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1. Introduction

In this paper we study a class of third order dissipative differential operators. Dissipative operators
are of general interest in mathematics, for example in the study of the Cauchy problems in partial
differential equations and in infinite dimensional dynamical systems. Even order dissipative operators
and the boundary conditions generating them have been investigated by many authors, see [1–9] and
their references. Odd order problems arise in physics and other areas of applied mathematics and have
also been studied, e.g., in [10–16].

Non-self-adjointness of spectral problems can be caused by one or more of the following factors:
the non-linear dependence of the problems on the spectral parameter, the non-symmetry of the
differential expressions used, and the non-self-adjointness of the boundary conditions(BCs) involved.
Many scholars focus on the non-self-adjoint differential operators caused by non-self-adjoint BCs.
Bairamov, Uǧurlu, Tuna and Zhang et al. considered the even order dissipative operators and their
spectral properties in [5–9], respectively. However, these results all restricted in some special
boundary conditions. In 2012, Wang and Wu [2] found all boundary conditions which generate
dissipative operators of order two and proved the completeness of eigenfunctions and associated
functions for these operators. In [3] the authors studied a class of non-self-adjoint fourth order
differential operators in Weyl’s limit circle case with general separated BCs, and they proved the
completeness of eigenfunctions and associated functions. Here we find a class of such general
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conditions for the third order case, which may help to classify the dissipative boundary conditions of
third order differential operators.

As is mentioned above, there are many results for dissipative Sturm-Liouville operators and fourth
order differential operators, however, there are few studies on the odd order dissipative operators.
Thus, in this paper, we study a class of non-self-adjoint third order differential operators generated by
the symmetric differential expression in Weyl’s limit circle case together with non-self-adjoint BCs.

This paper is organized as follows. In Section 2 we introduce third order dissipative operators and
develop their properties. Section 3 discusses some general properties of dissipative operators in Hilbert
space and some particular properties of the third order operators studied here. The completeness of
eigenfunctions and associated functions is given in Section 4. Brief concluding remarks on the obtained
results in this present paper and the comparison with other works are reported in Section 5.

2. Third order boundary value problems

Consider the third order differential expression

l(u) = iu(3) + q(x)u, x ∈ I = (a, b), (2.1)

where −∞ ≤ a < b ≤ +∞, q(x) is a real-valued function on I and q(x) ∈ L1
loc(I). Suppose that the

endpoints a and b are singular, i.e., a = −∞ or for any c ∈ (a, b) q(x) is not absolutely integrable in
(a, c] (the same statement holds for endpoint b), and Weyl’s limit-circle case holds for the differential
expression l(u), i.e., the deficiency indices at both endpoints are (3, 3).

Let
Ω = {u ∈ L2(I) : u, u′, u′′ ∈ ACloc(I), l(u) ∈ L2(I)}.

For all u, v ∈ Ω, we set

[u, v]x = iuv′′ − iu′v′ + iu′′v = Rv(x)QCu(x), x ∈ I,

where the bar over a function denotes its complex conjugate, and

Q =


0 0 i
0 −i 0
i 0 0

 , Rv(x) = (v(x), v′(x), v′′(x)), Cv(x) = R∗v(x),

and R∗v(x) is the complex conjugate transpose of Rv(x).
Let ψ j(x, λ), j = 1, 2, 3 represent a set of linearly independent solutions of the equation l(u) = λu,

where λ is a complex parameter. Then ψ j(x, 0), j = 1, 2, 3 represent the linearly independent solutions
of the equation l(u) = 0. From Naimark’s Patching Lemma, we can choose the solutions above
mentioned satisfying any initial conditions, for future conveniences, here we set
z j(x) = ψ j(x, 0), j = 1, 2, 3 satisfying the condition

([z j, zk]a) = J, j, k = 1, 2, 3, (2.2)

where

J =


0 i 0
i 0 0
0 0 −i

 .
AIMS Mathematics Volume 6, Issue 7, 7034–7043.
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From [17], the solutions z j(x), j = 1, 2, 3 as described above exist and are linearly independent. Since
Weyl’s limit-circle case holds for the differential expression l(u) on I, the solutions z j(x), j = 1, 2, 3
must belong to L2(I). Furthermore, because z j(x), j = 1, 2, 3 are solutions of equation l(u) = 0,
thus according to the Green’s formula, it is easy to get [z j, zk]x = const for any x ∈ I, hence for any
x ∈ I, ([z j, zk]x) = J.

Let l(u) = λu and we consider the boundary value problem consisting of the differential equation

iu(3) + q(x)u = λu, x ∈ I, (2.3)

and the boundary conditions:

l1(u) = [u, z1]a + γ1[u, z2]a + γ2[u, z3]a = 0, (2.4)
l2(u) = γ2[u, z2]a + [u, z3]a + rγ4e−2iθ[u, z2]b + re−2iθ[u, z3]b = 0, (2.5)
l3(u) = [u, z1]b + γ3[u, z2]b + γ4[u, z3]b = 0, (2.6)

where λ is a complex parameter, r is a real number with |r| ≥ 1, θ ∈ (−π, π], γ j, j = 1, 2, 3, 4 are
complex numbers with 2<γ1 ≥ |γ2|

2 and 2<γ3 ≤ |γ4|
2, here< denotes the real part of a value.

In L2(I), let us define the operator L as Lu = l(u) on D(L), where the domain D(L) of L is given by

D(L) = {u ∈ Ω : l j(u) = 0, j = 1, 2, 3}.

Let Ψ(x) be the Wronskian matrix of the solutions z j(x), j = 1, 2, 3 in I, then ones have

Ψ(x) = (Cz1(x),Cz2(x),Cz3(x)).

Now let us introduce several lemmas.

Lemma 1.
Q = (Ψ∗(x))−1J Ψ−1(x), x ∈ I.

Proof. From
[z j, zk]x = Rzk(x)QCz j(x), j, k = 1, 2, 3,

we have
J = JT = ([z j, zk]x)T = Ψ∗(x)QΨ(x), j, k = 1, 2, 3.

Then the conclusion can be obtained by left multiplying (Ψ∗(x))−1 and right multiplying Ψ−1(x) on the
two ends of the above equality. �

Lemma 2. For arbitrary u ∈ D(L)

([u, z1]x, [u, z2]x, [u, z3]x)T = J Ψ−1(x)Cu(x), x ∈ I.

Proof. From
[u, z j]x = Rz j(x)QCu(x), j = 1, 2, 3,

one has

([u, z1]x, [u, z2]x, [u, z3]x)T = Ψ∗(x)QCu(x)
= Ψ∗(x)(Ψ∗(x))−1J Ψ−1(x)Cu(x)
= J Ψ−1(x)Cu(x).

This complete the proof. �
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Corollary 1. For arbitrary y1, y2, y3 ∈ D(L), let Y(x) = (Cy1(x),Cy2(x),Cy3(x)) be the Wronskian matrix
of y1, y2, y3, then

J Ψ−1(x)Y(x) =


[y1, z1]x [y2, z1]x [y3, z1]x

[y1, z2]x [y2, z2]x [y3, z2]x

[y1, z3]x [y2, z3]x [y3, z3]x

 , x ∈ I.

Lemma 3. For arbitrary u, v ∈ D(L), we have

[u, v]x = i([u, z1]x[v, z2]x + [u, z2]x[v, z1]x − [u, z3]x[v, z3]x), x ∈ I. (2.7)

Proof. From Lemma 1 and Lemma 2, it is easy to calculate that

[u, v]x = Rv(x)QCu(x)
= Rv(x)(Ψ∗(x))−1JΨ−1(x)Cu(x)
= (JΨ−1(x)Cv(x))∗J(JΨ−1(x)Cu(x))

= ([v, z1]x, [v, z2]x, [v, z3]x)J ([u, z1]x, [u, z2]x, [u, z3]x)T

= i([u, z1]x[v, z2]x + [u, z2]x[v, z1]x − [u, z3]x[v, z3]x).

This completes the proof. �

3. Dissipative operators

We start with the definition of dissipative operators.

Definition 1. A linear operator L, acting in the Hilbert space L2(I) and having domain D(L), is said
to be dissipative if =(L f , f ) ≥ 0, ∀ f ∈ D(L), where = denotes the imaginary part of a value.

Theorem 1. The operator L is dissipative in L2(I).

Proof. For u ∈ D(L), we have

2i=(Lu, u) = (Lu, u) − (u, Lu) = [u, u](b) − [u, u](a), (3.1)

then, applying (2.7), it follows that

2i=(Lu, u) =i([u, z1]b[u, z2]b + [u, z2]b[u, z1]b − [u, z3]b[u, z3]b)

−i([u, z1]a[u, z2]a + [u, z2]a[u, z1]a − [u, z3]a[u, z3]a).
(3.2)

From (2.4)–(2.6), it has

[u, z1]a = (γ2γ2 − γ1)[u, z2]a + rγ2γ4e−2iθ[u, z2]b + rγ2e−2iθ[u, z3]b, (3.3)
[u, z3]a = −γ2[u, z2]a − rγ4e−2iθ[u, z2]b − re−2iθ[u, z3]b, (3.4)
[u, z1]b = −γ3[u, z2]b − γ4[u, z3]b, (3.5)

substituting (3.3)–(3.5) into (3.2) one obtains

2i=(Lu, u) = (Lu, u) − (u, Lu) = i([u, z2]a, [u, z2]b, [u, z3]b) (3.6)
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7038
−γ2γ2 + γ1 + γ1 0 0

0 r2γ4γ4 − γ3 − γ3 γ4(r2 − 1)
0 γ4(r2 − 1) (r2 − 1)




[u, z2]a

[u, z2]b

[u, z3]b

 ,
and hence

2=(Lu, u) = ([u, z2]a, [u, z2]b, [u, z3]b)


s 0 0
0 c f
0 f d




[u, z2]a

[u, z2]b

[u, z3]b

 , (3.7)

where
s = 2<γ1 − |γ2|

2, f = γ4(r2 − 1), c = r2|γ4|
2 − 2<γ3, d = r2 − 1.

Note that the 3 by 3 matrix in (3.7) is Hermitian, its eigenvalues are

s,
c + d ±

√
(c − d)2 + 4| f |2

2
,

and they are all non-negative if and only if

s ≥ 0, c + d ≥ 0, cd ≥ | f |2.

Since |r| ≥ 1, 2<γ1 ≥ |γ2|
2 and 2<γ3 ≤ |γ4|

2, we have

=(Lu, u) ≥ 0, ∀u ∈ D(L).

Hence L is a dissipative operator in L2(I). �

Theorem 2. If |r| > 1, 2<γ1 > |γ2|
2 and 2<γ3 < |γ4|

2, then the operator L has no real eigenvalue.

Proof. Suppose λ0 is a real eigenvalue of L. Let φ0(x) = φ(x, λ0) , 0 be a corresponding eigenfunction.
Since

=(Lφ0, φ0) = =(λ0‖φ0‖
2) = 0,

from (3.7), it follows that

=(Lφ0, φ0) =
1
2

([φ0, z2]a, [φ0, z2]b, [φ0, z3]b)


s 0 0
0 c f
0 f d




[φ0, z2]a

[φ0, z2]b

[φ0, z3]b

 = 0,

since |r| > 1, 2<γ1 > |γ2|
2 and 2<γ3 < |γ4|

2, the matrix
s 0 0
0 c f
0 f d


is positive definite. Hence [φ0, z2]a = 0, [φ0, z2]b = 0 and [φ0, z3]b = 0, and by the boundary conditions
(2.4)–(2.6), we obtain that [φ0, z1]b = 0. Let φ0(x) = φ(x, λ0), τ0(x) = τ(x, λ0) and η0(x) = η(x, λ0) be
the linearly independent solutions of l(y) = λ0y. Then from Corollary 1 one has

[φ0, z1]b [τ0, z1]b [η0, z1]b

[φ0, z2]b [τ0, z2]b [η0, z2]b

[φ0, z3]b [τ0, z3]b [η0, z3]b

 = Q Ψ−1(b)(Cφ0(b),Cτ0(b),Cη0(b)).

It is evident that the determinant of the left hand side is equal to zero, the value of the Wronskian of
the solutions φ(x, λ0), τ(x, λ0) and η(x, λ0) is not equal to zero, therefore the determinant on the right
hand side is not equal to zero. This is a contradiction, hence the operator L has no real eigenvalue. �
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4. Completeness theorems

In this section we start with a result of Gasymov and Guseinov [18]. It also can be found in many
literatures, for instance in [19] and [20].

Lemma 4. For all x ∈ [a, b], the functions φ jk = [ψk(·, λ), z j](x), j, k = 1, 2, 3, are entire functions of
λ with growth order ≤ 1 and minimal type: for any j, k = 1, 2, 3 and ε ≥ 0, there exists a positive
constant C j,k,ε such that

|φ jk| ≤ C j,k,εeε|λ|, λ ∈ C.

Let

A =


1 γ1 γ2

0 γ2 1
0 0 0

 , B =


0 0 0
0 rγ4e−2iθ re−2iθ

1 γ3 γ4


denote the boundary condition matrices of boundary conditions (2.4)–(2.6), and set Φ = (φ jk)3×3. Then,
a complex number is an eigenvalue of the operator L if and only if it is a zero of the entire function

∆(λ) =

∣∣∣∣∣∣∣∣∣
l1(ψ1(·, λ)) l1(ψ2(·, λ)) l1(ψ3(·, λ))
l2(ψ1(·, λ)) l2(ψ2(·, λ)) l2(ψ3(·, λ))
l3(ψ1(·, λ)) l3(ψ2(·, λ)) l3(ψ3(·, λ))

∣∣∣∣∣∣∣∣∣ = det(AΦ(a, λ) + BΦ(b, λ)). (4.1)

Remark 1. Note that a = −∞ or b = ∞ have not been ruled out. Since the limit circle case holds, the
functions φ jk and Φ(a, λ), Φ(b, λ) are well defined at a = −∞ and b = ∞, i.e.,
φ jk(±∞) = [ψk(·, λ), z j](±∞) = limx→±∞ = [ψk(·, λ), z j](x) exist and are finite.

Corollary 2. The entire function ∆(λ) is also of growth order ≤ 1 and minimal type: for any ε ≥ 0,
there exists a positive constant Cε such that

|∆(λ)| ≤ Cεeε|λ|, λ ∈ C, (4.2)

and hence

lim sup
|λ|→∞

ln|∆(λ)|
|λ|

≤ 0. (4.3)

From Theorem 2 it follows that zero is not an eigenvalue of L, hence the operator L−1 exists. Let’s
give an analytical representation of L−1.

Consider the non-homogeneous boundary value problem composed of the equation l(u) = f (x) and
the boundary conditions (2.4)–(2.6), where x ∈ I = (a, b), f (x) ∈ L2(I).

Let u(x) be the solution of the above non-homogeneous boundary value problem, then

u(x) = C1z1(x) + C2z2(x) + C3z3(x) + u∗(x),

where C j, j = 1, 2, 3 are arbitrary constants and u∗(x) is a special solution of l(u) = f (x).
It can be obtained by the method of constant variation,

u∗(x) = C1(x)z1(x) + C2(x)z2(x) + C3(x)z3(x),

AIMS Mathematics Volume 6, Issue 7, 7034–7043.
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where C j, j = 1, 2, 3 satisfies
C′1(x)z1(x) + C′2(x)z2(x) + C′3(x)z3(x) = 0,
C′1(x)z′1(x) + C′2(x)z′2(x) + C′3(x)z′3(x) = 0,
i(C′1(x)z′′1 (x) + C′2(x)z′′2 (x) + C′3(x)z′′3 (x)) = f (x).

By proper calculation, we have

u∗(x) =

∫ b

a
K(x, ξ) f (ξ)dξ,

where

K(x, ξ) =


1

i|Ψ(x)|

∣∣∣∣∣∣∣∣∣
z1(ξ) z2(ξ) z3(ξ)
z′1(ξ) z′2(ξ) z′3(ξ)
z1(x) z2(x) z3(x)

∣∣∣∣∣∣∣∣∣ , a < ξ ≤ x < b,

0, a < x ≤ ξ < b,

(4.4)

then the solution can be written as

u(x) = C1z1(x) + C2z2(x) + C3z3(x) +

∫ b

a
K(x, ξ) f (ξ)dξ,

substituting u(x) into the boundary conditions one obtains

C j(x) =
1

∆(0)

∫ b

a
F j(ξ) f (ξ)dξ, j = 1, 2, 3,

where

F1(ξ) = −

∣∣∣∣∣∣∣∣∣
l1(K) l1(z2) l1(z3)
l2(K) l2(z2) l2(z3)
l3(K) l3(z2) l3(z3)

∣∣∣∣∣∣∣∣∣ , (4.5)

F2(ξ) = −

∣∣∣∣∣∣∣∣∣
l1(z1) l1(K) l1(z3)
l2(z1) l2(K) l2(z3)
l3(z1) l3(K) l3(z3)

∣∣∣∣∣∣∣∣∣ , (4.6)

F3(ξ) = −

∣∣∣∣∣∣∣∣∣
l1(z1) l1(z2) l1(K)
l2(z1) l2(z2) l2(K)
l3(z1) l3(z2) l3(K)

∣∣∣∣∣∣∣∣∣ , (4.7)

thus

u(x) =

∫ b

a

1
∆(0)

[F1(ξ)z1(x) + F2(ξ)z2(x) + F3(ξ)z3(x) + K(x, ξ)∆(0)] f (ξ)dξ.

Let

G(x, ξ) = −
1

∆(0)

∣∣∣∣∣∣∣∣∣∣∣
z1(x) z2(x) z3(x) K(x, ξ)
l1(z1) l1(z2) l1(z3) l1(K)
l2(z1) l2(z2) l2(z3) l2(K)
l3(z1) l3(z2) l3(z3) l3(K)

∣∣∣∣∣∣∣∣∣∣∣ , (4.8)

then one obtains

u(x) =

∫ b

a
G(x, ξ) f (ξ)dξ.

AIMS Mathematics Volume 6, Issue 7, 7034–7043.
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Now define the operator T as

Tu =

∫ b

a
G(x, ξ)u(ξ)dξ, ∀u ∈ L2(I), (4.9)

then T is an integral operator and T = L−1, this implies that the root vectors of the operators T and L
coincide, since z j(x) ∈ L2(I), j = 1, 2, 3, then the following inequality holds∫ b

a

∫ b

a
|G(x, ξ)|2dxdξ < +∞, (4.10)

this implies that the integral operator T is a Hilbert-Schmidt operator [21].
The next theorem is known as Krein’s Theorem.

Theorem 3. Let S be a compact dissipative operator in L2(I) with nuclear imaginary part =S . The
system of all root vectors of S is complete in L2(I) so long as at least one of the following two conditions
is fulfilled:

lim
m→∞

n+(m,<S )
m

= 0, lim
m→∞

n−(m,<S )
m

= 0, (4.11)

where n+(m,<S ) and n−(m,<S ) denote the number of characteristic values of the real component
<S of S in the intervals [0,m] and [−m, 0], respectively.

Proof. See [22]. �

Theorem 4. If an entire function h(µ) is of order ≤ 1 and minimal type, then

lim
ρ→∞

n+(ρ, h)
ρ

= 0, lim
ρ→∞

n−(ρ, h)
ρ

= 0, (4.12)

where n+(ρ, h) and n−(ρ, h) denote the number of the zeros of the function h(µ) in the intervals [0, ρ]
and [−ρ, 0], respectively.

Proof. See [23]. �

The operator T can be written as T = T1 + iT2, where T1 = <T and T2 = =T , T and T1 are
Hilbert-Schmidt operators, T1 is a self-adjoint operator in L2(I), and T2 is a nuclear operator (since it
is a finite dimensional operator) [22]. It is easy to verify that T1 is the inverse of the real part L1 of the
operator L.

Since the operator L is dissipative, it follows that the operator −T is dissipative. Consider the
operator −T = −T1− iT2, the eigenvalues of the operator −T1 and L1 coincide. Since the characteristic
function of L1 is an entire function, therefore using Theorem 4 and Krein’s Theorem we arrive at the
following results.

Theorem 5. The system of all root vectors of the operator −T (also of T) is complete in L2(I).

Theorem 6. The system of all eigenvectors and associated vectors of the dissipative operator L is
complete in L2(I).

AIMS Mathematics Volume 6, Issue 7, 7034–7043.
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5. Concluding remarks

This paper considered a class of third order dissipative operator generated by symmetric third order
differential expression and a class of non-self-adjoint boundary conditions. By using the well known
Krein’s Theorem and theoretical analysis the completeness of eigenfunctions system and associated
functions is proved.

The similar results already exist for second order S-L operators and fourth order differential
operators, see e.g., [2] and [3]. For third order case, the corresponding discussions about dissipative
operators can be found in most recent works in [15, 19], where the maximal dissipative extension and
the complete theorems of eigenvectors system are given. The boundary conditions at the present work
are much general and the methods are different from those in [15, 19]. These boundary conditions
may help us to classify all the analytical representations of dissipative boundary conditions of third
order differential operators.
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