C) = S 0e−
√
σ2T+σ2T 2HγΦ(d1 − γ) − Ke−rT Φ(d2 − γ) (4.6)

and

aγ(C) = S 0e
√
σ2T+σ2T 2HγΦ(d1 + γ) − Ke−rT Φ(d2 + γ), (4.7)

where

d1 =
ln S 0

K + rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

,

d2 = d1 −
√
σ2T + σ2T 2H,

and Φ(·) denotes the standard normal cumulative distribution function.

Proof. By using the distorted expectation in Eq (4.4), we can derive the bid price of the European call
option as follows:

bγ(C) = e−rTEΨγ
[
(S T − K)+]

= e−rT
∫ +∞

K
(x − K)dΨγ

(
FS T (x)

)
= e−rT

∫ +∞

K
xdΨγ

(
FS T (x)

)
︸                         ︷︷                         ︸

A1

− e−rT
∫ +∞

K
KdΨγ

(
FS T (x)

)
︸                          ︷︷                          ︸

B1

.

(4.8)
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It is easy to see that the distribution function of S T is

FS T (x) = P (S T ≤ x)

= P
(
S 0erT+σ(BT +BH

T )− 1
2σ

2T− 1
2σ

2T 2H
≤ x

)
= P

BT + BH
T ≤

ln x − ln S 0 − rT + 1
2σ

2T + 1
2σ

2T 2H

σ


= Φ

 ln x − ln S 0 − rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

 , x > 0.

(4.9)

If we apply the WANG-transform to the distribution function FS T (x), then the distorted distribution
function Ψγ

(
FS T (x)

)
has the following representation:

Ψγ

(
FS T (x)

)
= Φ

(
Φ−1 (

FS T (x)
)

+ γ
)

= Φ

 ln x − ln S 0 − rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ

 , x > 0.
(4.10)

Thus, we can calculate the integrals A1 and B1 in Eq (4.8) as follows:‡

A1 = e−rT
∫ +∞

K
xdΨγ

(
FS T (x)

)
= e−rT 1

√
2π

∫ +∞

K
exp

−
(

ln x−ln S 0−rT+ 1
2σ

2T+ 1
2σ

2T 2H
√
σ2T+σ2T 2H

+ γ
)2

2

 1
√
σ2T + σ2T 2H

dx

= S 0e−
√
σ2T+σ2T 2Hγ 1

√
2π

∫ +∞

ln K−ln S 0−rT+ 1
2σ

2T+ 1
2σ

2T2H
√
σ2T+σ2T2H

+γ

e−
(
y−
√
σ2T+σ2T2H

)2
2 dy

= S 0e−
√
σ2T+σ2T 2Hγ 1

√
2π

∫ +∞

−
ln

S 0
K +rT+ 1

2σ
2T+ 1

2σ
2T2H

√
σ2T+σ2T2H

+γ

e−
z2
2 dz

(4.11)

and

B1 = e−rT
∫ +∞

K
KdΨγ

(
FS T (x)

)
= Ke−rT Φ

 ln x − ln S 0 − rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ

 ∣∣∣∣∣+∞
K

= Ke−rT

1 − Φ

 ln K − ln S 0 − rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ


= Ke−rT Φ

 ln S 0
K + rT − 1

2σ
2T − 1

2σ
2T 2H

√
σ2T + σ2T 2H

− γ

 .
(4.12)

‡In the calculation of integral A1, we have made the following transformation variables:

y =
ln x − ln S 0 − rT + 1

2σ
2T + 1

2σ
2T 2H

√
σ2T + σ2T 2H

+ γ, z = y −
√
σ2T + σ2T 2H .
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Substituting Eqs (4.11) and (4.12) to (4.8), we can obtain the bid price (4.6).
Applying similar arguments, we have the following expression for the ask price of the European

call option:

aγ(C) = −e−rTEΨγ
[
− (S T − K)+]

= −e−rT
∫ 0

−∞

xdΨγ

(
1 − FS T (K − x)

)
= −e−rT

∫ +∞

0
xdΨγ

(
1 − FS T (K + x)

)
= −e−rT

∫ +∞

K
(x − K)dΨγ

(
1 − FS T (x)

)
= −e−rT

∫ +∞

K
xdΨγ

(
1 − FS T (x)

)
︸                                 ︷︷                                 ︸

A2

+ e−rT
∫ +∞

K
KdΨγ

(
1 − FS T (x)

)
︸                                ︷︷                                ︸

B2

.

(4.13)

Note from Eq (4.10) and WANG-transform that the distorted distribution function Ψγ

(
1 − FS T (x)

)
has the following representation:

Ψγ

(
1 − FS T (x)

)
= Φ

(
Φ−1 (

1 − FS T (x)
)

+ γ
)

= Φ

− ln x + ln S 0 + rT − 1
2σ

2T − 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ

 , x > 0.
(4.14)

Therefore, we also can calculate the integrals A2 and B2 in Eq (4.13) by

A2 = −e−rT
∫ +∞

K
xdΨγ

(
1 − FS T (x)

)
= e−rT 1

√
2π

∫ +∞

K
exp

−
(
− ln x+ln S 0+rT− 1

2σ
2T− 1

2σ
2T 2H

√
σ2T+σ2T 2H

+ γ
)2

2

 1
√
σ2T + σ2T 2H

dx

= S 0e
√
σ2T+σ2T 2Hγ 1

√
2π

∫ ln
S 0
K +rT+ 1

2σ
2T+ 1

2σ
2T2H

√
σ2T+σ2T2H

+γ

−∞

e−
y2
2 dy,

(4.15)

and

B2 = e−rT
∫ +∞

K
KdΨγ

(
1 − FS T (x)

)
= Ke−rT Φ

− ln x + ln S 0 + rT − 1
2σ

2T − 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ

 ∣∣∣∣∣+∞
K

= −Ke−rT Φ

 ln S 0
K + rT − 1

2σ
2T − 1

2σ
2T 2H

√
σ2T + σ2T 2H

+ γ

 ,
(4.16)

Finally, by combining Eqs (4.13), (4.15) and (4.16), we can get the ask price (4.7). �
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Theorem 2. If the underlying asset price S t satisfies the mfBm model (3.2) and the distortion function
Ψγ(u) is the WANG-transform, then the bid and ask prices of the European put option with strike price
K and maturity T are, respectively, given by

bγ(P) = Ke−rT Φ(−d2 − γ) − S 0e
√
σ2T+σ2T 2HγΦ(−d1 − γ) (4.17)

and
aγ(P) = Ke−rT Φ(−d2 + γ) − S 0e−

√
σ2T+σ2T 2HγΦ(−d1 + γ), (4.18)

where

d1 =
ln S 0

K + rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

,

d2 = d1 −
√
σ2T + σ2T 2H,

and Φ(·) denotes the standard normal cumulative distribution function.

Proof. Applying the arguments given in Theorem 1, we have the following expression for the bid price
of the European put option:

bγ(P) = e−rTEΨγ
[
(K − S T )+]

= e−rT
∫ +∞

0
xdΨγ

(
1 − FS T (K − x)

)
= −e−rT

∫ K

0
(K − x)dΨγ

(
1 − FS T (x)

)
= −e−rT

∫ K

0
KdΨγ

(
1 − FS T (x)

)
︸                                ︷︷                                ︸

A3

+ e−rT
∫ K

0
xdΨγ

(
1 − FS T (x)

)
︸                             ︷︷                             ︸

B3

.

(4.19)

Note from Eq (4.14) that the integrals A3 and B3 in Eq (28) can be, respectively, calculated by:

A3 = −e−rT
∫ K

0
KdΦ

− ln x + ln S 0 + rT − 1
2σ

2T − 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ


= −Ke−rT Φ

− ln x + ln S 0 + rT − 1
2σ

2T − 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ

 ∣∣∣∣∣K
0

= Ke−rT Φ

− ln S 0
K + rT − 1

2σ
2T − 1

2σ
2T 2H

√
σ2T + σ2T 2H

− γ


(4.20)

and

B3 = e−rT
∫ K

0
xdΨγ

(
1 − FS T (x)

)
= e−rT 1

√
2π

∫ K

0
exp

−
(
− ln x+ln S 0+rT− 1

2σ
2T− 1

2σ
2T 2H

√
σ2T+σ2T 2H

+ γ
)2

2

 1

−
√
σ2T + σ2T 2H

dx

= −S 0e
√
σ2T+σ2T 2Hγ 1

√
2π

∫ +∞

ln
S 0
K +rT+ 1

2σ
2T+ 1

2σ
2T2H

√
σ2T+σ2T2H

+γ

e−
y2
2 dy.

(4.21)
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Substituting Eqs (4.20) and (4.21) to (4.19), we can obtain the bid price (4.17).
For the ask price of the European put option, we have

aγ(P) = −e−rTEΨγ
[
− (K − S T )+]

= −e−rT
∫ 0

−∞

xdΨγ

(
FS T (K + x)

)
= −e−rT

∫ ∞

0
xdΨγ

(
FS T (K − x)

)
= e−rT

∫ K

0
(K − x)dΨγ

(
FS T (x)

)
= e−rT

∫ K

0
KdΨγ

(
FS T (x)

)
︸                         ︷︷                         ︸

A4

− e−rT
∫ K

0
xdΨγ

(
FS T (x)

)
︸                        ︷︷                        ︸

B4

.

(4.22)

In a similar way, the integrals A4 and B4 in Eq (4.22) can be calculated by:

A4 = e−rT
∫ K

0
KdΦ

 ln x − ln S 0 − rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ


= Ke−rT Φ

 ln x − ln S 0 − rT + 1
2σ

2T + 1
2σ

2T 2H

√
σ2T + σ2T 2H

+ γ

 ∣∣∣∣∣K
0

= Ke−rT Φ

− ln S 0
K + rT − 1

2σ
2T − 1

2σ
2T 2H

√
σ2T + σ2T 2H

+ γ


(4.23)

and

B4 = e−rT
∫ K

0
xdΨγ

(
FS T (x)

)
= e−rT 1

√
2π

∫ K

0
exp

−
(

ln x−ln S 0−rT+ 1
2σ

2T+ 1
2σ

2T 2H
√
σ2T+σ2T 2H

+ γ
)2

2

 1
√
σ2T + σ2T 2H

dx

= S 0e−
√
σ2T+σ2T 2Hγ 1

√
2π

∫ −
ln

S 0
K +rT+ 1

2σ
2T+ 1

2σ
2T2H

√
σ2T+σ2T2H

+γ

−∞

e−
y2
2 dy.

(4.24)

Finally, by combining Eqs (4.22)-(4.24), we can get the ask price (4.18). �

Remark: Note that the resulting bid and ask prices depend on the parameter γ. In the special case,
where γ = 0, bid price equals ask price and we are again in the classical one-price framework. In other
words, a value of γ equal to zero corresponds to a bid-ask spread of zero.

5. Numerical analysis

In this section, we will present the numerical results for the conic option pricing. The model input
parameters values for this numerical analysis are assumed to be S 0 = 100, T = 1.5, r = 0.05, σ = 0.2.
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Table 1. Bid and ask prices of European call option with respect to different values of
strike price K, Hurst index H and market liquidity level γ. Notes: The values of model
input parameters are assumed to be S 0 = 100, T = 1.5, r = 0.05, σ = 0.2. The bid-ask
spreads (spread for short) are also presented for different groups.

Strike price K 70 80 90 100 110 120 130

H=0.76

γ = 0.01

bid 36.4336 29.1351 22.8681 17.6670 13.4719 10.1658 7.6083
ask 37.1025 29.7508 23.4177 18.1437 13.8752 10.4999 7.8802
spread 0.6689 0.6157 0.5495 0.4767 0.4034 0.3341 0.2719

γ = 0.05

bid 35.1174 27.9279 21.7950 16.7401 12.6912 9.5221 7.0868
ask 38.4620 31.0064 24.5428 19.1241 14.7084 11.1932 8.4468
spread 3.3446 3.0785 2.7478 2.3840 2.0173 1.6711 1.3600

γ = 0.1

bid 33.5125 26.4640 20.5019 15.6307 11.7631 8.7621 6.4753
ask 40.2021 32.6214 25.9986 20.4005 15.8005 12.1079 9.1995
spread 6.6895 6.1574 5.4967 4.7699 4.0374 3.3458 2.7242

H=0.86

γ = 0.01

bid 36.5626 29.3358 23.1315 17.9742 13.8006 10.4956 7.9231
ask 37.2443 29.9631 23.6921 18.4618 14.2149 10.8406 8.2057
spread 0.6817 0.6273 0.5606 0.4876 0.4143 0.3450 0.2826

γ = 0.05

bid 35.2219 28.1063 22.0372 17.0264 12.9989 9.8308 7.3809
ask 38.6303 31.2429 24.8403 19.4648 15.0708 11.5566 8.7947
spread 3.4084 3.1366 2.8030 2.4384 2.0719 1.7258 1.4138

γ = 0.1

bid 33.5883 26.6163 20.7193 15.8923 12.0460 9.0460 6.7451
ask 40.4054 32.8900 26.3265 20.7713 16.1929 12.5013 9.5770
spread 6.8171 6.2737 5.6073 4.8790 4.1469 3.4553 2.8319

H=0.96

γ = 0.01

bid 36.7038 29.5514 23.4119 18.2997 14.1486 10.8453 8.2583
ask 37.3989 30.1910 23.9842 18.7989 14.5746 11.2020 8.5524
spread 0.6951 0.6396 0.5723 0.4992 0.4259 0.3567 0.2941

γ = 0.05

bid 35.3372 28.2984 22.2951 17.3296 13.3245 10.1581 7.6941
ask 38.8129 31.4965 25.1568 19.8261 15.4547 11.9422 9.1652
spread 3.4757 3.1981 2.8617 2.4964 2.1302 1.7840 1.4712

γ = 0.1

bid 33.6733 26.7808 20.9507 16.1694 12.3453 9.3470 7.0323
ask 40.6250 33.1778 26.6756 21.1645 16.6087 12.9189 9.9791
spread 6.9517 6.3969 5.7248 4.9951 4.2635 3.5719 2.9468
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Table 2. Bid and ask prices of European put option with respect to different values of
strike price K, Hurst index H and market liquidity level γ. Notes: The values of model
input parameters are assumed to be S 0 = 100, T = 1.5, r = 0.05, σ = 0.2. The bid-ask
spreads (spread for short) are also presented for different groups.

Strike price K 70 80 90 100 110 120 130

H=0.76

γ = 0.01

bid 1.6777 3.6034 6.5477 10.5512 15.5602 21.4623 28.1200
ask 1.7412 3.7201 6.7306 10.8069 15.8892 21.8605 28.5804
spread 0.0634 0.1167 0.1828 0.2556 0.3290 0.3982 0.4605

γ = 0.05

bid 1.5563 3.3781 6.1920 10.0507 14.9125 20.6747 27.2058
ask 1.8736 3.9616 7.1061 11.3287 16.5572 22.6655 29.5077
spread 0.3173 0.5835 0.9141 1.2780 1.6447 1.9908 2.3019

γ = 0.1

bid 1.4145 3.1113 5.7659 9.4453 14.1227 19.7075 26.0765
ask 2.0501 4.2790 7.5943 12.0005 17.4104 23.6868 30.6774
spread 0.6356 1.1677 1.8284 2.5552 3.2877 3.9793 4.6009

H=0.86

γ = 0.01

bid 1.8110 3.8072 6.8137 10.8608 15.8914 21.7945 28.4370
ask 1.8786 3.9292 7.0024 11.1225 16.2263 22.1987 28.9036
spread 0.0676 0.1220 0.1887 0.2616 0.3350 0.4042 0.4666

γ = 0.05

bid 1.6816 3.5716 6.4464 10.3484 15.2318 20.9950 27.5106
ask 2.0196 4.1814 7.3898 11.6564 16.9063 23.0157 29.8432
spread 0.3380 0.6099 0.9434 1.3080 1.6745 2.0207 2.3326

γ = 0.1

bid 1.5302 3.2922 6.0062 9.7284 14.4274 20.0133 26.3663
ask 2.2072 4.5127 7.8931 12.3436 17.7747 24.0522 31.0287
spread 0.6771 1.2205 1.8869 2.6152 3.3473 4.0389 4.6623

H=0.96

γ = 0.01

bid 1.9566 4.0262 7.0968 11.1890 16.2420 22.1469 28.7747
ask 2.0286 4.1538 7.2916 11.4569 16.5832 22.5574 29.2478
spread 0.0720 0.1275 0.1948 0.2679 0.3412 0.4105 0.4731

γ = 0.05

bid 1.8185 3.7796 6.7174 10.6640 15.5701 21.3350 27.8355
ask 2.1788 4.4174 7.6916 12.0036 17.2759 23.3869 30.2003
spread 0.3603 0.6378 0.9742 1.3395 1.7058 2.0519 2.3648

γ = 0.1

bid 1.6568 3.4870 6.2623 10.0286 14.7503 20.3379 26.6755
ask 2.3784 4.7634 8.2108 12.7068 18.1601 24.4393 31.4021
spread 0.7216 1.2764 1.9485 2.6782 3.4098 4.1014 4.7265

Since that the main objective of this paper is to discuss the pricing problem of European option in a
two-price economy, we further investigate the bid and ask prices of European call and put options with
respect to Hurst index H and market liquidity level γ. By utilizing the analytical formulas (4.6), (4.7),
(4.17) and (4.18), Tables 1 and 2 reports the bid and ask prices of European call and put options with
respect to different values of strike price K, Hurst index H and market liquidity level γ.

From Tables 1 and 2, we can be clearly observed that the bid and ask prices of European call
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and put option are decreasing and increasing with respect to strike price K, respectively, which are
consistent with the payment functions of the European options. We also can see that the bid-ask spread
is increasing with market liquidity level γ. As mentioned above, the market liquidity goes hand in hand
with bid and ask spreads and highly liquid asset have a small spreads. In other words, the higher γ,
the wider the bid-ask spread and hence less the liquidity. We can also find that the bid-ask spread is
decreasing with respect to strike price K in theory , which is consistent with the empirical results of
Leippold and Scharer [15].

In addition, it is worth noting that the bid-ask spread is increasing with respect to Hurst index H,
which means that the stronger the long memory of underlying asset is, the higher bid-ask spread is. In
spite of this, our numerical results presented here can at least illustrate that the valuation of bid and ask
prices for European options considering the long-range dependence of underlying asset price may offer
as a good competitor of the classical Black-Scholes [2] model, especially for some emerging markets.

6. Conclusions

In a two-price economy, we study the valuation of the bid and ask prices for the European options
in this paper. Considering the long range dependence of the underlying asset returns in real markets,
we assume the dynamic of the underlying asset price follows a mixed fractional Brownian motion with
Hurst index H > 3/4. In fact, the Hurst exponent H > 3/4 ensures that the financial market does not
allow arbitrage opportunity. Within the framework of conic finance, we then derive the closed-form
solutions of the bid and ask prices for European call and put options by using WANG-transform as a
distortion function. Moreover, numerical experiment is performed to illustrate the effects of the Hurst
index and market liquidity level on bid and ask prices.
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