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1. Introduction

In this paper, we research a continuous approximate solution of the following variable order initial
value problem {

CDp(t,x(t))
0+

x(t) = f (t, x(t)), 0 < t ≤ T,
x(0) = u0,

(1.1)

where 0 < p(t, x(t)) < 1, u0 ∈ R, p(t, x(t)) and f (t, x(t)) are given real-valued functions, CDp(t,x(t))
0+

denotes variable order Caputo fractional derivative defined by

CDp(t,x(t))
0+

x(t) = I1−p(t,x(t))
0+

x′(t), (1.2)

and I1−p(t,x(t))
0+

is variable order Riemann-Liouville fractional integral defined by

I1−p(t,x(t))
0+

x(t) =

∫ t

0

(t − s)−p(t,x(t))

Γ(1 − p(t, x(t))
x(s)ds, t > 0. (1.3)
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For details, please refer to [1, 2].
Fractional calculus has been acknowledged as an extremely powerful tool in describing the natural

behavior and complex phenomena of practical problems due to its applications in [3–7]. However, the
constant fractional order calculus is not the ultimate tool to model the phenomena in nature.
Therefore, variable order fractional calculus is proposed. Moreover, variable order fractional
differential equations provide better descriptions for nonlocal phenomena with varying dynamics than
constant order differential equations and are extensively researched in [1,2,7–31]. Among these, there
are many works dealing with numerical methods for some class of variable fractional order
differential equations, for instance, [1, 2, 8–10, 12–19, 21–26, 30, 31]. In particular, variable order
fractional boundary value problems are considered by numerical method base on reproducing kernel
theory in [30, 31].

There are several definitions of variable order fractional integrals and derivatives in [1, 2]. We
notice that when the order p(t) is a constant function p, variable order Riemann-Liouville fractional
derivative and integral are exactly constant order fractional derivative and integral. It is well known
that the Riemann-Liouville fractional integral has the law of exponents, i.e. Iα0+

Iβ0+
(·) = Iβ0+

Iα0+
(·) =

Iα+β
0+

(·), α > 0, β > 0. Based on the law of exponents, we can obtain some properties which are
associated with fractional derivative and integral. For this reason, fractional order differential equations
are transformed into equivalent integral equations. Thus some results of nonlinear functional analysis
(for instance, some fixed point theorems) have been applied to considering the existence of solution of
fractional order differential equations (see, e.g. [3,20,32–34] and the references therein). However, the
law of exponents doesn’t hold for variable order fractional integral. For example, in [21–24],

Ig(t)
0+

Ih(t)
0+

(·) , Ih(t)
0+

Ig(t)
0+

(·),

Ig(t)
0+

Ih(t)
0+

(·) , Ih(t)+g(t)
0+

(·),

where h(t) and g(t) are both general nonnegative functions.
Then we will consider the properties which are interrelated with variable order fractional integral

and variable order fractional derivative by given some examples.

Example 1.1. Let p(t) = t
4 + 1

4 , q(t) = 3
4 −

t
4 , f (t) = t, 0 ≤ t ≤ 2. Now, we calculate I p(t)

0+
Iq(t)
0+

f (t)|t=1,
Iq(t)
0+

I p(t)
0+

f (t)|t=1 and I p(t)+q(t)
0+

f (t)|t=1, where I p(t)
0+

and Iq(t)
0+

is defined in (1.3).
For 1 ≤ t ≤ 2, we have

I p(t)
0+

Iq(t)
0+

f (t) =

∫ t

0

(t − s)
t
4 + 1

4−1

Γ( t
4 + 1

4 )

∫ s

0

(s − τ)
3
4−

s
4−1τ

Γ( 3
4 −

s
4 )

dτds =

∫ t

0

(t − s)
t
4−

3
4 s

7
4−

s
4

Γ( t
4 + 1

4 )Γ( 11
4 −

s
4 )

ds,

so

I p(t)
0+

Iq(t)
0+

f (t)|t=1 =

∫ 1

0

(1 − s)−
1
2 s

7
4−

s
4

Γ(1
2 )Γ( 11

4 −
s
4 )

ds ≈ 0.4757,

yet

Iq(t)
0+

I p(t)
0+

f (t) =

∫ t

0

(t − s)
3
4−

t
4−1

Γ( 3
4 −

t
4 )

∫ s

0

(s − τ)
s
4 + 1

4−1τ

Γ( s
4 + 1

4 )
dτds =

∫ t

0

(t − s)−
1
4−

t
4 s

s
4 + 5

4

Γ(3
4 −

t
4 )Γ(9

4 + s
4 )

ds,
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Iq(t)
0+

I p(t)
0+

f (t)|t=1 =

∫ 1

0

(1 − s)−
1
2 s

s
4 + 5

4

Γ( 1
2 )Γ( 9

4 + s
4 )

ds ≈ 0.5283,

and

I p(t)+q(t)
0+

f (t)|t=1 = I1
0+ f (t) |t=1 =

∫ 1

0
sds = 0.5.

Therefore,

I p(t)
0+

Iq(t)
0+

f (t)|t=1 , I p(t)+q(t)
0+

f (t)|t=1,

Iq(t)
0+

I p(t)
0+

f (t)|t=1 , I p(t)+q(t)
0+

f (t)|t=1,

I p(t)
0+

Iq(t)
0+

f (t)|t=1 , Iq(t)
0+

I p(t)
0+

f (t)|t=1.

Example 1.1 illustrates that the law of exponents of the variable order Riemann-Liouville fractional
integral doesn’t hold when the order is non-constant continuous function.

Example 1.2. Let p(t) =

{ 1
2 0 ≤ t ≤ 1,
1
3 , 1 < t ≤ 6,

, q(t) =

{ 1
2 , 0 ≤ t ≤ 1,
2
3 , 1 < t ≤ 6,

and f (t) = t, 0 ≤ t ≤ 6. We’ll

consider I p(t)
0+

Iq(t)
0+

f (t)|t=4, Iq(t)
0+

I p(t)
0+

f (t)|t=4 and I p(t)+q(t)
0+

f (t)|t=4, where I p(t)
0+

and Iq(t)
0+

are defined in (1.3).
For 1 ≤ t ≤ 4, we have

I p(t)
0+

Iq(t)
0+

f (t) =

∫ 1

0

(t − s)p(t)−1

Γ(p(t))

∫ s

0

(s − τ)
1
2−1τ

Γ( 1
2 )

dτds

+

∫ t

1

(t − s)p(t)−1

Γ(p(t))

( ∫ 1

0

(s − τ)
1
2−1τ

Γ( 1
2 )

dτ +

∫ s

1

(s − τ)
2
3−1τ

Γ( 2
3 )

dτ
)
ds

=

∫ 1

0

(t − s)p(t)−1s
3
2

Γ(p(t))Γ( 5
2 )

ds +

∫ t

1

(t − s)p(t)−1

Γ(p(t))

4s
3
2

3 −
2
3 (s − 1)

1
2 (2s + 1)

π
1
2

ds

+

∫ t

1

(t − s)p(t)−1

Γ(p(t))
3(s − 1)

2
3 (3s + 2))

10Γ( 2
3 )

ds,

thus,

I p(t)
0+

Iq(t)
0+

f (t)|t=4 =

∫ 1

0

(4 − s)−
2
3 s

3
2

Γ( 1
3 )Γ( 5

2 )
ds +

∫ 4

1

(4 − s)−
2
3

Γ( 1
3 )

4s
3
2

3 −
2
3 (s − 1)

1
2 (2s + 1)

π
1
2

ds

+

∫ 4

1

(4 − s)−
2
3

Γ( 1
3 )

3(s − 1)
2
3 (3s + 2))

10Γ( 2
3 )

ds ≈ 7.8626.
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By the same way, we get

Iq(t)
0+

I p(t)
0+

f (t) =

∫ 1

0

(t − s)q(t)−1

Γ(q(t))

∫ s

0

(s − τ)
1
2−1τ

Γ( 1
2 )

dτds

+

∫ t

1

(t − s)q(t)−1

Γ(q(t))

( ∫ 1

0

(s − τ)
1
2−1τ

Γ( 1
2 )

dτ +

∫ s

1

(s − τ)
1
3−1τ

Γ( 1
3 )

dτ
)
ds

=

∫ 1

0

(t − s)q(t)−1s
3
2

Γ(q(t))Γ( 5
2 )

ds +

∫ t

1

(t − s)q(t)−1

Γ(q(t))

4s
3
2

3 −
2
3 (s − 1)

1
2 (2s + 1)

π
1
2

ds

+

∫ t

1

(t − s)q(t)−1

Γ(q(t))
3(s − 1)

1
3 (3s + 1)

4Γ( 1
3 )

ds,

Iq(t)
0+

I p(t)
0+

f (t)|t=4 =

∫ 1

0

(4 − s)−
1
3 s

3
2

Γ( 2
3 )Γ( 5

2 )
ds +

∫ 4

1

(4 − s)−
1
3

Γ( 2
3 )

4s
3
2

3 −
2
3 (s − 1)

1
2 (2s + 1)

π
1
2

ds

+

∫ 4

1

(4 − s)−
1
3

Γ( 2
3 )

3(s − 1)
1
3 (3s + 1)

4Γ( 1
3 )

ds ≈ 8.1585,

and

I p(t)+q(t)
0+

f (t)|t=4 =

∫ 4

0

(4 − s)p(4)+q(4)−1s
Γ(p(4) + q(4))

ds =

∫ 4

0
sds = 8.

As a result, we deduce
I p(t)
0+

Iq(t)
0+

f (t)|t=4 , I p(t)+q(t)
0+

f (t)|t=4,

Iq(t)
0+

I p(t)
0+

f (t)|t=4 , I p(t)+q(t)
0+

f (t)|t=4,

I p(t)
0+

Iq(t)
0+

f (t)|t=4 , Iq(t)
0+

I p(t)
0+

f (t)|t=4.

Example 1.2 shows that the law of exponents of the variable order Riemann-Liouville fractional
integral doesn’t hold when the order is piecewise constant function defined in the same partition.

Example 1.3. Let p(t) = t
4 + 1

4 , f (t) = t, 0 ≤ t ≤ 3. Now, we consider I p(t)
0+

CDp(t)
0+

f (t)|t=2 and
CDp(t)

0+
I p(t)
0+

f (t)|t=2.
By (1.2) and (1.3), we have

I p(t)
0+

CDp(t)
0+

f (t) =

∫ t

0

(t − s)
t
4 + 1

4−1

Γ( t
4 + 1

4 )

∫ s

0

(s − τ)−
s
4−

1
4

Γ(3
4 −

s
4 )

dτds =

∫ t

0

(t − s)
t
4−

3
4 s

3
4−

s
4

Γ( t
4 + 1

4 )Γ(7
4 −

s
4 )

ds,

I p(t)
0+

CDp(t)
0+

f (t)|t=2 =

∫ 2

0

(2 − s)−
1
4 s

3
4−

s
4

Γ( 3
4 )Γ(7

4 −
s
4 )

ds ≈ 1.91596 , f (t)|t=2 − f (0) = 2,
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which implies that I p(t)
0+

CDp(t)
0+

is different with the result of constant order fractional derivative and
integral, that is,

Iα0+
CDα

0+g(t) = g(t) − g(0), 0 < t ≤ b, (1.4)

where 0 < α < 1, g ∈ C1[0, b], 0 < b < +∞.
On the other hand, we have

CDp(t)
0+

I p(t)
0+

f (t)|t=2 = I1−p(t)
0+

d
dt

I p(t)
0+

f (t)
∣∣∣∣∣
t=2

=

∫ t

0

(t − s)−
t
4−

1
4

Γ(3
4 −

t
4 )

d
ds

( s
5
4 + s

4

Γ(9
4 + s

4 )

)
ds

∣∣∣∣∣
t=2

=

∫ t

0

(t − s)−
t
4−

1
4

Γ(3
4 −

t
4 )

[ s
s
4 + 5

4 (
s
4 + 5

4
s +

log(s)
4 )

Γ( s
4 + 9

4 )
−

s
s
4 + 5

4 Γ′( 9
4 + s

4 )

4Γ2( 9
4 + s

4 )

]
ds

∣∣∣∣∣
t=2

≈ 1.91365 , f (t)|t=2 = 2,

which illustrates that CDp(t)
0+

I p(t)
0+

is different with the result of constant order fractional derivative and
integral, that is,

CDα
0+Iα0+h(t) = h(t), 0 < t ≤ b, (1.5)

where 0 < α < 1, h ∈ C1[0, b], 0 < b < +∞.

Example 1.3 verifies that the properties (1.4) and (1.5) of constant order fractional calculus don’t
hold for variable order fractional calculus when the order is a continuous function.

Example 1.4. Let p(t) =

{ 1
2 , 0 ≤ t ≤ 1,
1
3 , 1 < t ≤ 6,

, f (t) = t, 0 ≤ t ≤ 6. Now, we consider I p(t)
0+

CDp(t)
0+

f (t)|t=4 and

CDp(t)
0+

I p(t)
0+

f (t)|t=4.
By (1.2) and (1.3), for 2 ≤ t ≤ 6, we have

I p(t)
0+

CDp(t)
0+

f (t) =

∫ t

0

(t − s)p(t)−1

Γ(p(t))

∫ s

0

(s − τ)−p(s)

Γ(1 − p(s))
dτds

=

∫ 1

0

(t − s)p(t)−1

Γ(p(t))

∫ s

0

(s − τ)−
1
2

Γ(1
2 )

dτds

+

∫ t

1

(t − s)p(t)−1

Γ(p(t))

[ ∫ 1

0

(s − τ)−
1
2

Γ(1
2 )

dτ +

∫ s

1

(s − τ)−
1
3

Γ( 2
3 )

dτ
]
ds

=

∫ t

0

(t − s)p(t)−1s
1
2

Γ(p(t))Γ( 3
2 )

ds −
∫ t

1

(t − s)p(t)−1(s − 1)
1
2

Γ(p(t))Γ(3
2 )

ds +

∫ t

1

(t − s)p(t)−1(s − 1)
2
3

Γ(p(t))Γ( 5
3 )

ds,

so

I p(t)
0+

CDp(t)
0+

f (t)|t=4 =

∫ 4

0

(4 − s)−
2
3 s

1
2

Γ(1
3 )Γ(3

2 )
ds −

∫ 4

1

(4 − s)−
2
3 (s − 1)

1
2

Γ( 1
3 )Γ(3

2 )
ds

+

∫ 4

1

(4 − s)−
2
3 (s − 1)

2
3

Γ( 1
3 )Γ( 5

3 )
ds

≈3.7194 , f (t)|t=4 − f (0) = 4.
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On the other hand, for 2 ≤ t ≤ 6, we get

CDp(t)
0+

I p(t)
0+

f (t) =I1−p(t)
0+

d
dt

I p(t)
0+

f (t)

=

∫ t

0

(t − s)−p(t)

Γ(1 − p(t))
d
ds

∫ s

0

(s − τ)p(s)−1τ

Γ(p(s))
dτds

=

∫ 1

0

(t − s)−p(t)

Γ(1 − p(t))
d
ds

∫ s

0

(s − τ)p(s)−1τ

Γ(p(s))
dτds

+

∫ t

1

(t − s)−p(t)

Γ(1 − p(t))
d
ds

∫ s

0

(s − τ)p(s)−1τ

Γ(p(s))
dτds

=

∫ 1

0

(t − s)−p(t)s
1
2

Γ(1 − p(t))Γ( 3
2 )

ds +

∫ t

1

(t − s)−p(t)

Γ(1 − p(t))
d
ds

∫ 1

0

(s − τ)−
1
2τ

Γ(1
2 )

dτds

+

∫ t

1

(t − s)−p(t)

Γ(1 − p(t))
d
ds

∫ s

1

(s − τ)−
2
3τ

Γ( 1
3 )

dτds

=

∫ 1

0

(t − s)−p(t)s
1
2

Γ(1 − p(t))Γ( 3
2 )

ds +

∫ t

1

(t − s)−p(t)

Γ(1 − p(t))
1 − 2s + 2(s − 1)

1
2 s

1
2

π
1
2 (s − 1)

1
2

ds

+

∫ t

1

(t − s)−p(t)

Γ(1 − p(t))
(3s − 2)(s − 1)−

2
3

Γ(1
3 )

ds,

so
CDp(t)

0+
I p(t)
0+

f (t)|t=4 =

∫ 1

0

(4 − s)−
1
3 s

1
2

Γ(2
3 )Γ( 3

2 )
ds +

∫ 4

1

(4 − s)−
1
3

Γ(2
3 )

1 − 2s + 2(s − 1)
1
2 s

1
2

π
1
2 (s − 1)

1
2

ds

+

∫ 4

1

(4 − s)−
1
3

Γ( 2
3 )

(3s − 2)(s − 1)−
2
3

Γ( 1
3 )

ds

≈4.0331 , f (t)|t=4 = 4.

Example 1.4 verifies the properties (1.4) and (1.5) of constant order fractional calculus is impossible
for I p(t)

0+
CDp(t)

0+
f (t) and CDp(t)

0+
I p(t)
0+

f (t) when the order is a piecewise function.
Hence, we can claim that variable order fractional integral defined by (1.3) has no law of exponents.

Moreover, for general functions p(t) and f (t), the representations of CDp(t)
0+

I p(t)
0+

f (t) and I p(t)
0+

CDp(t)
0+

f (t)
are not clear. These obstacles make it difficult for us to transform variable order fractional differential
equation into equivalent integral equation. As a result, it is almost impossible that some nonlinear
functional analysis classical methods such as fixed point theorems are applied to prove the existence
of solution of the corresponding integral equation. To the best of our knowledge, there are few works
( [8,23,24,27]) to deal with the existence of solutions to variable order fractional differential equations.

In [18], authors considered the following numerical solutions for variable order fractional functional
boundary value problem{

Dα(x)u(x) + a(x)u′(x) + b(x)u(x) + c(x)u(τ(x)) = f (x), 0 ≤ x ≤ 1,
u(0) = λ0, u(1) = λ1,

(1.6)

where Dα(x) is the variable order Caputo fractional derivative defined by

Dα(x)u(x) =
1

Γ(2 − α(x))

∫ x

0
(x − s)1−α(x)u′′(s)ds, 1 ≤ α(x) < 2;

AIMS Mathematics Volume 6, Issue 7, 6845–6867.
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a(x), b(x), c(x) ∈ C2[0, 1]; α(x), τ(x), f (x) ∈ C[0, 1]; and λ0, λ1 ∈ R. When α(x) =
5+sin(x)

4 , a(x) =

cos(x), b(x) = 4, c(x) = 5, τ(x) = x2, f (x) = 2x2−α(x)

Γ(3−α(x)) + 5x4 + 4x2 + 2x cos(x) and λ0 = 0, λ1 = 1, the
exact solution of problem (1.6) was given by

u(x) = x2.

In (1.6), if we take f (x) = 6x6 +5x4 +4x2 +2x cos(x), it is almost impossible to obtain its exact solution.
In fact, we don’t even know whether the solution to problem (1.6) exists.

In [8], authors discussed the existence of solution for a generalized fractional differential equation
with non-autonomous variable order operators{

cD
q(t,x(t))
t x(t) = f (t, x(t)),

x(c) = x0,
(1.7)

where x ∈ Rn is the state vector, f : R × Rn → Rn is a vector field, c ∈ R is the lower terminal, x0

is the initial value, 0 < q (t, x (t)) 6 1, and cD
q(t,x(t))
t is the variable order Riemann-Liouville fractional

differential operator defined as follows

cD
q(t,x(t))
t x(t) =

d
dt

∫ t

c

(t − s)−q(s,x(s))

Γ(1 − q(s, x(s))
x(s)ds.

In [8] , authors claimed that, by [35], the initial value problem (1.7) is equivalent to the integral equation x(t) =
∫ t

c
(t−s)q(s,x(s))−1

Γ(q(s,x(s)) f (s, x(s))ds + Ψ( f ,−q, a, c, t) t > c,
x(c) = x0,

(1.8)

where Ψ : Rn × R × R × R × R → Rn is the intialization function [35] which is needed in the general
form given in (1.8) and the scalar a is used for characterizing the initial period such that for a < t < c,
the initial information is given, and for t < a we consider f (t) = 0. Given a, one can develop a closed
analytical formula for Ψ [35].

However, in our opinion, there is no theoretical basis for this assertion. Because there are not
contents related to variable order fractional integral and derivative in [35].

In [27], authors considered the existence results of solution to the initial value problem (1.1), in
which f (t, x(t)) : [0,T ] × R → R and p : [0,T ] × R → (0, 1) are both continuous functions, and
0 < p1 ≤ p(t, x(t)) ≤ p2 < 1, u0 ∈ R. By means of Arzela-Ascoli theorem, authors obtained that the
following sequence xn(t) = xn−1(t) +

∫ t− T
n

0
(t−s)−p(t,x(t))

Γ(1−p(t,x(t))) xn−1(s)ds − f [t,
∫ t− T

n

0
xn−1(s)ds + u0], t ∈ (T

n ,T ],
xn(t) = 0, t ∈ [0, T

n ]
(1.9)

existed a subsequence still denoted by the sequence {xn} which uniformly converged to a continuous
function x∗. Set x(t) =

∫ t

0
x∗(s)ds+u0, then authors obtained the problem (1.1) existed one solution x(t).

But, we find that it has fatal errors in these analysis procedure, that is the result of uniformly bounded
of sequence {xn}. This is easy to be overlooked. In our opinion the sequence {xn} is non-uniformly
bounded. As a result, the existence result of solution to the initial value problem (1.1) is not obtained
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by Arzela-Ascoli theorem. On the other hand, it is almost impossible to transform the initial value
problem (1.1) into equivalent integral equation.

Base on these facts, how to deal with the existence of solution of variable order fractional differential
equations is a principal problem to be solved. In this paper, according to the classical definition of
solution of integer order(or constant fractional order) differential equation, we propose a new definition
of continuous approximate solution to the problem (1.1) under two kinds of variable order p(t, x(t)) and
p(t).

The paper is organized as follows. In section 2, a new definition of approximate solution to the
problem (1.1) for variable order p(t, x(t)) is proposed and we provide an example to demonstrate the
definition. Section 3 is devoted to introduce another definition of approximate solution for p(t), then
an example is given to illustrate the theoretical result.

2. Definition of approximate solution for p(t, x(t))

Throughout this section, we assume that
(A1): p : [0,T ] × R→ (0, 1) is a continuous function;
(A2): f : [0,T ] × R→ R is a continuous differential function.
We begin with definitions and characters of solution of integer order and constant fractional order.

Remark 2.1. According to the definition of solution x(t) of differential equation, it should be defined
in the interval, in which the equation is satisfied. For instance, a function x(t) is called a solution of
the following initial value problem{

x′(t) = t2sinx + t3x3, 0 < t ≤ T,
x(0) = 0

if x is defined in the interval [0,T ], satisfying the equation and the initial value condition x(0) = 0.

Remark 2.2. Fractional operators are typical nonlocal operators, which can well describe the memory
and global correlation of physical processes. Hence, for initial value problem of fractional order
differential equations, its solution in given interval is affected by the state of solution in the preceding
intervals.

By Remark 2.1, a function x : [0,T ] → R is called a solution of the initial value problem (1.1) if
x(t) satisfies the equation (1.1) and x(0) = u0. However, based on analysis above, we are faced with
extreme difficulties in considering the existence of solution of initial value problem (1.1) in sense of
this definition. Thus, a new continuous approximate solution of problem (1.1) is proposed.

We start off by analyzing the problem (1.1) based on the facts above.
Let

p1 = p(0, u0). (2.1)

We consider the initial value problem defined in the interval [0,T ] as following{
CDp1

0+
x(t) = f (t, x), 0 < t ≤ T,

x(0) = u0.
(2.2)
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Let x1 ∈ C1(0,T ]∩C[0,T ] be a solution of the initial value problem (2.2)(by standard way, we know
that the initial value problem (2.2) exists continuous solution in [0,T ] under some assumptions on f ).
Since x1(t) is right continuous at point 0, then for arbitrary small ε > 0, there exists δ01 > 0 such that

|x1(t) − x1(0)| < ε, for 0 < t ≤ δ01. (2.3)

And because p(t, x1(t)) is right continuous at point (0, x1(0)) = (0, u0), then together with (2.3) and
(2.1), for the above ε, there exists δ0 > 0 such that

|p(t, x1(t)) − p(0, x1(0))| = |p(t, x1(t)) − p(0, u0)| = |p(t, x1(t)) − p1| < ε, for 0 < t ≤ δ0. (2.4)

If δ0 < T , we take δ0 � T1 and continue next procedure. Otherwise, we take T1 = T and end this
procedure.

We assume that δ0 < T , and then let

p2 = p(T1, x1(T1)). (2.5)

In order to consider the existence of solution to (1.1) in the interval [T1,T2], we let

x′(t) =

∫ t

0
x1(s)ds, t ∈ (0,T1]. (2.6)

By (2.6) and integration by parts, we denote∫ T1

0

(t − s)−p2 x′(s)
Γ(1 − p2)

ds =

∫ T1

0

(t − s)1−p2 x1(s)
Γ(2 − p2)

ds −
(t − T1)1−p2

Γ(2 − p2)

∫ T1

0
x1(s)ds � ϕx1(t). (2.7)

Hence, we may consider the initial value problem defined in the interval [T1,T ] as following{
CDp2

T1+
x(t) = f (t, x) − ϕx1(t), T1 < t ≤ T,

x(T1) = x1(T1),
(2.8)

where x1(t) is the solution of the initial value problem (2.2) and ϕx1 is the function defined by (2.7).
Let x2 ∈ C1(T1,T ]∩C[T1,T ] be a solution of the problem (2.8) (by standard way, we know that the

problem (2.8) exists continuous solution in [T1,T ] under some assumptions on f ). Since x2(t) is right
continuous at point T1, then for the above ε, there exists δ11 > 0 such that

|x2(t) − x2(T1)| < ε, for T1 < t ≤ T1 + δ11. (2.9)

And because p(t, x2(t)) is right continuous at point (T1, x2(T1)) = (T1, x1(T1)), then together with (2.9),
for the above ε, there exists δ1 > 0 such that

|p(t, x2(t)) − p(T1, x2(T1))| = |p(t, x2(t)) − p(T1, x1(T1))| < ε, for T1 < t ≤ T1 + δ1. (2.10)

If T1 + δ1 < T , we take T1 + δ1 � T2 and continue next procedure. Otherwise, we take T2 = T and end
this procedure. Obviously, according to (2.10) and (2.5), we obtain

|p(t, x2(t)) − p2| < ε, for T1 < t ≤ T2. (2.11)
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We assume that T1 + δ1 < T , and then let

p3 = p(T2, x2(T2)). (2.12)

We let

x′(t) =


∫ t

0
x1(s)ds, t ∈ (0,T1],∫ t

T1
x2(s)ds, t ∈ (T1,T2].

(2.13)

Thus, by (2.13) and integration by parts, we have∫ Ti

Ti−1

(t − s)−p3 x′(s)
Γ(1 − p3)

ds =

∫ Ti

Ti−1

(t − s)1−p3 xi(s)
Γ(2 − p3)

ds −
(t − Ti)1−p3

Γ(2 − p3)

∫ Ti

Ti−1

xi(s)ds � φxi(t), (2.14)

i = 1, 2,T0 = 0.
We may consider the initial value problem in the interval [T2,T ] as following{

CDp3
T2+

x(t) = f (t, x) − φx1(t) − φx2(t), T2 < t ≤ T,
x(T2) = x2(T2),

(2.15)

where xi(t) is the solution of the initial value problems (2.2) and (2.8) respectively, and φxi(i = 1, 2) is
the function defined by (2.14).

Let x3 ∈ C1(T2,T ]∩C[T2,T ] be a solution of the problem (2.15)(by standard way, we know that the
problem (2.15) exists continuous solution in [T2,T ] under some assumptions on f ). Since x3(t) is right
continuous at point T2, then for the above ε, there exists δ21 > 0 such that

|x3(t) − x3(T2)| < ε, for T2 < t ≤ T2 + δ21. (2.16)

And because p(t, x3(t)) is right continuous at point (T2, x3(T2)) = (T2, x2(T2)), then together with (2.16),
for the above ε, there exists δ2 > 0 such that

|p(t, x3(t)) − p(T2, x3(T2))| = |p(t, x3(t)) − p(T2, x2(T2))| < ε, for T2 < t ≤ T2 + δ2. (2.17)

If T2 + δ2 < T , we take T2 + δ2 � T3 and continue next procedure. Otherwise, we take T3 = T and end
this procedure. Obviously, according to (2.17) and (2.12), it holds

|p(t, x3(t)) − p3| < ε, for T2 < t ≤ T3. (2.18)

We assume T2 + δ2 < T , and then let

p4 = p(T3, x3(T3)). (2.19)

We let

x′(t) =


∫ t

0
x1(s)ds, t ∈ (0,T1],∫ t

T1
x2(s)ds, t ∈ (T1,T2],∫ t

T2
x3(s)ds, t ∈ (T2,T3].

(2.20)
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By (2.20) and integration by parts, we get

ωxi(t) �
∫ Ti

Ti−1

(t − s)−p4 x′(s)
Γ(1 − p4)

ds =

∫ Ti

Ti−1

(t − s)1−p4 xi(s)
Γ(2 − p4)

ds −
(t − Ti)1−p4

Γ(2 − p4)

∫ Ti

Ti−1

xi(s)ds, (2.21)

i = 1, 2, 3,T0 = 0.
We may consider the initial value problem in the interval [T3,T ] as following{ CDp4

T3+
x(t) = f (t, x) − ωx1(t) − ωx2(t) − ωx3(t), T3 < t ≤ T,

x(T3) = x3(T3),
(2.22)

where xi(t) are solutions of the initial value problems (2.2), (2.8) and (2.15) respectively, and ωxi(i =

1, 2, 3) is the function defined by (2.21).
Since [0,T ] is a finite interval, we continue this procedure and could finish it by finite steps. That

is, there exists δn∗−2 > 0, δn∗−1 > 0 (n∗ ∈ N) such that Tn∗−2 + δn∗−2 � Tn∗−1 < T , Tn∗−1 + δn∗−1 ≥

T � Tn∗ . Then we have intervals [0,T1], [T1,T2], [T2,T3], · · · , [Tn∗−2,Tn∗−1], [Tn∗−1,T ], and solutions
xi ∈ C1(Ti−1,T ]∩C[Ti−1,T ] of the following initial value problem defined in the interval [Ti−1,T ]{

CDpi
Ti−1+

x(t) = f (t, x) − ψx1(t) − ψx2(t) − · · · − ψxi−1(t), Ti−1 < t ≤ T,
x(Ti−1) = xi−1(Ti−1),

(2.23)

where pi = p(Ti−1, xi−1(Ti−1)) satisfying

|p(t, xi(t)) − pi| < ε, for Ti−1 < t ≤ Ti, (2.24)

and

ψx j(t) �
∫ T j

T j−1

(t − s)−pi x′(s)
Γ(1 − pi)

ds =

∫ T j

T j−1

(t − s)1−pi x j(s)
Γ(2 − pi)

ds −
(t − T j)1−pi

Γ(2 − pi)

∫ T j

T j−1

x j(s)ds, (2.25)

j = 1, 2, . . . , i−1, i = 5, 6, · · · , n∗, T0 = 0,Tn∗ = T . For details, please refer to the analysis of problems
(2.2), (2.8), (2.15) and (2.22).

From the arguments above, we obtain a function x∗ ∈ C[0,T ] defined by

x∗(t) =


x1(t), 0 ≤ t ≤ T1,

x2(t), T1 ≤ t ≤ T2,
...

xn∗(t), Tn∗−1 ≤ t ≤ T.

(2.26)

Now, we propose the new definition of approximate solution to the initial value problem (1.1),
which is crucial in our work.

Definition 2.1. If there exists natural number n∗ ∈ N and intervals [0,T1], (T1,T2], · · · , (Tn∗−1,T ], and
initial value problems (2.2), (2.8), (2.15), (2.22), (2.23) exist solutions x1 ∈ C1(0,T ] ∩ C[0,T ], x2 ∈

C1(T1,T ]∩C[T1,T ], x3 ∈ C1(T2,T ]∩C[T2,T ], x4 ∈ C1(T3,T ]∩C[T3,T ], xi ∈ C1(Ti−1,T ]∩C[Ti−1,T ]
(i = 5, · · · , n∗) respectively, then the function x ∈ C[0,T ] defined by

x(t) =



x1(t), 0 ≤ t ≤ T1,

x2(t),T1 ≤ t ≤ T2,

x3(t),T2 ≤ t ≤ T3,
...

xn∗(t),Tn∗−1 ≤ t ≤ T

(2.27)
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is called an approximate solution of the initial value problem (1.1).

Remark 2.3. If x1(t), x2(t), · · · , xn∗(t) are both unique, then we say x(t) defined by (2.27) is unique
approximate solution of the initial value problem (1.1).

Remark 2.4. Based on Remark 2.1, Definition 2.1 seems suitable.

Remark 2.5. From Definition 2.1, we notice that approximate solution x(t) of the initial value problem
(1.1) in interval [T2,T3] is x3(t) which is a solution of the initial value problem (2.15). Obviously, the
state of x3(t) is affected by the state of x1(t) and x2(t). That is, the state of x(t) in interval [T2,T3]
is affected by the state of x(t) in interval [0,T2]. Hence, Definition 2.1 is suitable and reasonable
according to Remark 2.2.

Remark 2.6. In our previous analysis, we chose functions (2.6), (2.13), etc, so that we obtain the initial
value problems (2.8), (2.15), etc. Such a choice must meet the following three reasons at the same time.
The first reason is operability, for instance, choosing function (2.13) enable us to calculate functions
φx1(t), φx2(t), and obtain the initial value problem (2.15) defined in [T2,T ]. The second reason is for
fitting Remark 2.1 and Remark 2.5. If we take x′(t) = x1(T1) for 0 ≤ t ≤ T1 (here x1(t) is the solution
of the initial value problem (2.2)), we may easily calculate function ϕx1(t) =

x1(T1)(t1−p1−(t−T1)1−p1 )
Γ(2−p1) , and

then have the initial value problem (2.8) with such ϕx1(t). However, we see that the state of solution
of problem (2.8) is only affected by x1(T1), but not affected by the state of x1(t), 0 ≤ t ≤ T1. The third
reason is the rationality of the obtained equation. For instance, according to the definition the Caputo
fractional derivative CDp2

T1+
x (t) = 1

Γ(1−p2)

∫ t

T1
(t − s)−p2 x′ (s) ds, the solution of initial value problem

(2.8) exists only if the term f (t, ·) − ϕx1(t) is absolutely continuous in the interval [T1,T ], otherwise
one can not obtain the existence of solution of the initial value problems (2.8). If we take x(t) = x1(t)
for 0 ≤ t ≤ T1 (here x1(t) is the solution of initial value problem (2.2)), we may easily get function
ϕx1(t) =

∫ T1

0
(t−s)−p2 x′1(s)ds

Γ(1−p2) , and then obtain initial value problem (2.8) with such ϕx1(t). However, we
can’t obtain the existence of solution of initial value problem (2.8) with this ϕx1(t).

Example 2.1. According to Definition 2.1, we consider the approximate solution of the following
initial value problem  CD

1
2 + t

1000(1+t2)
+

x(t)
3(1+x2(t))

0+
x(t) = 1

2000Γ( 3
2 )

t
1
2 , 0 < t ≤ 1,

x(0) = 0.
(2.28)

By the definition of the variable order Caputo fractional derivative, there is no way to obtain explicit
expression of its solution, even hardly conventional methods to study the existence of its solution. Next,
according to Definition 2.1, we try to seek its approximate solution.

Here p(t, x(t)) = 1
2 + t

1000(1+t2) +
x(t)

3(1+x2(t)) , then we take p1 = p(0, 0) = 1
2 .

First, we consider initial value problem as following CD
1
2
0+

x(t) = 1
2000Γ( 3

2 )
t

1
2 , 0 < t ≤ 1,

x(0) = 0.
(2.29)

By simple calculation, the solution of the problem (2.29) is given by

x1(t) =
1

2000Γ( 3
2 )Γ(1

2 )

∫ t

0
(t − s)−

1
2 s

1
2 ds =

1
2000

t, 0 ≤ t ≤ 1. (2.30)
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Since x1(t) is right continuous at point 0, then for ε = 0.002, we take δ01 = 1
2 such that

|x1(t) − x1(0)| =
1

2000
t ≤

1
4000

< 0.002, for 0 < t ≤ δ01 =
1
2
. (2.31)

Notice that p(t, x1(t)) is right continuous at point (0, x1(0)) = (0, 0), then together with (2.31), for the
above ε = 0.002, we take δ0 = 1

2 , such that

|p(t, x1(t)) − p(0, 0)| = |p(t, x1(t)) − p1| ≤
t

1000
+

x1(t)
3

=
1

2000
+

1
12000

< 0.002 = ε, for 0 < t ≤
1
2
.

We take point T1 = δ0 = 1
2 , and let

p2 = p(T1, x1(T1)) = p
(1
2
, x1

(1
2

))
=

1
2

+
1

2500
+

4000
48000003

. (2.32)

We denote

ϕx1(t) =

∫ 1
2

0
(t − s)1−p2 x1(s)ds

Γ(2 − p2)
−

(t − 1
2 )1−p2

∫ 1
2

0
x1(s)ds

Γ(2 − p2)
,

1
2
< t ≤ 1. (2.33)

Next, we consider the following initial value problem CDp2
1
2 +

x(t) = 1
2000Γ( 3

2 )
t

1
2 − ϕx1(t),

1
2 < t ≤ 1,

x(1
2 ) = x1( 1

2 ) = 1
4000 .

(2.34)

From the facts of constant order fractional calculus, the solution of the initial value problem (2.34) is

x2(t) =
1

4000
+

1
2000Γ(3

2 )Γ(p2)

∫ t

1
2

(t − s)p2−1s
1
2 ds −

1
Γ(p2)

∫ t

1
2

(t − s)p2−1ϕx1(s)ds. (2.35)

We notice that

|ϕx1(t)| =
1

2000Γ(2 − p2)

∣∣∣∣∣ ∫ 1
2

0
(t − s)1−p2 sds −

(
t −

1
2

)1−p2
∫ 1

2

0
sds

∣∣∣∣∣
≤

1
2000Γ(2 − p2)

[ ∫ 1
2

0
sds +

∫ 1
2

0
sds

]
<

1
2000Γ(2 − p2)

.

Since x2(t) is right continuous at point T1 = 1
2 , then for ε = 0.002, we take δ11 = 1

2 such that for
1
2 < t ≤ 1, we have∣∣∣∣∣x2(t) − x2

(1
2

)∣∣∣∣∣ ≤ 1
2000Γ( 3

2 )Γ(p2)

∫ t

1
2

(t − s)p2−1s
1
2 ds +

1
Γ(p2)

∫ t

1
2

(t − s)p2−1|ϕx1(s)|ds

≤
1

2000Γ( 3
2 )Γ(p2)

∫ t

1
2

(t − s)p2−1ds +
1

2000Γ(2 − p2)Γ(p2)

∫ t

1
2

(t − s)p2−1ds

≤
1

2000Γ( 3
2 )Γ(1 + p2)

(
t −

1
2

)p2

+
1

2000Γ(2 − p2)Γ(1 + p2)

(
t −

1
2

)p2

≤
1

2000Γ( 3
2 )Γ(1 + p2)

+
1

2000Γ(2 − p2)Γ(1 + p2)

≈0.00096
<0.002.
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Because p(t, x2(t)) is right continuous at point (T1, x2(T1)) = ( 1
2 , x2(1

2 )), then together with the
estimation above, for ε = 0.002, we take δ1 = 1

2 such that for 1
2 < t ≤ 1,

|p(t, x2(t)) − p(T1, x2(T1))| =
∣∣∣∣∣ t
1000(1 + t2)

−

1
2

1000(1 + ( 1
2 )2)

+
x2(t)

3(1 + x2
2(t))

−
x2( 1

2 )

3(1 + x2
2( 1

2 ))

∣∣∣∣∣
≤

1
1000

∣∣∣∣∣t − 1
2

∣∣∣∣∣ +
1
3

∣∣∣∣∣x2(t) − x2

(1
2

)∣∣∣∣∣
≤

1
2000

+
2

3000
<0.002.

From the arguments above, the function x∗ ∈ C[0, 1] defined by

x∗(t) =


1

2000 t, 0 ≤ t ≤ 1
2 ,

1
4000 +

∫ t
1
2

(t−s)p2−1 s
1
2 ds

2000Γ( 3
2 )Γ(p2)

−

∫ t
1
2

(t−s)p2−1ϕx1 (s)ds

Γ(p2) , 1
2 ≤ t ≤ 1

(2.36)

is the continuous approximate solution of problem (2.28) according to Definition 2.1(see Figure 1).

0.2 0.4 0.6 0.8 1.0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Figure 1. x∗(t) is given by (2.36).

3. Definition of approximate solution for p(t)

In this section, we study the initial value problem (1.1) for p(t, x(t)) ≡ p(t). Since p(t) is a function
of one variable, we may propose another definition of approximate solution of the initial value problem
(1.1) such that we can simplify the analysis process in the section 2.

The following result is crucial for us to propose another definition of approximate solution of the
initial value problem (1.1) for the particular order p(t).
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Lemma 3.1. Assume that p : [0,T ] → (0, 1) is a continuous function, then for arbitrary small ε > 0,
there exists natural number n∗ and intervals [0,T1], (T1,T2], · · · , (Tn∗−1,T ] and a piecewise function
α : [0,T ]→ (0, 1) defined by

α(t) =


p1, t ∈ [0,T1],
p2, t ∈ (T1,T2],
...

pn∗ , t ∈ (Tn∗−1,T ],

(3.1)

where pk = p(Tk−1)(k = 1, 2, · · · , n∗,T0 = 0), such that for arbitrary small ε > 0,

|p(t) − α(t)| < ε, 0 ≤ t ≤ T. (3.2)

Proof. Since p(t) is right continuous at point 0, then for arbitrary small ε > 0, there exists δ0 > 0 such
that

|p(t) − p(0)| < ε, for 0 ≤ t ≤ δ0. (3.3)

We take point δ0 � T1 (if T1 < T , we consider continuity of p(t) at point T1, otherwise, we end this
procedure). Since p(t) is right continuous at point T1, then for the above ε, there exists δ1 > 0 such that

|p(t) − p(T1)| < ε, for T1 < t ≤ T1 + δ1. (3.4)

We take point T1 + δ1 � T2 (if T2 < T , we consider continuity of p(t) at point T2, otherwise, we end
this procedure). Since p(t) is right continuous at point T2, then for the above ε, there exists δ2 > 0 such
that

|p(t) − p(T2)| < ε, for T2 < t ≤ T2 + δ2. (3.5)

Since [0,T ] is a finite interval, we continue this analysis procedure and could finish it by finite
steps. That is, there exists δn∗−2 > 0 and δn∗−1 > 0 (n∗ ∈ N) such that Tn∗−2 + δn∗−2 � Tn∗−1 < T and
Tn∗−1 + δn∗−1 ≥ T . Then we have intervals [0,T1], [T1,T2], · · · , [Tn∗−2,Tn∗−1], [Tn∗−1,T ], such that for
the above ε,

|p(t) − p(Ti−1)| < ε, for Ti−1 < t ≤ Ti, (3.6)

i = 1, 2, . . . , n∗, T0 = 0 and Tn∗ = T .
We denote

p(0) � p1, p(T1) � p2, p(T2) � p3, p(T3) � p4, · · · , p(Tn∗−1) � pn∗ . (3.7)

Thus, we define a piecewise function α : [0,T ]→ (0, 1) as following

α(t) =


p1, t ∈ [0,T1],
p2, t ∈ (T1,T2],
...

pn∗ , t ∈ (Tn∗−1,T ].

(3.8)

From (3.3)–(3.8), we obtain that for the arbitrary small ε > 0,

|p(t) − α(t)| < ε, 0 ≤ t ≤ T.

The proof is completed. �

AIMS Mathematics Volume 6, Issue 7, 6845–6867.



6860

Similar to the analysis in the section 2, we consider approximate solution of the initial value problem
(1.1) in the following sense: if p(t) and α(t) satisfy (3.2), then solution x(t) of the following initial value
problem {

CDα(t)
0+

x(t) = f (t, x), 0 < t ≤ T,
x(0) = u0

(3.9)

is called the approximate solution of the initial value problem (1.1).
We start off by analyzing the problem (3.9), and then propose a new definition of continuous

approximate solutions to the initial value problem (1.1) with p(t, x(t)) = p(t).
For the initial value problem (3.9) in the interval [0,T1], by (3.1), we have the initial value problem{

CDp1
0+

x(t) = f (t, x), 0 < t ≤ T1,

x(0) = u0.
(3.10)

By similar analysis in section 2, we may consider the initial value problem defined in the interval
[T1,T2] as following {

CDp2
T1+

x(t) = f (t, x) − ϕx1(t), T1 < t ≤ T2,

x(T1) = x1(T1),
(3.11)

where x1(t) is the solution of the initial value problem (3.10) and∫ T1

0

(t − s)−p2 x′(s)
Γ(1 − p2)

ds =

∫ T1

0

(t − s)1−p2 x1(s)
Γ(2 − p2)

ds −
(t − T1)1−p2

Γ(2 − p2)

∫ T1

0
x1(s)ds � ϕx1(t),

in which x′(s) =
∫ s

0
x1(τ)dτ.

Using the same method, we may consider the initial value problem defined in the interval [T2,T3]
as following {

CDp3
T2+

x(t) = f (t, x) − φx1(t) − φx2(t),T2 < t ≤ T3,

x(T2) = x2(T2),
(3.12)

where x1(t) is the solution of the initial value problem (3.10), x2(t) is the solution of the initial value
problem (3.11) and φxi(t) is the function defined by∫ Ti

Ti−1

(t − s)−p3 x′(s)
Γ(1 − p3)

ds =

∫ Ti

Ti−1

(t − s)1−p3 xi(s)
Γ(2 − p3)

ds −
(t − Ti)1−p3

Γ(2 − p3)

∫ Ti

Ti−1

xi(s)ds � φxi(t),

in which x′(s) =
∫ s

Ti−1
xi(τ)dτ, i = 1, 2,T0 = 0.

Similarly, we may consider the initial value problem defined in the interval [Ti−1,Ti] as following{
CDpi

Ti−1+
x(t) = f (t, x) − ψx1(t) − ψx2(t) − · · · − ψxi−1(t),Ti−1 < t ≤ Ti,

x(Ti−1) = xi−1(Ti−1),
(3.13)

where x1(t) is the solution of the initial value problem (3.10), x2(t) is the solution of the initial value
problem (3.11), x3(t) is the solution of the initial value problem (3.12), xi(t) is the solution of the initial
value problem (3.13) and ψx j is the function defined by∫ T j

T j−1

(t − s)−pi x′(s)
Γ(1 − pi)

ds =

∫ T j

T j−1

(t − s)1−pi x j(s)
Γ(2 − pi)

ds −
(t − T j)1−pi

Γ(2 − pi)

∫ T j

T j−1
x j(s)ds � ψx j(t),
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in which x′(s) =
∫ s

T j−1
x j(τ)dτ, j = 1, 2, · · · , i − 1, i = 4, · · · , n∗, T0 = 0,Tn∗ = T .

Based on the arguments above, we propose the definition of solution to the initial value problem
(3.9), which is crucial in our work.

Definition 3.1. If the initial value problems (3.10), (3.11), (3.12) and (3.13) exist solutions
x1 : [0,T1] → R, x2 : [T1,T2] → R, x3 : [T2,T3] → R, xi : [Ti−1,Ti] → R(i = 4, · · · , n∗, Tn∗ = T)
respectively, then we call function x : [0,T ]→ R defined by

x(t) =



x1(t), 0 ≤ t ≤ T1,

x2(t), T1 ≤ t ≤ T2,

x3(t), T2 ≤ t ≤ T3,
...

xn∗(t), Tn∗−1 ≤ t ≤ T

(3.14)

is a solution of the initial value problem (3.9).

Remark 3.1. If x1(t), x2(t), · · · , xn∗(t) are unique, then we say x(t) defined by (3.14) is unique solution
of the initial value problem (3.9).

The following is the definition of the approximate solution of the initial value problem (1.1) with
p(t, x(t)) ≡ p(t).

Definition 3.2. We call the solution of initial value problem (3.9) defined by Definition 3.1 is an
(unique) approximate solution of initial value problem (1.1) with p(t, x(t)) = p(t) if α(t) is defined by
Lemma 3.1.

Remark 3.2. For the initial value problem (1.1) with p(t, x(t)) ≡ p(t), its approximate solution defined
by Definition 3.2 is consistent with by Definition 2.1.

Example 3.1. We consider the following initial value problem for linear equation CD
1
3 + t

1000(1+t2)

0+
x(t) = t, 0 < t ≤ 1,

x(0) = 0.
(3.15)

By the definition of the variable order Caputo fractional derivative, there is no way to obtain explicit
expression of its solution, even hardly conventional methods to study the existence of its solution. Next,
we try to seek its approximate solution in the sense of Definition 3.2.

Here p(t) = 1
3 + t

1000(1+t2) . Obviously, p(t) is continuous on [0, 1] and 0 < p(t) < 1.
By the right continuity of function p(t) at point 0, for given arbitrary small ε = 0.00035, taking

δ0 = 1
3 , when 0 ≤ t ≤ δ0 = 1

3 , we have

|p(t) − p(0)| =
∣∣∣∣∣ t
1000(1 + t2)

∣∣∣∣∣ ≤ t
1000

≤
δ0

1000
<

1
3000

< ε.
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Then, we get T1 = δ0 = 1
3 . By the right continuity of function p(t) at point T1, for the above ε,

taking δ1 = 1
3 , when T1 < t ≤ T1 + δ1(1

3 < t ≤ 2
3 ), by differential mean value theorem, we have

|p(t) − p(T1)| =
∣∣∣∣∣ t
1000(1 + t2)

−
T1

1000(1 + T 2
1 )

∣∣∣∣∣
≤

∣∣∣∣∣ 1 − ξ2

1000(1 + ξ2)2

∣∣∣∣∣|t − T1|

≤
1 + ξ2

1000(1 + ξ2)2 |t − T1|

≤
1

1000
|t − T1|

≤
δ1

1000

<
1

3000
< ε,

where T1 < ξ < t < 2
3 .

We let T2 = T1 +δ1 = 2
3 . By the right continuity of function p(t) at point T2, for ε = 0.00035, taking

δ2 = 1
3 , when T2 < t ≤ T2 + δ2( 2

3 < t ≤ 1), we have

|p(t) − p(T2)| =
∣∣∣∣∣ t
1000(1 + t2)

−
T2

1000(1 + T 2
2 )

∣∣∣∣∣ ≤ δ2

1000
<

1
3000

< ε.

We see that T2 + δ2 = 1, hence, we obtain three intervals [0, 1
3 ], ( 1

3 ,
2
3 ], ( 2

3 , 1] and piecewise constant
function α(t) defined by

α(t) =



p1 = p(0) = 1
3 , t ∈ [0, 1

3 ],

p2 = p(1
3 ) = 10009

30000 , t ∈ ( 1
3 ,

2
3 ],

p3 = p(2
3 ) = 6509

19500 , t ∈ ( 2
3 , 1],

which satisfies
|α(t) − p(t)| < 0.00035 = ε. (3.16)

Thus, according to Definition 3.2, we first consider the following initial value problem{
CDp1

0+
x(t) = t, 0 < t ≤ 1

3 ,

x(0) = 0.
(3.17)

By the facts of constant order fractional calculus, the unique solution of the initial value problem (3.17)
is

x1(t) =
1

Γ( 7
3 )

t
4
3 , 0 ≤ t ≤

1
3
. (3.18)

Let

ϕx1(t) =

∫ 1
3

0

(t − s)1−p2 x1(s)
Γ(2 − p2)

ds −
(t − 1

3 )1−p2

Γ(2 − p2)

∫ 1
3

0
x1(s)ds. (3.19)
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Next, we consider the following initial value problem CDp2
1
3 +

x(t) = t − ϕx1(t),
1
3 < t ≤ 2

3 ,

x(1
3 ) = x1( 1

3 ),
(3.20)

where x1 and ψx1 are given by (3.18) and (3.19) respectively. By simple calculation, we get the solution
of the initial value problem (3.20) as following

x2(t) =

∫ t

1
3

(t − s)p2−1

Γ(p2)
(s − ϕx1(s))ds + x1

(1
3

)
,

1
3
≤ t ≤

2
3
. (3.21)

Let 
ψx1(t) =

∫ 1
3

0
(t−s)1−p3 x1(s)

Γ(2−p3) ds − (t− 1
3 )1−p3

Γ(2−p3)

∫ 1
3

0
x1(s)ds,

ψx2(t) =
∫ 2

3
1
3

(t−s)1−p3 x2(s)
Γ(2−p3) ds − (t− 2

3 )1−p3

Γ(2−p3)

∫ 2
3

1
3

x2(s)ds.

(3.22)

Finally, we consider the following initial value problem CDp3
2
3 +

x(t) = t − ψx1(t) − ψx2(t),
2
3 < t ≤ 1,

x( 2
3 ) = x2( 2

3 ),
(3.23)

where x1 is given by (3.18), x2 is presented by (3.21) and ψxi(i = 1, 2) is given by (3.22). Thus, the
solution of the initial value problem (3.23) is obtained by

x3(t) =

∫ t

2
3

(t − s)p3−1

Γ(p3)
(s − ψx1(s) − ψx2(s))ds + x2

(2
3

)
,

2
3
≤ t ≤ 1. (3.24)

According to Definition 3.2, the approximate solution of initial value problem (3.15) is given by

x(t) =



x1(t) = 1
Γ( 7

3 )
t

4
3 , 0 ≤ t ≤ 1

3 ,

x2(t) =
∫ t

1
3

(t−s)p2−1

Γ(p2) (s − ϕx1(s))ds + x1( 1
3 ), 1

3 ≤ t ≤ 2
3

x3(t) =
∫ t

2
3

(t−s)p3−1

Γ(p3) (s − ψx1(s) − ψx2(s))ds + x2(2
3 ), 2

3 ≤ t ≤ 1.

(3.25)

Obviously, x(t) defined by (3.25) is continuous.

Example 3.2. We consider the continuous approximate solution of initial value problem (3.15) in the
sense of Definition 2.1.

According Definition 2.1, let

p0 = p(0) =
1
3
. (3.26)

We first consider the following initial value problem{
CDp1

0+
x(t) = t, 0 < t ≤ 1,

x(0) = 0.
(3.27)
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By the arguments above, we know that the solution of initial value problem (3.27) is

x1(t) =
1

Γ(7
3 )

t
4
3 , 0 ≤ t ≤ 1. (3.28)

Since p(t) is right continuous at point 0, for ε = 0.00035, there exists δ0 = 1
3 such that

|p(t) − p(0)| < ε, 0 < t ≤ δ0 =
1
3
.

We take T1 = δ0 = 1
3 . Let

p2 = p(T1) = p
(1
3

)
. (3.29)

By Definition 2.1, we next seek the solution of the initial value problem CDp2
1
3 +

x(t) = t − ϕx1(t),
1
3 < t ≤ 1,

x( 1
3 ) = x1( 1

3 ),
(3.30)

where x1(t) is the function given by (3.28), and ϕx1(t) is the function defined by

ϕx1(t) =

∫ 1
3

0

(t − s)1−p2 x1(s)
Γ(2 − p2)

ds −
(t − 1

3 )1−p2

Γ(2 − p2)

∫ 1
3

0
x1(s)ds. (3.31)

Thus, the solution of the initial value problem (3.30) is

x2(t) =

∫ t

1
3

(t − s)p2−1

Γ(p2)
(s − ϕx1(s))ds + x1

(1
3

)
,

1
3
≤ t ≤ 1. (3.32)

Since p(t) is right continuous at point T1, for ε = 0.00035, there exists δ1 = 1
3 such that

|p(t) − p(T1)| =
∣∣∣∣∣p(t) − p

(1
3

)∣∣∣∣∣ < ε, 1
3
< t ≤

1
3

+ δ1 =
2
3
. (3.33)

We take T2 = T1 + δ1 = 2
3 . Let

p3 = p(T2) = p
(2
3

)
. (3.34)

According to Definition 2.1, then we seek the solution of the initial value problem CDp3
2
3 +

x(t) = t − ψx1(t) − ψx2(t),
2
3 < t ≤ 1,

x( 2
3 ) = x2( 2

3 ),
(3.35)

where x1(t) is given by (3.28), x2(t) is presented by (3.32) and ψxi(t)(i = 1, 2) is the function as
followings 

ψx1(t) =
∫ 1

3

0
(t−s)1−p3 x1(s)

Γ(2−p3) ds − (t− 1
3 )1−p3

Γ(2−p3)

∫ 1
3

0
x1(s)ds,

ψx2(t) =
∫ 2

3
1
3

(t−s)1−p3 x2(s)
Γ(2−p3) ds − (t− 2

3 )1−p3

Γ(2−p3)

∫ 2
3

1
3

x2(s)ds.

(3.36)
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Thus, the solution of the initial value problem (3.35) is

x3(t) =

∫ t

2
3

(t − s)p3−1

Γ(p3)
(s − ψx1(s) − ψx2(s))ds + x2

(2
3

)
,

2
3
≤ t ≤ 1, (3.37)

where ψxi(i = 1, 2) is given by (3.36).
Hence, the approximate solution of initial value problem (3.15) in the sense of Definition 2.1 is

given by

x(t) =



x1(t) = 1
Γ( 7

3 )
t

4
3 , 0 ≤ t ≤ 1

3 ,

x2(t) =
∫ t

1
3

(t−s)p2−1

Γ(p2) (s − ϕx1(s))ds + x1( 1
3 ), 1

3 ≤ t ≤ 2
3 ,

x3(t) =
∫ t

2
3

(t−s)p3−1

Γ(p3) (s − ψx1(s) − ψx2(s))ds + x2(2
3 ), 2

3 ≤ t ≤ 1.

(3.38)

Obviously, x(t) defined by (3.38) is continuous.
From the analysis above, for the same ε and the same interval [0, 1

3 ], [ 1
3 ,

2
3 ], [2

3 , 1], continuous
approximate solution of initial value problem (3.15) obtained by Definition 3.2 is consistent with which
is obtained by Definition 2.1.

4. Conclusions

This paper propose a new definition of continuous approximate solution to initial value problem
for differential equations involving variable order Caputo fractional derivative on finite interval. It
provide a new method to consider the existence of solution to more general variable order fractional
differential equations. This method is different from common numerical methods and it also can be
apply to variable order fractional boundary value problem.The new results generalize some existing
results in the literature.
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27. J. Jiang, H. Chen, J. L. G. Guirao, D. Cao, Existence of the solution and stability for a class of
variable fractional order differential systems, Chaos Soliton. Fract., 128 (2019), 269–274.

28. R. Almeida, D. Tavares, D. Torres, The variable-order fractional calculus of variations, Springer
International Publishing, 2019.

29. H. G. Sun, A. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential
equations: mathematical foundations, physical models, numerical methods and applications, Fract.
Calc. Appl. Anal., 22 (2019), 27–59.

30. X. Li, B. Wu, A new reproducing kernel method for variable order fractional boundary value
problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387–393.

31. X. Li, B. Wu, A numerical technique for variable fractional functional boundary value problems,
Appl. Math. Lett., 43 (2015), 108–113.

32. J. Deng, Z. Deng, Existence of solutions of initial value problems for nonlinear fractional
differential equations, Appl. Math. Lett., 32 (2014), 6–12.

33. X. Dong, Z. Bai, S. Zhang, Positive solutions to boundary value problems of p-Laplacian with
fractional derivative, Bound. Value Probl., 5 (2017), 1–15.

34. Z. Bai, S. Zhang, S. Sun, Y. Chun, Monotone iterative method for a class of fractional differential
equations, Electron. J. Differ. Eq., 2016 (2016), 1–8.

35. T. T. Hartley, C. F. Lorenzo, Fractional system identification: An approach using continuous order
distributions, NASA Glenn Research Center, 1999.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 7, 6845–6867.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Definition of approximate solution for p(t,x(t))
	Definition of approximate solution for p(t)
	Conclusions

