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Abstract: Lévy-type behaviors are widely involved in anomalous thermal transport, yet generic 

investigations based on the mathematical descriptions of the confined Lévy flights are still lacking. 

In the frameworks of classical irreversible thermodynamics and Boltzmann-Gibbs statistical 

mechanics, the Lévy-Fokker-Planck equation is connected to near-equilibrium thermal transport. In 

this work, we show that thermal transport dominated by the confined Lévy flights will be paired with 

an anomaly, namely that the local effective thermal conductivity is nonlocal. It is demonstrated that 

the near-equilibrium assumption is not unconditionally valid, which relies on several thermodynamic 

restrictions expressed by the probability density function (PDF). It is illustrated that the 

Lévy-Fokker-Planck equation based on the Caputo operator will give rise to two signatures of 

anomalous thermal transport, the power-law size-dependence of the global effective thermal 

conductivity and nonlinear boundary asymptotics of the stationary temperature profile. These 

anomalies are interrelated with each other, and their quantitative relations can be considered as 

criteria for Lévy-based thermal transport. 
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1. Introduction 

The Lévy process [1] is commonly defined by the characteristic function  exp c k t


 , 
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wherein   denotes the Lévy index, k  is the variable in the Fourier space, and c  is a constant. 

In recent years, Lévy-type behaviors have been widely used to interpret signatures of anomalous 

thermal transport in low-dimensional systems [2–7]. A typical example is the power-law 

size-dependence of the effective thermal conductivity 
eff  [4,8–11], namely, 

 eff eff L L   (1.1)  

with L  denoting the system size. Based on the Monte Carlo technique for solving the phonon 

Boltzmann transport equation, Upadhyaya and Aksamija [5] have observed a Lévy-type (or 

heavy-tailed) distribution of the phonon mean free paths in Si-Ge alloy nanowires, which gives rise 

to a divergent exponent 1 3  . Denisov and co-authors [12] connected the size-dependence 

exponent to the Lévy index  1,2   for one-dimensional dynamical channels, 2   . This 

relation is supported by a recent investigation on the long-range interacting Fermi-Pasta-Ulam 

chains [7]. Furthermore, the results in Si-Ge alloy nanowires and one-dimensional dynamical 

channels also show that the Lévy processes will be paired with another signature of anomalous 

thermal transport, the superdiffusive growth of the mean-square energy displacement [5],  

 2

ex t t  (1.2)  

with  1,2  . The coexistence of the Lévy-type regimes and superdiffusive thermal transport has 

also been acquired in semiconductor alloys [6] and two-dimensional nonlinear lattices [8]. 

There is another conceptual connection between the Lévy processes and anomalous thermal 

transport in low-dimensional systems, the spatial fractional-order operators [13–15]. For instance, 

the energy perturbation  ,e x t  in the one-dimensional harmonic chains is commonly governed 

by a 3/4-fractional diffusion equation [14,15] as follows 

     
3 4

0, ,e x t C e x t
t
 


        

 (1.3)  

wherein 0C  is a positive constant and  
3 4

  stands for the fractional Laplacian operator [16,17]. 

For infinite space like ,   
3 4

  is generally defined in terms of the Fourier transform, namely, 

       
3 23 4

, ,k ke x t k e x t      (1.4)  

with  ...k  the Fourier transform operator. At the microscopic level, Eq (1.3) can be obtained from 

the Boltzmann transport equation with a certain collision term [18–22]. In these studies, the 

Lévy-type behaviors are observed based on the specific physical regimes of the heat carriers, which 

differ from model to model, yet generic mathematical descriptions are not much involved with 

signatures of anomalous thermal transport. In mathematics, spatial fractional-order governing 

equations are widely applied to the Lévy processes [23–25], including the Lévy flights in a confined 

domain  0, L . The main aim of this work is to address anomalous thermal transport which is 
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dominated the confined Lévy flights, which has not been discussed by previous investigations. 

The simplest mathematical description of the confined Lévy flights is the following symmetric 

Lévy-Fokker-Planck equation [23] 

 
 

 

 

0

2

12 0

,
,

2cos
2

',
' ,

'2cos 2
2

RL RL

x L x

L

P x t K
D D P x t

t

P x tK
dx

x x x

 













      

 
 

 
   

      
 



 (1.5)  

where  ,P x t  denotes the probability density function (PDF), K  is the noise intensity with the 

dimension 1x t
  , RL

L xD
 and 

0

RL

xD
 stand for the right-hand and left-hand Riemann-Liouville 

operators respectively. For engineering or experimental problems, the boundary points must be 

attained, which will give rise to infinite Lévy measure. In this work, we apply Eq (1.5) to 

one-dimensional thermal transport, wherein the PDF is defined in terms of the correlation function of 

the energy fluctuations [3], namely, 

     

         

1

0
, , 0 ,

, , 0, 0 , 0, 0

L

u u

u

P x t C x t dx C x t

C x t u x t u x t u x t u x t

      




     



 (1.6)  

with  ,u x t  the density of the thermal energy. Eq (1.5) corresponds to nonlocal thermal transport, 

namely that the temporal evolution of the energy fluctuations at 0x x  depends on the global 

distribution of the energy fluctuations in  0, L . For arbitrary   0 00,min ,x L x   , the 

distributions in  0 0,x x  and  0 0,x x   have the same contribution to the temporal evolution at 

0x x , which indicates that the nonlocality is symmetric. Based on the entropic functionals, a 

connection between the evolution of the PDF and thermal transport is established. Anomalous 

features of thermal transport thereafter arise from the entropic connection, including the nonlocality 

of the local effective thermal conductivity, power-law size-dependence of the global effective 

thermal conductivity, and nonlinear boundary asymptotics of the stationary temperature profile. 

Thermal transport and confined Lévy flights. 

2. Thermal transport and confined Lévy flights 

The Lévy-Fokker-Planck equation describes the evolution of the PDF, while thermal transport 

focuses on thermodynamic quantities, i.e., the heat flux  ,qJ x t  and local temperature  ,T x t . In 

order to link the Lévy-Fokker-Planck equation to thermal transport, we consider the following 

entropy density in the framework of Boltzmann-Gibbs statistical mechanics, 
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     , , ln ,Bs x t k P x t P x t   (2.1)  

where Bk  is the Boltzmann constant. The temporal derivative of  ,s x t  should be restricted by the 

entropy balance equation as follows 

   
 

 
 

, ,
ln , 1

,
, .

B

S

s x t P x t
k P x t

t t

J x t
x t

x


 
     


  



 (2.2)  

wherein  ,SJ x t  denotes the entropy flux and  ,x t  is the density of the entropy production rate. 

Besides the entropy balance equation, there is another restriction termed as continuity equation, 

   , ,P x t J x t

t x

 
 

 
 (2.3)  

where  ,J x t  is the probability current. Substituting Eq (2.3) into Eq (2.2) yields 

   
 

        

 
 

, ,
ln , 1

, ln , 1 , ln , 1

,
, ,

B

B B

S

s x t J x t
k P x t

t x

k J x t P x t k J x t P x t
x x

J x t
x t

x


 
    

 
          


  



 (2.4)  

and we thereafter arrive at 

     , , ln , 1S BJ x t k J x t P x t      (2.5)  

     

 

 

 

, , ln , 1

, ,
.

,

B

B

x t k J x t P x t
x

J x t P x t
k

P x t x




    


 



 (2.6)  

Then,  ,J x t  and  ,P x t  can be connected to thermal transport via the relationship between 

    , , ,SJ x t x t  and     , , ,qJ x t T x t . 

For thermal transport not far from local equilibrium, Boltzmann-Gibbs statistical mechanics 

typically coincides with classical irreversible thermodynamics [26], which gives the following 

expressions for the above entropic functionals, 
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 
 ,

,
T x t

eq

dT
s x t c s

T
   (2.7)  

 
 

 
1

, ,
,

S qJ x t J x t
T x t

  (2.8)  

   
 
1

, ,
,

qx t J x t
x T x t


 

  
  

 (2.9)  

where 
eqs  is the entropy density independent of thermal transport, and c  is the specific heat 

capacity per volume. Upon combining Eqs (2.8) and (2.9) with Eqs (2.5) and (2.6) respectively, one 

can derive the relations between     , , ,J x t P x t  and     , , ,qJ x t T x t , namely, 

       , , , ln , 1q BJ x t k T x t J x t P x t      (2.10)  

 
 

 
 , ,

, ,q

T x t P x t
cJ x t J x t

x x

 


 
 (2.11)  

The two relations do not rely on specific constitutive models between  ,J x t  and  ,P x t , which 

remains valid for various generalized Fokker-Planck equations besides the Lévy-Fokker-Planck 

equation. 

For the Lévy-Fokker-Planck equation, the constitutive model between  ,J x t  and  ,P x t  is 

given by [27] 

 
 

 
10

',
, '

'2cos 2
2

L P x tK
J x t dx

x x x








 
  

      
 

  
(2.12)  

and substituting it into Eqs (2.10) and (2.11) leads to 

 
   

 

 
10

, ln , 1 ',
, '

'2cos 2
2

LB

q

k K T x t P x t P x t
J x t dx

x x x








       
      

 

  
(2.13)  

 

 

 
 

 
10

,

', ,
' ,

'2cos 2
2

L

q

T x t
K c P x t P x tx dx J x t

x xx x









    

       
 

  (2.14)  
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Equation (2.13) exhibits a nonlocal behavior of the heat flux, namely that the heat flux at  0 0,x L  

depends on not only the PDF and local temperature at 0x  but also all states in  0, L . In other 

words, any points in  0, L  will contribute to the heat flux at 0x . Such nonlocality will vanish in the 

limit 2  , which leads to a degeneration into the standard diffusion equation. In this degenerate 

case, Eq (2.13) becomes 

   
 

 2

,
, , ln , 1q B

P x t
J x t K k T x t P x t

x



   

 (2.15)  

which illustrates that the diffusive heat flux is proportional to the PDF gradient. Note that the 

gradient of the entropy density is written as 

   
 

 

 

, ,
ln , 1

,
.

,

B

s x t P x t
k P x t

x x

T x tc

T x t x

 
     






 (2.16)  

Combining Eqs (2.15) and (2.16) yields 

   
 

 

2

2

,
, ,

,
.

q

s x t
J x t K T x t

x

T x t
K c

x










 




 



 (2.17)  

and we now obtain a constitutive relation between  ,qJ x t  and 
 ,T x t

x




. Furthermore, the 

diffusive limit 2   implies normal thermal transport ( 1  ), wherein  ,qJ x t  and 
 ,T x t

x




 

generally obey conventional Fourier’s law, namely, 

 
 ,

,q

T x t
J x t

x



 


 (2.18)  

Here,   is the so-called thermal conductivity, which is an intrinsic material property and 

independent of geometric parameters such as the system size. It is found that Eqs (2.17) and (2.18) 

will possess a same formulation as if 2K c  . This degeneration to Fourier’s law is physical 

reasonable and in agreement with existing understandings of anomalous thermal transport [2–4]. In 

the degeneration case, the Lévy process becomes the Gauss process. Meanwhile, Fourier’s law 

corresponding to Eq (2.15) is paired with a parabolic governing equation of the local temperature [3], 

whose solution for initial thermal perturbation is Gaussian as well. Thus, Eq (2.15) also corresponds 

to the Gauss case. Nevertheless, 2K c   is not unconditionally tenable. As material properties, 

  and c  generally vary as the local temperature changes, whereas K  is assumed to be a constant. 

Therefore, 2K c   is valid only if   and c  have a same temperature-dependence. This 
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assumption commonly holds at the low temperature, yet is usually invalid in the high-temperature 

situations [28–30], wherein   decays with the increasing temperature and c  vanishingly varies. 

For  1,2  , Eq (2.14) can still be reformed as a Fourier-like constitutive relation 

 
 

   

 

1
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,
,

, ',
'

'

2cos 2
2
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K c dx

x x x x
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
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






 







   
           

  
  

 



 (2.19)  

Because the prefactor loc

eff  is determined by the all states in  0, L , it cannot be formulated as a 

functional of the local temperature like  ,loc loc

eff eff T x t     . It implies that loc

eff  is not a 

well-defined intrinsic property, and hence, Fourier’s law no longer holds. From the viewpoint of 

physics, loc

eff  can be understood as the local effective thermal conductivity. There are several aspects 

which need careful discussion. First, the derivation of loc

eff  relies on the framework of classical 

irreversible thermodynamics, which requires the non-negative entropy production rate in Eq (2.9). 

This requirement is equivalent to 0loc

eff  , which leads to 

   
10

, ',
' 0

'

LP x t P x t
dx

x x x x


  
 

    
  (2.20)  

Furthermore, as a thermodynamically irreversible process, non-vanishing thermal transport 

(  , 0qJ x t  ) must be paired with a strictly positive value of the entropy production rate. Conversely, 

if the total entropy production rate of a system is zero, this system must be in thermal equilibrium, 

which indicates that  , 0qJ x t   and 0
t





. In the framework of classical irreversible 

thermodynamics, the thermodynamic restriction stated above corresponds to the following corollary 

   
 

 
 
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sup , 0 , 0
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1
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L

q q

J x t J x t dx
x T x t

J x t dx J x t
x T x t
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  
    

  




        





 (2.21)  

As a physically meaningful quantity, the supremum  
0

sup ,q
x L

J x t
 

 should be attained. Singular loc

eff  
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can arise from  , 0qJ x t   and 
 ,

0
T x t

x





, which will invalidate corollary (2.21). For the PDF, 

the above corollary becomes 

 
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
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






 
  
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

 (2.22)  

It is demonstrated that not all solutions of Eq (1.5) can coexist with classical irreversible 

thermodynamics in the near-equilibrium region. The coexistence of the Lévy-Fokker-Planck equation 

and classical irreversible thermodynamics relies on restrictions (2.20) and (2.22), which correspond 

to 0 loc

eff   . 

According to the result in [23], the equilibrium solution of the Lévy-Fokker-Planck equation is 

given by 

 
   

 

 

2 21

2 2
eq

L x L x
P x





   


 (2.23)  

Non-uniform  eqP x  will give rise to a non-uniform temperature distribution, namely, 

 

 
 

 
 

 
 

 
 

, 0

0 , 0

, 0, 2

ln 1

0.

q

q q

q

J x t

J J x t

eq

B eq

J x t x L

d T xds x c

dx dxT x

dP x
k P x

dx

d T x

dx



 

 

 
  

    

 
   

 (2.24)  

From a physical perspective, it is non-trivial that the non-vanishing temperature gradient coexists 

with the thermal equilibrium state, which means absolute thermal insulation, 0loc

eff  . 

Furthermore,  eqP x  is singular at the boundary, which will induces infinite boundary 

temperatures. These non-trivial behaviors have not been observed in existing studies on 

anomalous thermal transport [2–4]. 
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3. Modification based on Caputo operator 

If the temperature distribution is uniform in the absence of thermal transport, the equilibrium 

PDF should be written as 

 
 

1

, 0J x t
P x L


  (3.1)  

For the Lévy-Fokker-Planck equation, this equilibrium solution can be acquired via replacing the 

Riemann-Liouville operator by the Caputo operator [31], and the constitutive relation between 

 ,J x t  and  ,P x t  thereafter becomes 

 
 

 
10

',1
, '

''2cos 2
2

L P x tK
J x t dx

xx x








 
  

      
 

  
(3.2)  

The corresponding local effective thermal conductivity reads 

   

 

1

10

, ',1
'

''

2cos 2
2

L

loc

eff

P x t P x t
K c dx

x xx x
 










   
  

      
 

  
 


 (3.3)  

which is still nonlocal. The thermodynamic restrictions for     , , ,qJ x t T x t  remain unchanged, 

and the restrictions on the PDF take the following forms 

   

 
   

   
 

10

1 10 0 00

1 10 0 0

, ',1
' 0

''

, ',

', 'sup ' 0 ' 0
'' '
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',' ' 0 '
'' '

L

L L L

x L

L L L

P x t P x t
dx

x xx x

P x t P x t
KP x tK x xdx dx dx

xx x x x

P x t P x t
K P x tKx x dx dx dx

xx x x x






 




 



 
 

 

  
 

   

  
      

  
  

  
      

  
  



  

   0













  
  
   


 (3.4)  

which are equivalent to 0 loc

eff    likewise. 

We now consider stationary thermal transport in the presence of a small temperature difference, 

namely, 
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    min , 0T T x L T x   ,    0T T x L T x      (3.5)  

which yields 

    min , 0P P x L P x   ,    0P P x L P x      (3.6)  

In this case, the solution of the modified Lévy-Fokker-Planck equation is written as 

   
 

 

1
2

0

1
2

0

0

x

L

y L y dy P

P x P x

y L y dy










 
   

   

  





 (3.7)  

Preconditions (3.5) and (3.6) enable us to employ the following expansion 

   

 

   

0

0

0

0

ln 1 ,B

s s x L s x

c
T o T

T

k P P o P



 

 

   

   

     

 (3.8)  

where 0c  is the specific heat capacity at 0T , 0T  and 0P  are the averaged temperature and 

probability density respectively. With the remainder term neglected, we arrive at 

 0
0

0

ln 1Bk T
T P P

c
     (3.9)  

Similarly, the entropy flux can be expanded as 

 

 

   

2

0 0

0

1 11 2
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1

ln 1
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cos sin 1
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
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  
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
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 
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 
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        
     



 (3.10)  

From Eq (3.10), one can derive the following expression of the heat flux 

 

   

0 0

1 11 2

0

ln 1

cos sin 1
2 2

B
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     


 
(3.11)  

Stationary thermal transport is typically characterized by the global effective thermal conductivity as 
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follows [2–4], 

qglo

eff

J L

T



   (3.12)  

which can be obtained through combining Eqs (3.9) and (3.11), namely, 

   

2

0

1 1
2

0
cos sin 1

2 2

glo

eff

K c L

y y dy








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





 
   

       
   



 
(3.13)  

The power-law size-dependence of the effective thermal conductivity presently occurs, while the 

size-dependence exponent is 2   . This relation between   and   formally coincides with 

Ref. [12], but it is derived from the confined Lévy flight rather than the Lévy walk model. In existing 

numerical and experimental investigations [2–4], the range of the size-dependence exponent is 

observed as 1  . This range will not allow the case of 0 1  , that is why the Lévy exponent is 

restricted as 1 2  . 

In the following, the local effective thermal conductivity will be discussed. Since 
qJ  is already 

known, we only need to consider the expression of 
 dT x

dx
, which can be acquired from the 

following expansion 

     

 
 

     

 

0 2

0 0

0

1
2

0 0

1
2

0
0

1

ln 1

ln 1
.

B

B

L
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




 
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 
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     
 
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 


 
(3.14)  

The local effective thermal conductivity is subsequently presented as follows 
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1

1
2

0
.

cos sin
2 2
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eff q
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J
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




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


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 
   

 
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   
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   

 (3.15)  

which depends on not only the system size but also the location. Eq (3.14) also exhibits another 

signature of anomalous thermal transport, the nonlinear boundary asymptotics of the stationary 

temperature profile [4], namely, 
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   

     

2
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lim 0
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x

x L

T x T x x
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
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   


 (3.16)  

In the diffusive limit 2  , loc

eff  will be independent of the system size and location, and 

meanwhile, the asymptotic exponent 2   becomes linear. All of these degenerate behaviors 

agree with Fourier’s law, which is physically reasonable. It should be underlined that the expanding 

approach stated above is inapplicable to the standard Lévy-Fokker-Planck equation based on the 

Riemann-Liouville operator. That is because the assumption of sufficiently small temperature 

difference ( 0T T ) is invalid for the Riemann-Liouville operator. 

4. Concluding remarks 

The symmetric Lévy-Fokker-Planck equation is applied to investigating anomalous thermal 

transport in a one-dimensional confined domain. Based on the frameworks of classical irreversible 

thermodynamics and Boltzmann-Gibbs statistical mechanics, we establish a connection between the 

evolution of the probability density function and thermal transport dominated by the confined Lévy 

flights. The expression of the local effective thermal conductivity is derived as a nonlocal formula, 

which depends on all states in the domain. The thermal transport process therefore becomes 

anomalous. It is demonstrated that the diffusive limit 2   will lead to the degeneration into 

conventional Fourier’s law of heat conduction as if the thermal conductivity and specific heat 

capacity possess the same temperature-dependence. The thermodynamic connection between the 

Lévy-Fokker-Planck equation and anomalous thermal transport relies on the near-equilibrium 

assumption, which needs certain physical restrictions on the evolution of the probability density 

function. It is found that the Riemann-Liouville operator will be paired with thermodynamically 

non-trivial behaviors, namely that the equilibrium state corresponds to the non-uniform temperature 

distribution and infinite boundary temperature. In order to avoid the non-uniform equilibrium state, 

the Lévy-Fokker-Planck equation is modified in terms of the Caputo operator. It is shown that the 

modified Lévy-Fokker-Planck equation will give rise to two signatures of anomalous thermal 

transport, the power-law size-dependence of the global effective thermal conductivity and nonlinear 

boundary asymptotics of the stationary temperature profile. The results illustrate that the anomalies 

of Lévy-based thermal transport are not independent of each other, and should fulfill certain 

quantitative relations. For instance, the size-dependence exponent of the global effective thermal 

conductivity and asymptotic exponent of the stationary temperature profile are constrained by 

2 2   . The quantitative relations can be used to test whether a specific thermal transport process 

is dominated by the confined Lévy flights. 
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