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1. Introduction

In this paper, we consider iterative methods for solving the following double saddle point problems:

Bu =


A BT CT

B 0 0
C 0 −D



x
y
z

 =


f
g
h

 ≡ b̄, (1.1)

where A ∈ Rn×n and D ∈ Rp×p are symmetric positive definite (SPD) matrices, B ∈ Rm×n is of full row
rank, C ∈ Rp×n is a rectangular matrix and n ≥ m + p. Linear systems of the form (1.1) have wide
application background in many fields of science and engineering, such as mixed element
approximation of fluid flow problem [7, 13], finite element model of liquid crystal [9], the interior
point method of quadratic programming problem [10, 15], mixed formula of second order elliptic
equation [7, 9].

Obviously, we can decompose the coefficient matrix in (1.1) into block two-by-two forms and
choose solution methods for standard saddle point problems [6] to solve the corresponding double
saddle point problems. However, owing to its more complex structure, straightforward application of
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the solution method for standard block two-by-two saddle point problems usually leads to poor
numerical performance. In recent years, solvers have devoted to finding a solution to the double
saddle point problems (1.1). In 2018, Beik and Benzi [3] discussed the Krylov subspace method of
block preconditioners in detail, besides, they also introduced the solvable conditions of coefficient
matrix and proposed the block preconditioners for solving the double saddle point problems (1.1) [4].
In 2019, Benzi and Beik [5] proposed Uzawa-type and augmented Lagrangian method for solving
double saddle point systems. Furthermore, Liang and Zhang [8] proposed alternating positive
semi-definite splitting (APSS) preconditioners, and proved that the corresponding iterative scheme
was unconditionally convergent; in order to improve its effectiveness, the relaxed APSS
preconditioners was given.

It is worth noting that the linear systems (1.1) can be equivalently restated as

Au =


D −C 0

CT A BT

0 −B 0



z
x
y

 =


−h
f
−g

 ≡ b, (1.2)

which assists that we can use some specific iteration solution methods. Based on the linear
systems (1.2), we start our discussions in this paper. Some solvability conditions of double saddle
point problems (1.2) are discussed in detail [4].

In this work, we establish three new preconditioners for solving the double saddle point
problems (1.2). Theoretical analysis shows that the eigenvalues of the three preconditioned matrices
are all 1. In addition, we also obtain the eigenvector distribution and the upper bound of the minimum
polynomial degree of the three preconditioned matrices.

The arrangement of this work is as follows. In Section 2, we discuss the condition of invertibility
of matrix A. In Section 3, we propose three new block preconditioners for matrix A and derive
that the eigenvalues of the corresponding preconditioned matrices are all 1. At the end of Section 3,
we also analyze the distribution of eigenvectors and the upper bound of the minimum polynomial
order of the corresponding preconditioned matrices. Brief discussions are given in Section 4 about
practical implementation of three preconditioners. In Section 5, numerical experiments are performed
to demonstrate the effectiveness of the proposed preconditioners.

Notations. For given arbitrary matrix A, we often shall write its transpose, null space and range
space as AT , N(A) and R(A), respectively. Moreover, if A is symmetric positive (semi) definite, we
write A � 0(A � 0). Finally, we write (x; y; z) to denote the vector (xT , yT , zT )T .

2. Invertibility conditions

In this section, we mainly investigate the solvability of the double saddle point problems (1.2).
We know that Beik and Benzi discussed the invertibility condition of coefficient matrix of the double
saddle point problems (1.2) in the literature [4], which discussed four cases as follow: (1). A � 0,
D � 0; (2). A � 0, D � 0; (3). A � 0, D � 0; (4). A � 0, D = 0. It is necessary to improve
the invertibility condition of coefficient matrix in (1.2) on the basis of it. Therefore, we introduce two
necessary proposition for solving double saddle point problem (1.2).

Proposition 2.1 Assume A � 0 and D � 0, both B and C have full row rank. ThenA is nonsingular
if R(BT )

⋂
R(CT ) = {0} and N(C)

⋂
N(A)

⋂
N(B) = {0}.

AIMS Mathematics Volume 6, Issue 7, 6933–6947.



6935

Proof. Assume thatAu = 0 for u = (x; y; z), i.e.,
Dx −Cy = 0,
CT x + Ay + BT z = 0,
−By = 0.

(2.1)

Multiplying the first equation in (2.1) by xT from the left, we have

xT Dx − xTCy = 0. (2.2)

Then multiplying the second equation in (2.1) by yT from the left, we can obtain

yTCT x + yT Ay + yT BT z = 0. (2.3)

Substituting the third equation in (2.1) into (2.3), we deduce that

yTCT x + yT Ay = 0. (2.4)

Combining (2.2) and (2.4), we have xT Dx = −yT Ay.
yT Ay = 0 and xT Dx = 0 imply that y ∈ N(A) and x ∈ N(D) because of the symmetric positive

semidefiniteness of A and D. Furthermore, the first equation in (2.1) becomes −Cy = 0, i.e., y ∈ N(C).
According to the third equation in (2.1), we can find y ∈ N(B). Since N(A)

⋂
N(B)

⋂
N(C) = {0}, it is

a fact that y = 0.
From the second equation in (2.1), we can get CT x+BT z = 0. Note that CT x+BT z = 0 together with

the assumption R(BT )
⋂

R(CT ) = {0} implies that CT x = 0 and BT z = 0. Since BT and CT have full
column rank, we have x = 0 and z = 0. Hence, u = (x; y; z) = 0, which implies that A is nonsingular.
The proof is completed. �

Proposition 2.2 Let D � 0 and B has full row rank. Consider the linear system (1.2) with A = 0.
Then N(C)

⋂
N(B) = {0} is a necessary and sufficient condition for the coefficient matrix A to be

invertible.

Proof. Assume thatAu = 0 for u = (x; y; z), i.e.,
Dx −Cy = 0,
CT x + BT z = 0,
−By = 0.

(2.5)

Multiplying the first equation in (2.5) by xT from the left, we have

xT Dx = xTCy. (2.6)

Then multiplying by yT from the left of the second equation in (2.5), we can obtain

yTCT x = −yT BT z = 0. (2.7)

Substituting (2.6) into (2.7), we deduce that

xT Dx = 0. (2.8)
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In view of the positive definiteness of D, the preceding equality implies that x = 0. Consequently, (2.5)
reduces to 

−Cy = 0,
BT z = 0,
−By = 0.

(2.9)

Because B has full row rank, it follows that z = 0 from the second equation in (2.9). From the first
equation and the third equation in (2.9), we have y ∈ N(C) and y ∈ N(B). Since N(C)

⋂
N(B) = {0}, we

can obtain y ∈ N(C)
⋂

N(B) = {0}. Hence, u = (x; y; z) is the zero vector, which shows the invertibility
ofA.

Finally, let us consider that N(C)
⋂

N(B) = {0} is a necessary condition for the invertibility ofA. If
there exists a nonzero vector y ∈ N(C)

⋂
N(B), then for u = (0; y; 0), we have Au = 0, this leads to a

contradiction. �

3. Three effective block preconditioners and spectral analysis of corresponding preconditioned
matrix

In this section we describe three effective block preconditioners which can be used in Krylov
subspace method for solving double saddle point peoblems (1.2). Inspired by the reference [12], we
could establish three preconditioners. Firstly, by multiplying (1.2) from the left with the following
invertible matrix

M =


I 0 0

−CT D−1 I 0
−BÂ−1CT D−1 BÂ−1 I

 ,
the linear system (1.2) becomes to

Ã =


D −C 0
0 Â BT

0 0 S Â



z
x
y

 =


−h

CT D−1h + f
−BÂ−1CT D−1h + BÂ−1 f − g

 , (3.1)

where Â = A + CT D−1C and S Â = BÂ−1BT .
We propose the following three preconditioners for linear equation (3.1):

P̃1 =


D 0 0
0 Â 0
0 0 S Â

 , P̃2 =


D −C 0
0 Â 0
0 0 S Â

 , P̃3 =


D 0 0
0 Â BT

0 0 S Â

 .
Furthermore, we propose three preconditioners for linear systems (1.2) by the expressions P̃1, P̃2 and
P̃3:

P1 =


D 0 0

CT Â 0
0 −B S Â

 , P2 =


D −C 0

CT A 0
0 −B S Â

 , P3 =


D 0 0

CT Â BT

0 −B 0

 . (3.2)

Next, we analyze the spectral properties of the preconditioned matrix using the preconditioner P1,P2

and P3. Firstly, the spectral distribution of P−1
1 A is described as follow:
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Theorem 3.1 Assume that A ∈ Rn×n and D ∈ Rp×p are symmetric positive definite matrix and
B ∈ Rm×n is of full row rank, C ∈ Rp×n is a rectangular matrix and n ≥ m + p. Then the eigenvalues of
preconditioned matrix P−1

1 A are all 1.

Proof. According to the above analysis, we have the following equation:

P̃−1
1 Ã = P̃−1

1 MA,

then the preconditioners P1 of linear system (1.2) can be reformulated as

P1 = (P̃−1
1 M)−1 =M−1P̃1.

Therefore,

P−1
1 = P̃−1

1 M =


D−1 0 0
0 Â−1 0
0 0 S −1

Â




I 0 0
−CT D−1 I 0

−BÂ−1CT D−1 BÂ−1 I


=


D−1 0 0

−Â−1CT D−1 Â−1 0
−S −1

Â
BÂ−1CT D−1 S −1

Â
BÂ−1 S −1

Â

 .
Then the preconditioned matrix:

P−1
1 A =


D−1 0 0

−Â−1CT D−1 Â−1 0
−S −1

Â
BÂ−1CT D−1 S −1

Â
BÂ−1 S −1

Â




D −C 0
CT A BT

0 −B 0


=


I −D−1C 0
0 I Â−1BT

0 0 I

 . (3.3)

Therefore, the eigenvalues of preconditioned matrix P−1
1 A are all 1. �

It is well known that the convergence of Krylov subspace methods is not only related to the
eigenvalue distribution of the preconditioned matrix, but also related to the number of corresponding
linearly independent eigenvectors. The eigenvector distribution of the preconditioned matrix P−1

1 A is
presented in the following theorem.

Theorem 3.2 Let the preconditioner P1 be defined as in (3.2), then the preconditioned matrix P−1
1 A

has p + n − r(C) linearly independent eigenvectors. There are

(1) p eigenvectors (xl; 0; 0)(l = 1, 2, ..., p) that correspond to the eigenvalue 1, where xl(l = 1, 2, ..., p)
are arbitrary linearly independent vectors;

(2) n − r(C) eigenvectors (x1
l ; y1

l ; 0)(l = 1, 2, ..., n) that correspond to the eigenvalue 1, where yl(l =

1, 2, ..., n) are arbitrary linearly independent vectors.
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Proof. Let λ be an eigenvalue of the preconditioned matrix P−1
1 A and (x; y; z) be the corresponding

eigenvector. From (3.3), we have 
I −D−1C 0
0 I Â−1BT

0 0 I



x
y
z

 = λ


x
y
z

 . (3.4)

Based on (3.4), it follows that 
(1 − λ)x + D−1Cy = 0,
(1 − λ)y + Â−1BT z = 0,
(1 − λ)z = 0.

(3.5)

Because λ = 1, then Eq (3.5) become D−1Cy = 0
Â−1BT z = 0

(3.6)

From the second equation in (3.6), we get that BT z = 0, i.e. z = 0.

When y = 0, Eq (3.5) are always true. Hence, there are p linearly independent eigenvectors
(xl; 0; 0)(l = 1, 2, ..., p) corresponding to the eigenvalue 1, where xl(l = 1, 2, ..., p) are arbitrary linearly
independent vectors.

When y , 0, there will be n − r(C) linearly independent eigenvectors (0; y1
l ; 0)(l = 1, 2, ..., n − r(C))

corresponding to the eigenvalue 1, where x1
l are arbitrary vectors and y1

l satisfies y1
l ∈ N(C).

Finally, we just need to verify that the p + n − r(C) eigenvectors are linearly independent. Let
k = (k1, k2, ..., kp)T , k1 = (k1

1, k
1
2, ..., k

1
n−r(C))

T be two vectors. Then we need to show that
x1 · · · xp

0 · · · 0
0 · · · 0



k1
...

kp

 +


x1

1 · · · x1
n−r(C)

y1
1 · · · y1

n−r(C)
0 · · · 0




k1
1
...

k1
n−r(C)

 =


0
...

0

 (3.7)

holds true if and only if the vectors k, k1 are all zero vectors, where the first matrix consists of the
eigenvectors corresponding to the eigenvalue 1 for the case (1), the second matrix consists of those
for the case (2). Because y1

1k1
1 + y1

2k1
2 + ... + y1

n−r(C)k
1
n−r(C) = 0 and y1

l (l = 1, 2, ..., n − r(C)) are linearly
independent, we know that k1

l = 0(l = 1, ..., n − r(C)). Thus, Eq. (3.7) reduces to
x1 · · · xp

0 · · · 0
0 · · · 0



k1
...

kp

 =


0
...

0


Since xl(l = 1, 2, ..., p) are linearly independent, we have kl = 0(l = 1, ...p). Therefore, the p + n− r(C)
eigenvectors are linearly independent. �

The function of preconditioning is to make the eigenvalue distribution more clustered and to
reduce the iteration number necessary for solving the corresponding peoblems within certain
tolerance. Among all the iteration methods, Krylov subspace methods with favorable properties, such
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as the degree of the minimal polynomial is equal to the dimension of the corresponding Krylov
subspace [1, 2, 14], were found to be extremely useful when combined with an appropriate
preconditioner in solving the underlying system. In the following, we study an upper bound of the
degree of the minimal polynomial of the preconditioned matrix P−1

1 A.
Theorem 3.3 Let the preconditioner P1 be defined as in (3.2). Then the degree of the minimal

polynomial of the preconditioned matrix P−1
1 A is at most 3.

Proof. From (3.3), we can get the characteristic polynomial of the matrix P−1
1 A is

ΦP−1
1 A

(λ) = det(P−1
1 A− λI) = (−1)p+n+m(λ − 1)p+n+m.

Moreover, it is easy to check

P−1
1 A− I =


0 −D−1C 0
0 0 Â−1BT

0 0 0

 ,

(P−1
1 A− I)2 =


0 0 − D−1CÂ−1BT

0 0 0
0 0 0


and (P−1

1 A − I)3 = 0. Therefore, the degree of the minimal polynomial of the preconditioned matrix
P−1

1 A is at most 3. �

Theorem 3.4 Under the assumptions of Theorem 3.1, the eigenvalues and degree of the minimal
polynomial of preconditioned matrixP−1

2 A are 1 and is at most 2, respectively. And the preconditioned
matrix P−1

2 A has p + n linearly independent eigenvectors. There are

(1) p eigenvectors (xl; 0; 0)(l = 1, 2, ..., p) that correspond to the eigenvalue 1, where xl(l = 1, 2, ..., p)
are arbitrary linearly independent vectors;

(2) n eigenvectors (0; y1
l ; 0)(l = 1, 2, ..., n) that correspond to the eigenvalue 1, where yl(l = 1, 2, ..., n)

are arbitrary linearly independent vectors.

Proof. Its proof is similar to Theorem 3.1, which can be obtained according to the above proof. �

Theorem 3.5 Under the assumptions of Theorem 3.1, the eigenvalues and degree of the minimal
polynomial of preconditioned matrix P−1

3 A are 1 and is at most 2, respectively. Then the
preconditioned matrix P−1

3 A has p + m + n − r(C) linearly independent eigenvectors. There are

(1) p eigenvectors (xl; 0; 0)(l = 1, 2, ..., p) that correspond to the eigenvalue 1, where xl(l = 1, 2, ..., p)
are arbitrary linearly independent vectors;

(2) m eigenvectors(0; 0; z1
l )(l = 1, 2, ...,m) that correspond to the eigenvalue 1, where zl(l = 1, 2, ...,m)

are arbitrary linearly independent vectors;

(3) n − r(C) eigenvectors (x2
l ; y2

l ; z2
l )(l = 1, 2, ..., n − r(C)) that correspond to the eigenvalue 1, where

y2
l ∈ N(C), and x2

l , z
2
l (l = 1, 2, ...,m) are arbitrary vectors.

Proof. Its proof is similar to Theorem 3.1, which is omitted here. �
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4. Implementation of the three preconditioners

In practical implementation of the P1 within Krylov subspace acceleration, we need to solve the
residual equation 

D 0 0
CT Â 0
0 −B S Â



z1

z2

z3

 =


r1

r2

r3

 ,
where Â = A + CT D−1C and S Â = BÂ−1BT . we obtain the following algorithm implementation for the
P1:
Algorithm 4.1: Solution of P1z = r, where r = (r1; r2; r3) and z = (z1; z2; z3) are given residual vector
and the current vector, respectively; and r1, z1 ∈ R

p, r2, z2 ∈ R
n, r3, z3 ∈ R

m, from the following
procedures:
(1) solve z1 from Dz1 = r1;
(2) solve z2 from (A + CT D−1C)z2 = r2 −CT z1;
(3) compute B(A + CT D−1C)−1BT z3 = r3 + Bz2.

Similarly, the implementation of the P2 and P3 with a Krylov subspace method can be described as
follow.
Algorithm 4.2: Solution of P2z = r, where r = (r1; r2; r3) and z = (z1; z2; z3) are given residual vector
and the current vector, respectively; and r1, z1 ∈ R

p, r2, z2 ∈ R
n, r3, z3 ∈ R

m, from the following
procedures:
(1) solve z2 from (A + CT D−1C)z2 = r2 −CT D−1r1;
(2) solve z1 from Dz1 = r1 + Cz2;
(3) compute B(A + CT D−1C)−1BT z3 = r3 + Bz2.
Algorithm 4.3: We solve P3z = r for the preconditioner P3 by the following steps:
(1) solve z1 from Dz1 = r1;
(2) solve z3 from B(A + CT D−1C)−1BT z3 = r3 + BÂ−1(r2 −CT D−1z1);
(3) compute (A + CT D−1C)z2 = r2 −CT z1 − BT z3.

5. Numerical experiments

In this section, we give two numerical examples to prove the effectiveness of the three
preconditioners P1, P2, P3 proposed in Section 3, their structures are generalizations of the examples
in [11]. In order to better show the advantages of the proposed preconditioners, we adopt the GMRES
method incorporated with no preconditioner, APSS and RAPSS preconditioners proposed by [8] and
our proposed three preconditioners to solve the linear system (1.2). All experiments are performed in
MATLAB 2016a on an Intel Core (8G RAM) Windows 10 system. We define CPU times (denoted as
‘CPU’), iteration steps (denoted by ‘IT’) and iteration residual (denoted by ‘RES’) to show the effect
of preconditioners applied to GMRES method. In all tests, all runs are started from the zero vectors
and stopped once the relative residual satisfies

RES =
‖b −Azk‖

‖b‖
< 10−8
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or if it exceeds the prescribed iteration steps kmax = 2000, the iteration is stopped. It should be noted
that we use the preconditioned GMRES method to solve the linear system (1.2). In Example 1, we
use sparse Cholesky decomposition to solve the linear subsystem when we start to solve the residual
equation. Similarly, in example 2, we use sparse LU decomposition to solve the linear subsystem.

Example 1. Consider the double saddle point peoblems (1.2), in which

A = diag(2WT W + D1,D2,D3) ∈ Rn×n

is a block diagonal matrix,

B = [E,−I2 p̃, I2 p̃] ∈ Rm×n, C = (C1 ⊗ Ip) ∈ Rl×n and D = I ∈ Rl×l,

where p̃ = p2, p̂ = p(p + 1); W = (wi j) ∈ R p̂× p̂ with wi j = e−2((i/3)2+( j/3)2); D1 = I p̂ is an identity matrix;
Di = diag(d(i)

j ) ∈ R2 p̃×2 p̃, i = 2, 3, are diagonal matrices, with

d2
j =

1, f or 1 ≤ j ≤ p̃,

10−5( j − p̃)2, f or p̃ + 1 ≤ j ≤ 2 p̃,

d3
j = 10−5( j + p̃)2, f or 1 ≤ j ≤ 2p̃;

and

E =

(
Ê ⊗ Ip

Ip ⊗ Ê

)
,

Ê =


2 −1

2 −1
. . .

. . .

2 −1

 ∈ Rp×(p+1), C1 =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1

 ∈ R(p+1)×(5p+1).

Example 2. Consider the double saddle point peoblems (1.2), in which

A =

F ⊗ T + T ⊗ F 0
0 F ⊗ T + T ⊗ F

 ∈ R2p2×2p2
,

B = C =
(
I ⊗ E E ⊗ I

)
∈ Rp2×2p2

, D = I ⊗ I ∈ Rp2×p2
,

where
T =

1
h2 tridiag(−1, 2,−1), F =

1
h

tridiag(0, 1,−1),

E = tridiag(1, p + 1, · · · , p2 − p + 1),

⊗ means the Kronecker product symbol and h = 1
p+1 . For this peoblems, the total dimension is 4p2.

Numerical experiments are formed by setting different dimensions. It is noticed that we take b =

A · 1. To show the effectiveness of the new preconditioners, we compare proposed preconditioners
with APSS and RAPSS preconditioners by applying them to GMRES method.

In Tables 1 and 2, we list the numerical results of different preconditioned GMRES methods for
Examples 1 and 2. Here, I denotes the GMRES method without preconditioning. Besides, we omit
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the iteration results if iteration steps exceed 2000. From these numerical results in Table 1, we can see
that the no-preconditioning GMRES method converges very slowly, the five preconditioned methods
are all effective. By comparing their iteration steps, residuals and CPU times, it follows that the three
preconditioners P1, P2 and P3 are more effective than the other two preconditioners, and their
iteration steps are obviously reduced. Especially, the iteration steps of P1, P2 and P3 preconditioned
GMRES methods remain constant even if the dimension of the double saddle point system
increases,which shows that three proposed preconditioners are advantage for solving the double
saddle point problems (1.2). It can be seen from Table 2 that with increasing of dimension, the
iteration time of GMRES method under the three proposed preconditioners increases greatly. The
reason may be that in addition to the solutions of sublinear systems with matrix D, it also involves the
solutions of those with matrices A + CT D−1C and B(A + CT D−1C)BT as sloving the residual equations
under three preconditioners. We can find that both A + CT D−1C and B(A + CT D−1C)BT are full
matrices, and it is expensive to solve sunlinear systems with using matrix decomposition. However,
we can still find that the CPU times of three preconditioners are less than those of APSS and RAPSS
preconditioners. Theoretical analysis shows that the degree of the minimum polynomial of the three
preconditioned matrices is at most 3, 2 and 2, respectively. However, the iteration steps of numerical
results corresponding to the three preconditioners are 4, 3 and 3, respectively. In fact, this is also
according with convention. We can refer to [14].

Table 1. The numerical results for preconditioned GMRES methods with I, PAPS S , PRAPS S ,
P1, P2 and P3 for Example 1.

size I PAPS S PRAPS S P1 P2 P3

528 α - 0.1 0.1 - - -
IT 1223 39 23 4 3 3

CPU 0.0905 0.0289 0.0192 0.0112 0.0100 0.0093
RES 9.3e-09 6.6e-09 2.6e-09 3.9e-10 6.8e-11 1.0e-12

1176 α - 0.1 0.1 - - -
IT 1170 47 33 4 3 3

CPU 0.0795 0.1738 0.1273 0.0281 0.0266 0.0342
RES 9.5e-09 9.8e-09 5.3e-09 9.7e-11 3.0e-11 2.6e-13

2080 α - 0.1 0.1 - - -
IT 1164 50 39 4 3 3

CPU 0.1012 0.6601 0.5238 0.1104 0.0906 0.0995
RES 9.3e-09 8.8e-09 5.1e-09 4.3e-12 1.5e-11 7.8e-12

4656 α - 0.1 0.1 - - -
IT 1286 51 45 4 3 3

CPU 1.2453 3.5699 3.1501 0.8276 0.7222 0.7637
RES 9.6e-09 9.4e-09 9.2e-09 6.8e-13 9.6e-13 8.2e-14

8256 α - 0.1 0.1 - - -
IT 1553 52 49 4 3 3

CPU 7.6373 11.0295 11.1070 4.0296 3.9548 4.2159
RES 9.9e-09 7.3e-09 9.5e-09 8.2e-14 3.5e-13 7.2e-14
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Table 2. The numerical results for preconditioned GMRES methods with I, PAPS S , PRAPS S ,
P1, P2 and P3 for Example 2.

size I PAPS S PRAPS S P1 P2 P3

256 α - 0.01 0.01 - - -
IT 1192 88 87 4 3 3

CPU 0.0827 0.0409 0.0302 0.0142 0.0155 0.0144
RES 9.0e-09 2.8e-09 4.0e-09 9.1e-15 9.4e-15 5.5e-14

1024 α - 0.1 0.1 - - -
IT 1638 202 202 4 3 3

CPU 0.9797 0.4381 0.3235 0.0945 0.0884 0.0890
RES 9.6e-09 9.4e-09 6.8e-09 1.6e-13 4.6e-14 1.0e-12

2500 α - 0.1 0.1 - - -
IT - 285 285 4 3 3

CPU - 2.4462 2.6105 1.0909 1.0916 1.0764
RES - 9.5e-09 9.8e-09 7.3e-13 1.4e-13 1.0e-11

4096 α - 0.1 0.1 - - -
IT - 348 348 4 3 3

CPU - 6.9239 8.1949 4.9200 4.7040 4.7255
RES - 9.3e-09 9.3e-09 5.0e-12 2.2e-13 4.4e-11

7056 α - 1 1 - - -
IT - 697 697 4 3 3

CPU - 63.6368 65.3049 20.9885 20.9199 21.1170
RES - 9.9e-09 9.0e-09 1.3e-11 4.1e-13 8.5e-11

In Figures 1 and 2, we plot the eigenvalue distribution of the original coefficient matrix and the P1,
P2, P3 preconditioned matrices for Example 1. In Figure 1, we test problems size of 1176. In Figure
2, we test problems size of 4656. From these two figures, we observe that the P1, P2 and P3

preconditioners improve the eigenvalue distribution of the original coefficient matrix greatly. Most
importantly, we find that the eigenvalues distribution of these three preconditioned matrices all
clustered at a point, which is the same as the theoretical analysis in Section 3. Moreover, the three
preconditioned matrices have tight spectrums, which lead to stable numerical performances. In
Figures 3 and 4, we plot the eigenvalue distribution of the original coefficient matrix and the P1, P2,
P3 preconditioned matrices with different dimension sizes for Example 2. From these Figures, it is
easy to observe that the P1, P2 and P3 preconditioners improve the eigenvalue distribution of the
original coefficient matrix greatly.
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Figure 1. Eigenvalue distributions of the original coefficient and P1, P2 and P3

preconditioned matrices with dimension size 1176 for Example 1.

0 5 10 15 20 25 30

Real

-6

-4

-2

0

2

4

6

Im
ag

in
ar

y

No preconditioning

0 0.5 1 1.5 2

Real

-6

-4

-2

0

2

4

6

Im
ag

in
ar

y

P1 preconditioning

0 0.5 1 1.5 2

Real

-6

-4

-2

0

2

4

6

Im
ag

in
ar

y

P2 preconditioning

0 0.5 1 1.5 2

Real

-6

-4

-2

0

2

4

6

Im
ag

in
ar

y

P3 preconditioning

Figure 2. Eigenvalue distributions of the original coefficient and P1, P2 and P3

preconditioned matrices with dimension size 4656 for Example 1.
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Figure 3. Eigenvalue distributions of the original coefficient and P1, P2 and P3

preconditioned matrices with dimension size 1024 for Example 2.
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Figure 4. Eigenvalue distributions of the original coefficient and P1, P2 and P3

preconditioned matrices with dimension size 4096 for Example 2.
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6. Conclusions

In this paper, three effective preconditioners are proposed for double saddle point problem (1.2).
We give the solvability of this linear system and discuss the spectral properties of the preconditioned
matrices under three preconditioners P1, P2 and P3. Besides, compared with the existing APSS and
RAPSS preconditioners, three preconditioners established in this paper have better computing
efficiency, which may be because the spectral sets of the three preconditioners have tight spectrums.
In the end, some numerical experiments also verify the validity of the theoretical results.

Note that we use the Krylov subspace method under exact algorithm to solve the double saddle
point problem in this paper. In fact, the inexact solvers are more efficient that exact solvers especially
for large problem. Thus, we will consider three preconditioned GMRES method with inexact solvers,
which are very crucial and interesting in further study.
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