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Abstract: In this paper, we consider the following Kirchhoff-type equation:

−

(
a + b

∫
R3
|∇u|2dx

)
∆u + u = |u|p−1u, in R3,

where a, b > 0, p ∈ (1, 5). By considering a minimization problem on a special constraint set, we
prove that the above problem has at least one sign-changing solution for any p ∈ (1, 5). Our results
(especially p ∈ (1, 3]) can be regarded as an improvement on the existing results.
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1. Introduction

In this paper, we study the existence of sign-changing solution to the following Kirchhoff equation
by using a direct method

−

(
a + b

∫
R3
|∇u|2dx

)
∆u + u = |u|p−1u, in R3, (1.1)

where a, b > 0, p ∈ (1, 5). In recent years, problem (1.1) has been extensively researched by many
mathematicians. Therefore, there are a large number of results for the existence of nontrivial solutions,
positive solutions, ground state solutions, sign-changing solutions, nodal solutions for problem (1.1).
Please see [1–6] and the references therein. It is worth noting that Chen, Fu and Wu [4] established the
existence of a positive ground state solution to problem (1.1) for any b > 0 and p ∈ (1, 5). However,
there is a question: whether problem (1.1) has sign-changing solutions for any p ∈ (1, 5)?
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Recently, Wang, Zhang and Cheng [7] established the existence results of sign-changing solutions
to the following problem

−

(
a + b

∫
R3
|∇u|2dx

)
∆u + V(x)u = f (u), in R3, (1.2)

where f (t) satisfies the following crucial conditions:

(f1) limt→∞
F(t)
t4 = ∞, where F(t) =

∫ t

0
f (s)ds;

(f2) f (t)
t3 is nondecreasing for |t| > 0.

Obviously, when p ∈ (1, 3], f (t) = |t|p−1t does not satisfy (f1) and (f2). Qian [8] researched the
existence of a ground state sign-changing solution to the following problem{

−(a − λ
∫

Ω
|∇u|2dx)∆u = |u|q−2u, in Ω,

u = 0, on ∂Ω,
(1.3)

where a is a positive constant, q ∈ (2, 2∗)(2∗ = +∞ for N = 1, 2, 2∗ = 2N
N−2 for N ≥ 3), Ω ⊂ R3 is a

bounded domain and λ > 0 is a parameter. They mainly obtained that problem (1.3) has at least one
sign-changing solution for small enough λ, thanks to truncated technique and constraint variational
method. Besides, some similar problems have also been extensively researched. For more relevant
results, please refer to [9, 10] and the references therein.

Motivated by the above mentioned results, our result is given in the following.

Theorem 1.1 For any a, b > 0 and p ∈ (1, 5), problem (1.1) has at least one sign-changing solution.

Remark 1.2 When p ∈ (3, 5), the existence of one sign-changing solution to (1.1) is obtained by [7].
But when p ∈ (1, 3], it is difficult to prove the existence of sign-changing solutions. The main difficulty
lies in proving the functional of problem (1.1) satisfies (PS)-conditions. To overcome this difficulty,
we will apply some new tricks. Moreover, f (t) , |t|p−1t does not satisfy (f1)-(f2) when p ∈ (1, 3]. We
must point out that our result holds for any b > 0. Therefore, our result can be seen as an improvement
and extension of [7, 8]. Our result can also extent to more general f (u).

In this paper, we shall work on the space

E = H1
r (R3) ,

{
u ∈ H1(R3) : u(|x|) = u(x)

}
with the inner product and norm

〈u, v〉 =

∫
R3

(a∇u∇v + uv)dx, ‖u‖ = 〈u, u〉
1
2 .

Lq(R3)(1 ≤ q < ∞) denotes Lebesgue space with norm ‖u‖q =
(∫
R3 |u|qdx

)1/q
. It is well known that the

weak solution of problem (1.1) corresponds to the critical point of

I(u) =
1
2

∫
R3

(a|∇u|2dx + |u|2)dx +
b
4

(∫
R3
|∇u|2dx

)2

−
1

p + 1

∫
R3
|u|p+1dx. (1.4)

Clearly, I ∈ C1(E,R) and we have

〈I′(u), v〉 =

∫
R3

(a∇u∇v + uv)dx + b
∫
R3
|∇u|2dx

∫
R3
∇u∇vdx −

∫
R3
|u|p−1uvdx. (1.5)
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Setting u+ = max{u, 0}, u− = min{u, 0}, A(u+, u−) = b
2

∫
R3 |∇u+|2dx

∫
R3 |∇u−|2dx. To state our result,

we establish the following minimization problem

c , inf{I(u) : u ∈ M}, (1.6)

where

M ,

{
u ∈ E : u± , 0,

1
2

〈
I′(u), u+〉 + P(u+) + A(u+, u−) =

1
2

〈
I′(u), u−

〉
+ P(u−) + A(u+, u−) = 0

}
,

(1.7)

P(u) =
a
2

∫
R3
|∇u|2dx +

3
2

∫
R3
|u|2dx +

b
2

(∫
R3
|∇u|2dx

)2

−
3

p + 1

∫
R3
|u|p+1dx.

Obviously, the setM is a subset of the following special manifold:

N ,

{
u ∈ E :

1
2
〈I′(u), u〉 + P(u) = 0

}
. (1.8)

Remark 1.3 Clearly, the manifoldM has not been used in the existing literature. The usual manifold
M1 has been used in previous literature is a subset of manifold N1, where

M1 = {u ∈ E : u± , 0,
〈
I′(u), u+〉 =

〈
I′(u), u−

〉
= 0}, N1 = {u ∈ E : 〈I′(u), u〉 = 0}.

As we all know, the manifold N1 is a commonly used manifold in the study of positive solutions. But
the manifold M1 is not enough for us to prove our result when p ∈ (1, 3]. Thus, we need to find an
another manifold. For researching positive solutions, one can also use a special manifold N , which is
a combination of the Nehari manifold and Pohožaev manifold for power p ∈ (1, 5). In order to prove
our result, we choose the manifoldM.

2. Preliminaries

Comparing with the 4-superlinear condition in [7], we meet some new difficulties. We need to show
that the constraint setM is nonempty and the minimizing sequence onM is a (PS)-sequence of I in E
by using some new tricks.

Lemma 2.1 If p ∈ (1, 5), thenM , ∅.

Proof. For any u ∈ E and u± , 0, we set ut , t
1
2 u( x

t ). In the following, we shall prove that there are
positive constants s1 and t1 such that

1
2

〈
I′(u+

s1
+ u−t1), u

+
s1

〉
+ P(u+

s1
) + A(u+

s1
, u−t1) =

1
2

〈
I′(u+

s1
+ u−t1), u

−
t1

〉
+ P(u−t1) + A(u+

s1
, u−t1) = 0, (2.1)

which implies that u+
s1

+ u−t1 ∈ M. Actually, equation (2.1) holds if and only if r(s, t) , as2α(u+) + s4[2β(u+) + bγ(u+)] + 2s2t2A(u+, u−) − p+7
2(p+1) s

p+7
2 ξ(u+) = 0,

l(s, t) , at2α(u−) + t4[2β(u−) + bγ(u−)] + 2s2t2A(u+, u−) − p+7
2(p+1) t

p+7
2 ξ(u−) = 0,

(2.2)
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where

α(u) ,
∫
R3
|∇u|2dx, β(u) ,

∫
R3
|u|2dx, γ(u) ,

(∫
R3
|∇u|2dx

)2

, ξ(u) ,
∫
R3
|u|p+1dx. (2.3)

In the other words, we only need to show that there exists m ∈ (0,M) such that

r(m, t) > 0, r(M, t) < 0, ∀ t ∈ [m,M], (2.4)

l(s,m) > 0, l(s,M) < 0, ∀ s ∈ [m,M], (2.5)

where M is a positive constant. Since p ∈ (1, 5), then p+7
2 > 4. By (2.2), we can derive that r(s, t) < 0

as s enough large, r(s, t) > 0 as s enough small. And l(s, t) < 0 as t enough large, l(s, t) > 0 as t enough
small. Consequently, (2.4)-(2.5) hold. Then from the Miranda’s Theorem [11], there exist two positive
constants s1 and t1 such that

r(s1, t1) = 0, l(s1, t1) = 0. (2.6)

Hence, (2.1) holds, which shows that u+
s1

+ u−t1 ∈ M, i.e.,M , ∅. The proof is completed. �

Lemma 2.2 The pair (s1, t1) with positive numbers in Lemma 2.1 is unique.

Proof. In view of Lemma 2.1, there exists a pair (s1, t1) such that u+
s1

+ u−t1 ∈ M for any u ∈ E and
u± , 0. Next, we shall prove the uniqueness of (s1, t1) by two steps.

Step 1. If u ∈ M, then (s1, t1) = (1, 1).
Since u ∈ M, then we have r(1, 1) , aα(u+) + 2β(u+) + bγ(u+) + 2A(u+, u−) − p+7

2(p+1)ξ(u
+) = 0,

l(1, 1) , aα(u−) + 2β(u−) + bγ(u−) + 2A(u+, u−) − p+7
2(p+1)ξ(u

−) = 0.
(2.7)

Assume that s1 ≤ t1. By (2.2), we have

1
s2

1

aα(u+) + 2β(u+) + bγ(u+) + 2A(u+, u−) ≤
p + 7

2(p + 1)
s

p−1
2

1 ξ(u+), (2.8)

1
t2
1

aα(u−) + 2β(u−) + bγ(u−) + 2A(u+, u−) ≥
p + 7

2(p + 1)
t

p−1
2

1 ξ(u−). (2.9)

It follows from (2.7) and (2.8) that(
1
s2

1

− 1
)

a
∫
R3
|∇u+|2dx ≤

p + 7
2(p + 1)

[
s

p−1
2

1 − 1
] ∫
R3
|u+|p+1dx. (2.10)

If s1 < 1, the negative right side of inequality (2.10) contradicts the positive left side. So 1 ≤ s1 ≤ t1.
Moveover, combining (2.7) and (2.9), t1 ≤ 1 can be also obtained. Then (s1, t1) = (1, 1).

Step 2. If u <M, then there exists a unique u1 such that u+
1 + u−1 ∈ M.

Suppose that there is an another pair (s2, t2) such that u+
s2

+ u−t2 ∈ M. We set v1 , u+
s1

+ u−t1 and
v2 , u+

s2
+ u−t2 . By a simple calculation, we have∫

R3

 s7/2
2

s7/2
1

v+
1 +

t7/2
2

t7/2
1

v−1

 dx = s7/2
2

∫
R3

u+dx + t7/2
2

∫
R3

u−dx =

∫
R3

(v+
2 + v−2 )dx. (2.11)

Thanks to v2 ∈ M and step 1, we deduce that (s1, t1) = (s2, t2). The proof is completed. �
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Similar to [7], we can prove that I(u+
s1

+ u−t1) = maxs,t≥0 I(u+
s + u−t ). From Lemma 2.2, we consider

the minimization problem
cM , inf{I(u) : u ∈ M}. (2.12)

Lemma 2.3 cM is achieved.

Proof. For each u ∈ M, we have G(u) , 1
2 〈I

′(u), u〉 + P(u) = 0. Then for any p ∈ (1, 5), we have

I(u) =I(u) −
1
4

G(u)

=
1
4

a
∫
R3
|∇u|2dx +

p − 1
8(p + 1)

∫
R3
|u|p+1dx

≥
1
4

a
∫
R3
|∇u|2dx > 0.

(2.13)

That is cM > 0. Letting {un} ⊂ M such that I(un)→ cM. From (2.13), we know that {|∇un|2} is bounded
in E. Since G(un) = 0, then

2
∫
R3
|un|

2dx =
p + 7

2(p + 1)

∫
R3
|un|

p+1dx − a
∫
R3
|∇un|

2dx − b
(∫
R3
|∇un|

2dx
)2

≤
p + 7

2(p + 1)
‖un‖

p+1
p+1.

(2.14)

From Hölder and Sobolev inequalities, we have

‖un‖
p+1
p+1 ≤ ‖un‖

(p+1)ϑ
2 ‖un‖

(p+1)(1−ϑ)
6 ≤ C‖un‖

(p+1)ϑ
2 ‖∇un‖

(p+1)(1−ϑ)
2 , (2.15)

where 1
p+1 = ϑ

2 + 1−ϑ
6 . Then (p + 1)ϑ < 2. According to Young’s inequality, we obtain that for any

ε > 0, there exists Cε > 0 such that

p + 7
2(p + 1)

‖un‖
p+1
p+1 ≤ ε‖un‖

2
2 + Cε‖∇un‖

2(p+1)(1−ϑ)
2−(p+1)ϑ

2 . (2.16)

Set ε = 1, from (2.14) and (2.16), we have that {‖un‖2} is bounded. Hence, {un} is bounded. Then, there
exists u such that u±n ⇀ u± in E. From (2.13), we can find a constant θ such that ‖u±n ‖ > θ > 0 for every
n ∈ N.

Since {un} ⊂ M, we have that

a
∫
R3
|∇u±n |

2dx + 2
∫
R3
|u±n |

2dx + b
∫
R3
|∇un|

2dx
∫
R3
|∇u±n |

2dx =
p + 7

2(p + 1)

∫
R3
|u±n |

p+1dx. (2.17)

Therefore, we have

θ2 ≤ ‖u±n ‖
2 < C1

∫
R3
|u±n |

p+1dx. (2.18)

Then
∫
R3 |u±n |

p+1dx > θ2

C1
> 0. Since the embedding E ↪→ Lq(R3) is compact for 2 < q < 6, (2.18) shows

that u± , 0. Combining the compactness lemma of Strauss [11] and the weak semicontinuity of norm,
we obtain

lim
n→∞

∫
R3
|u±n |

p+1dx→
∫
R3
|u±|p+1dx, (2.19)
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a
∫
R3
|∇u±|2dx + 2

∫
R3
|u±|2dx ≤ lim inf

n→∞

(
a
∫
R3
|∇u±n |

2dx + 2
∫
R3
|u±n |

2dx
)

(2.20)

and

b
∫
R3
|∇u|2dx

∫
R3
|∇u±|2dx ≤ lim inf

n→∞
b
∫
R3
|∇un|

2dx
∫
R3
|∇u±n |

2dx. (2.21)

Then from (2.17) and (2.19)–(2.21), we have that

1
2

〈
I′(u), u±

〉
+ p(u±) + A(u+ + u−) ≤ lim inf

n→∞

{
1
2

〈
I′(un), u±n

〉
+ p(u±n ) + A(u+

n + u−n )
}

= 0. (2.22)

Thus, there exists (su, tu) such that u+
su

+ u−tu ∈ M. Suppose that 0 < tu ≤ su, then we obtain

as2
u

∫
R3
|∇u+|2dx + 2s4

u

∫
R3
|u+|2dx + bs4

u

(∫
R3
|∇u+|2dx

)2

+ bs4
u

∫
R3
|∇u+|2dx

∫
R3
|∇u−|2dx

≥ s2
u

∫
R3
|∇u+|2dx + 2s4

u

∫
R3
|u+|2dx + bs4

u

(∫
R3
|∇u+|2dx

)2

+ bs2
ut2

u

∫
R3
|∇u+|2dx

∫
R3
|∇u−|2dx

=
p + 7

2(p + 1)
s

p+7
2

u

∫
R3
|u+|p+1dx.

(2.23)

From (2.19) and (2.22), we have

a
∫
R3
|∇u+|2dx + 2

∫
R3
|u+|2dx + b

∫
R3
|∇u|2dx

∫
R3
|∇u+|2dx ≤

p + 7
2(p + 1)

∫
R3
|u+|p+1dx. (2.24)

By (2.23) and (2.24), we obtain

a
(

1
s2

u
− 1

) ∫
R3
|∇u+|2dx ≥

p + 7
2(p + 1)

(
s

p−1
2

u − 1
) ∫
R3
|u+|p+1dx,

which shows su ≤ 1. Then 0 < tu ≤ su ≤ 1. Setting ū = u+
su

+ u−tu . Therefore, we can deduce that

cM ≤I(ū) −
1
4

G(ū)

=
1
4

as2
u

∫
R3
|∇u+|2dx +

p − 1
8(p + 1)

s
p+7

2
u

∫
R3
|u+|p+1dx +

1
4

at2
u

∫
R3
|∇u−|2dx

+
p − 1

8(p + 1)
t

p+7
2

u

∫
R3
|u−|p+1dx

≤
1
4

a
∫
R3
|∇u+|2dx +

p − 1
8(p + 1)

∫
R3
|u+|p+1dx +

1
4

a
∫
R3
|∇u−|2dx +

p − 1
8(p + 1)

∫
R3
|u−|p+1dx

=I(u) −
1
4

G(u)

≤ lim inf
n→∞

(
I(un) −

1
4

G(un)
)

= cM.

(2.25)

(2.25) implies that su = tu = 1. That is u = ū and I(u) = cM. The proof is completed. �
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3. Proof of Theorem 1.1

Lemma 3.1. Assume cM attained inM, then u is a critical point of I.

Proof. Since u ∈ M, u± , 0. Then for any fixed v ∈ H1(R3), there exists ε > 0 such that (u + wv)± , 0
for all w ∈ (−ε, ε). Arguing by a contradiction, there is a sequence {wi}

∞
i=1 such that

lim
i→∞

wi = 0, u + wiv = 0 a.e. on R3.

Letting i→ ∞, we have u = 0 a.e. on R3. Which is a contradiction with u± , 0.
From Lemma 2.1, there exists a unique pair (s(w), t(w)) such that s(w)(u+wv)+ +t(w)(u+wv)− ∈ M.

Next, we prove some standard properties of (s(w), t(w)) as Nehari manifold. For our purpose, we
consider the function

ϕ(s, t,w) = G((u + wv)+
s + (u + wv)−t )

defined for (s, t,w) ∈ (0,+∞) × (0,+∞) × (−ε, ε). Since u ∈ M, we have ϕ(1, 1, 0) = 0. Moveover, ϕ
is a C1 function and

∂ϕ(s, t,w)
∂s

∣∣∣∣∣
(s,t,w)=(1,1,0)

= −
p2 + 6p − 7

4(p + 1)

∫
R3
|u+|p+1dx − 2a

∫
R3
|∇u+|2dx

≤0.

Similarly, we can deduce that ∂ϕ(s,t,w)
∂t |(s,t,w)=(1,1,0) ≤ 0. From the Implicit Function Theorem, the

functions s(w), t(w) are C1. And t(0) = s(0) = 1. Moveover, s(w), t(w) , 0 near 0. We define

Υ(w) = I
(
(u + wv)+

s(w) + (u + wv)−t(w)

)
.

Then we obtain that Υ is differentiable for small w and attains its minimum at w = 0. Hence, we derive
that

0 =Υ′(0) =
dI((u + wv)+

s(w) + (u + wv)−t(w))

dw

∣∣∣∣∣∣
w=0

=
∂I((u + wv)+

s(w) + (u + wv)−t(w))

∂s

∣∣∣∣∣∣
(s,t,w)=(1,1,0)

ds
dw

∣∣∣∣∣
w=0

+
dI((u + wv)+

s(w) + (u + wv)−t(w))

dw

∣∣∣∣∣∣
(s,t,w)=(1,1,0)

+
∂I((u + wv)+

s(w) + (u + wv)−t(w))

∂t

∣∣∣∣∣∣
(s,t,w)=(1,1,0)

dt
dw

∣∣∣∣∣
w=0

=r(1, 1)s′(0) + l(1, 1)t′(0) + 〈I′(u), v〉
= 〈I′(u), v〉 .

Since v ∈ E is arbitrary, we have that I′(u) = 0. �

Proof of Theorem 1.1. From Lemma 2.3 and 3.1, there is a u ∈ M such that I(u) = cM and I′(u) = 0.
Then problem (1.1) has at least one sign-changing solution. The proof is completed. �
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