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Abstract: This paper introduces fractional-order into a mathematical model of HIV infection of
CD4+ T-cells combining with the rate of multiply uninfected CD4+ T-cells through mitosis and stem
cell therapy. The paper shows the theoretical studies including positivity and stability of the solution.
In addition, the numerical solutions are obtained and illustrated. The results show that the stem cell’s
therapy increases the quality of a HIV patient’s life only for short time. This results are consistent with
medical case studies.
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1. Introduction

The human immunodeficiency virus (HIV) infection was revealed in early 1980 and affected more
than 39.5 million people in the world. Since then the HVI has received attention by researchers and
scientists [1]. In period between 2000 to 2016, the death from HIV in the Middle East and North Africa
increased about 274% according to World Health Organization. Thus, the scientists have made efforts
to find and develop an appropriate treatment for AIDS over the years.

The HIV infection is one of contagious disease and it occurs as a result of attacking the CD4+ T-cells
by the virus. Thus, CD4+ T-cells will not be able to engulf a pathogen efficiently which leads to damage
an immune system. Many treatments are suggested to improve the quality of HIV patient’s life such as
antiretroviral therapy [2], aggressive chemotherapy [3] and stem cell therapy. Indeed, the antiretroviral
therapy is combination of medicine and the most common treatment for HIV infection, but it causes
several side effects [4]. The stem cell therapy is very limited because the difficulty of finding healthy
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and matched donors and it is expensive treatment. Therefore, in literature of medical case study, there
are only two cases that used stem cell therapy to treat the HIV patient up to our knowledge [5, 6]. To
better understand the behavior of the treatment into the HIV infection, the mathematical model is one
of optimal way to study the effect of stem cell in quality of life for HIV patients.

The mathematical model of HIV infection of CD4+ T-cells within a single patient of HIV-1
infection was first introduced by Perelson et al. [7]. The model studied the concentration of four
components in blood: Infected and uninfected CD4+ T-cells, virus, and latent infected cell. This
model have been modified and widely studied by several researchers [8–12]. Perelson’s model was
developed by eliminating latent infected cell by Duffin and Tullis [8]. The last model was developed
to include the stem cell therapy by Alqudah et al. [13] and have been studied theoretically and
numerical by Alqudah and Aljahdaly [14]. Wang and Li modified the Duffin model to include the rate
of multiply uninfected CD4+ T-cells through mitosis [15].

The novelty of this work is to combine the equation of stem cell therapy with the Wang model and
compare the results with the results in [13]. In addition, it will introduce the fractional-order into a
mathematical model of HIV infection of CD4+ T-cells with stem cell therapy since the membranes of
cells of biological organism have fractional-order electrical conductance.

The paper is arranged as following: (1) presenting the the fractional-order into a mathematical
model for aforementioned problem, (2) studding the model in terms of existence, uniqueness and
positivity, (3) showing equilibrium points and their stability, (4) plotting the numerical solutions and
discussing the results, finally summing up the results and conclusion of the study.

2. Fractional mathematical model

Fractional Calculus (i.e factional derivative and anti-derivative in time or space domain) as a branch
of mathematical analysis, represents a simple way to investigate the dynamics of complex systems in
many areas of science and engineering [16–23]. The order of the fractional derivative is an additional
parameter in the adopted model associated with non-local effects in the space domain or memory effects
in the time domain. In recent years, fractional calculus has attracted the interest of many researchers in,
e.g., fluid flow, viscoelastic study of soft biological tissues that is useful in medical diagnosis, digital
control and signal processing. Membranes of cells of biological are classified in groups of non-integer
order models [24, 25].

The HIV mainly attacks CD4+ T-cells (T ). The range of T-cell level l is [800 1200]mm−3. Assume
that λT is the rate of producing T -cell in bone marrow and thymus. The T cell has also natural death
rate at dT . Therefore, the T dynamic can be described by

dαT (t)
dtα

= λT − dT T (t) + rT T (t)
(
1 −

T (t)
Tmax

)
− kT T (t)V(t)

where rT is the rate of T mitosis and Tmax is the maximum population level of T .
We introduced the mathematical model of HIV in [15] as a fractional differential equation (FDE) to

examine the effect of the FDE parameter α, 0 < α < 1 as follows,

dαT (t)
dtα

= λT − dT T (t) + rT T (t)
(
1 −

T (t)
Tmax

)
− kT T (t)V(t)
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dαTi(t)
dtα

= kT T (t)V(t) − βTiTi(t)

dαV(t)
dtα

= NβTiTi(t) − cvV(t) (1)

where T,Ti and V are concentration of uninfected CD4+ T-cells, infected CD4+ T-cells and HIV-1 virus
in the blood, respectively. dT and βTi are the death rate of T and Ti respectively. kT is infection of CD4+

T-cells. cv is clearance rate of V and N is the number of virus particle produced by each Ti cell. In
addition, the stem cell which is denote by S has division rate at k. The probability of the type of stem
cell division are: (i) division into two undifferentiated cells at rate αs, (ii) division into undifferentiated
cell and differentiated cell at rate αD and (iii) division into two differentiated cells at rate αT such that
αA + αs + αD = 1. Also, the S cell has natural death at rate δs. Therefore, the following is HIV model
with the rate of multiply uninfected CD4+ T-cells through mitosis and effect of stem cell therapy,

dαS (t)
dtα

= (k(αs − αD) − δs) S (t)

dαT (t)
dtα

= λT − dT T (t) + (2αD + αA)kAS (t) + rT T (t)
(
1 −

T (t)
Tmax

)
− kT T (t)V(t)

dαTi(t)
dtα

= kT T (t)V(t) − βTiTi(t)

dαV(t)
dtα

= NβTiTi(t) − cvV(t) (2)

where A is amplification factor [14, 15].

3. Existence, uniqueness and positivity solutions

Following the Theorem 3.1 and Remark 3.2 in reference [26] gives that the solutions of the
system (2) are existent and unique in R+ = (0,∞).
Theorem 1. There exists a unique solution f (t) = (S ,T,Ti,V) to Eq (2) on t ≥ 0 and the solution is
positive in R4 = { f ∈ R| f ≥ 0}. Moreover, T (t) and Ti(t) are all bounded by λT + (2αD + αA)kAS max(t),
where S max(t) denotes stem-cells carrying capacity

Proof. From Eq 2, we find

dαS (t)
dtα

|S =0 = 0 ≥ 0,

dαT (t)
dtα

|T=0 =λT + (2αD + αA)kAS (t) ≥ 0

dαTi(t)
dtα

|Ti=0 = kT T (t)V(t) ≥ 0,

dαV(t)
dtα

|V=0 =NβTiTi(t) ≥ 0

by the Corollary 1 in reference [25], the solution (S ,T,Ti,V) is positive in R4. Moreover from Eq (2),

dα(T + Ti)
dtα

=λT + (2αD + αA)kAS (t) − βTiTi(t)
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+ rT T (t)
(
1 −

T (t)
Tmax

)

dα(T + Ti)
dtα

≤ λT + (2αD + αA)kAS (t) + rT T (t)
(
1 −

T
Tmax

)
= λT + (2αD + αA)kAS (t)

where Tmax = T + Ti, the exact solution of S is S (t) = e(k(αs−αD)−δs) > 0 for all t which mean S max ≥

S (t) > 0. Therefore,
dα(T + Ti)

dtα
|S max,Tmax ≤ λT + (2αD + αA)kAS max(t).

Thus, by he Corollary 1 in reference [25], the T-cell population, (T + Ti) in case of HIV infection with
stem cell therapy are bounded by λT + (2αD + αA)kAS max(t). �

4. Equilibrium points and their stability

To obtain the equilibrium points of Eq (2), we solve the system at the steady state (i.e dαS (t)
dtα =

dαT (t)
dtα =

dαTi(t)
dtα =

dαV(t)
dtα = 0), hence

S̄ = 0

T̄ =
cv

kT N

T̄i =
NTmaxkT (λT NkT − dT cv + rT cv) − rT c2

v

k2
T N2TmaxβTi

V̄ =
NTmaxkT (λT NkT − dT cv + rT cv) − rT c2

v

k2
T NTmaxcv

b1 =
−Tmax(dT − rT ) ±

√
T 2

max(dT − rT )2 + 4rTλT Tmax

2rT
(3)

Then, both E0 = (0, b1, 0, 0) and E1 = (S̄ , T̄ , T̄i, V̄) are the equilibrium points of the system (1).
The obtained equilibrium points are consistent with the equilibrium points of the system (1) in case of
α = 1 and S (t) ≡ 0. The stability of these equilibrium points have been studied in reference [25]. The
equilibrium point E0 is asymptotically stable when N ≤ dT (cv+kT b1)

kT ΠTi b1
, N is the virus particles produced by

CD4+ T. The The equilibrium point E1 is asymptotically stable under the conditions in Proposition 1
and Proposition 2 in [25].

5. Numerical simulation and discussion

The numerical scheme, Eq (2), can be solved by adopting the following Caputo definition of
fractional derivative of order α (0 < α < 1) [27].

Caputo’s nth order fractional derivative is defined as,

dα

drα
f (n)(r) =

1
Γ(n − α)

∫ r

0

1
(r − r′)(1−n+α) f (n)(r′) dr′; n = 1, 2, . . . . (4)
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where Γ(x) is the Gamma function.
The 1st order derivative S ,T,Ti and V term in Eq (2) becomes,

dα

dτα
f (τ) =

1
Γ(1 − α)

∫ τ

0

1
(τ − t′)α

d
dt′

f (t′) dt′, (5)

We use the numerical technique of the Euler’s method to solve Eq (2) with the same ICs. as in
Table 1 [28, 29]. The system of Eq (2) subjects to the following initial conditions

S (0) = S 0, T (0) = T0, Ti(0) = Ti0 , V(0) = V0.

Table 1. The value of the parameters based on the reference [13, 30].

Parameter Value
k 0.035/day
αS 0.21/day
αD 0.16/day
δS 0.03/day
λT 0.17 cells/ul.day
dT 0.01/day
αA 0.6 /day
A 0.5
rT 3
Tmax 1500
kT 6.5 × 10−4 virus/ul.day
βTi 0.39/day
N 10
cV 3/day
S 0 18 cells/ul
T0 900 cells/ul
Ti0 100 cells/ul
V0 10−6 virus/ul

The iterative numerical scheme can be described as follows,

(i) The initial values of t(0) = 0, S (0) = 18,T (0) = 900,Ti(0) = 100 and V(0) = 10−6 are set.

(ii) Transforming Eq (2) over the interval t ∈ [0, a] to integral equations by Applying Caputo’s formula
Eq (5).

(iii) S (t j),T (t j),Ti(t j) and V(t j) are computed with fractional Euler’s method approximation scheme,

S (t j+1) = S (t j) +
hα

Γ(α + 1)
f1(t j, S (t j),T (t j),Ti(t j),V(t j))

T (t j+1) = T (t j) +
hα

Γ(α + 1)
f2(t j, S (t j),T (t j),Ti(t j),V(t j))
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Ti(t j+1) = Ti(t j) +
hα

Γ(α + 1)
f3(t j, S (t j),T (t j),Ti(t j),V(t j))

V(t j+1) = V(t j) +
hα

Γ(α + 1)
f4(t j, S (t j),T (t j),Ti(t j),V(t j)) (6)

The functions f1,2,3,4(t j, S (t j),T (t j),Ti(t j),V(t j)) are given by,

f1(t j, S (t j),T (t j),Ti(t j),V(t j)) = (k(αs − αD) − δs) S (t j)
f2(t j, S (t j),T (t j),Ti(t j),V(t j)) =λT − dT T (t j) + (2αD + αA)kAS (t j)

+ rT T (t j)
(
1 −

T (t j)
Tmax

)
− kT T (t j)V(t j)

f3(t j, S (t j),T (t j),Ti(t j),V(t j)) =kT T (t j)V(t j) − βTiTi(t j)
f4(t j, S (t j),T (t j),Ti(t j),V(t j)) =NβTiTi(t j) − cvV(t j) (7)

where, 0 ≤ j ≤ n, ti+1 = ti + h and h is the step size.

(iv) A set of points, (t j, S (t j)), (t j,T (t j)), (t j,Ti(t j)) and (t j,V(t j)), are produced for different values of
α.

The numerical results are shown in Figures 1 and 2. The initial conditions define the case of patient
who has infected and uninfected CD4+ T-cells by V virus and has received stem cell transplantation.
Concentration of stem cells, S (t), shown in Figure 1a, decays more rapidly as α decreases for all
t ∈ (0, 120).

Figure 1b,c predicts that stem cell transplantation increase the uninfected cell T until T reaches its
maximum value at early time around t ' 2 and decrease infected cell Ti. Figure 1d shows that the
virus concentration deceases during short period of time and the same behavior of infected cell Ti is
observed. Ultimately the concentration of T cell reaches the peak, Figure 1b. Then, the patient face
rebound during very short time which means the patient returned to worst case. This shows that the
stem cell can improved the patient quality life during short time and the procedure must to be applied
again. These results are matched the reported medical cases [5, 6].

(a)

S(
t)

t

Figure 1a. Plot of S (t) in Eq 2 for different values of α.
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(b)

t

T(
t)

Figure 1b. Plot of T (t) in Eq 2 for different values of α.

T(
t)

t

i

(c)

Figure 1c. Plot of Ti(t) in Eq 2 for different values of α.

(d)

t

V(
t)

Figure 1d. Plot of V(t) in Eq 2 for different values of α.
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(a)

S(
t)

t

Figure 2a. Plot of S (t) in the fractional model in Ref. [14] for different values of α.

(b)

T(
t)

t

Figure 2b. Plot of T in the fractional model in Ref. [14] for different values of α.

T(
t)

t

i

(c)

Figure 2c. Plot of Ti(t) in the fractional model in Ref. [14] for different values of α.
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(d)

V(
t)

Figure 2d. Plot of V(t) in the fractional model in Ref. [14] for different values of α.

6. Connection with the previous studies

The numerical solutions of a mathematical model for treatment of HIV infection by stem cell
therapy with consider the maximum population of cell Tmax are obtained in this work. The results can
be compared with results for fractional mathematical model of HIV infection by stem cell therapy
without consider Tmax [14] as we see in Figure 2a–d . First, in Figure 1b, T increases but does not pass
Tmax and this is more realistic. The behavior of the solutions in both results are consistent with the
medical cases results [5, 6].

7. Conclusions

In this work, since the cells of biological organism has fractional order, we modified the ODE
model of HIV-1 infection with stem cell therapy into a system of fractional-order. In addition, the level
of population T and Ti is controlled by Tmax which is more realistic. We proved that the solutions are
existent, unique, and positive for all t ≥ 0. Moreover, the fractional model is asymptotically stable. The
numerical solutions show that patient quality life can be improved for short time, then the patient will
face rebound during short time of period. This results are consist with the medical case that reported
in references [5, 6]. We found that the fractional order model reflects the problem successfully.
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