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1. Introduction

Fixed point theory provides a suitable framework to solve a system of linear and nonlinear
functional equations, which are applicable in various areas of research such as engineering, chemistry,
game theory, economics, etc. The Picard iteration procedure is one of the most simplest iterative
procedures and is used for approximating unique fixed point (FP) for mapping/operators satisfying
contractive type conditions. However, in case of slightly weaker contractive operators such as
nonexpansive mappings, the Picard iterative procedure fails to converge.

So, it is important to consider iterative procedures which converge for the larger class of operators.
Various iterative techniques were developed in literature to estimate the FPs of certain operators of
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practical nature. Some famous iterative procedures are Mann [1], Ishikawa [2], Agarwal et al. [3],
Noor [4], SP [5], CR [6], Abbas & Nazir [7], Picard-Mann [8], Picard-S [9] and Kadioglu &
Yildirim [10].

The rate of convergence and stability are some of the most distinguishing features of an iterative
procedure which are always desirable. These criterions play vital role when one iterative procedure
is compared with the other. For instance, Newton and quasi Newton methods are always preferred
for solutions of the system of nonlinear Eqs on the basis of their rate of convergence given that an
appropriate initial guess to the solution is known. Rhoades [11] proved that the convergence of the
well-known Mann iteration faster than that of Ishikawa iteration for the class of decreasing function
and vice versa for the class of increasing functions. It is observed that [3], the convergence rate of
Agarwal et al. iteration and Picard iteration is same and both are faster than the Mann iteration for the
class of contraction mappings. Authors in [7] introduced an iteration with better and faster convergence
than Agarwal et al. iteration. The authors in [6] claimed that the CR iteration is either equivalent or
faster than Mann, Picard, Ishikawa, Agarwal et al., SP, and Noor iterations for the class of quasi-
contractive operators in the setting of Banach spaces. Karakaya with his coauthors in [12] proved that
for contraction mappings, the CR iteration is faster than S ∗-iteration. One other interesting result can
be found in [9] and for other details, we refer [13–15] and references therein.

Motivated by the work quoted above, the authors [16] proposed a new iteration known as K∗

iteration in Banach spaces and show that K∗ iterative procedure is faster than many other iterative
schemes. We compare the convergence of the K∗ iterative procedure numerically with numerous
iteration processes in the existing literature by using generalized mapping. The graphs of complex
polynomials are also drawn using the K∗-iterative procedure. All the work done in this paper is for a
general class of contractive-like operators.

2. Preliminaries

Consider a real normed sapces E and a mapping T : E → E. If T (x∗) = x∗ than x∗ ∈ E is called
FP of T and the set of FPs of T is represented by F(T ). Now, we give a brief description of existing
iterations which are relevant to our work in this paper.

The well-known Picard-iteration sequence {xn} is:{
x0 ∈ E,
xn+1 = T xn, n ≥ 0,

(2.1)

The Mann-iteration [1] is a one step iterative procedure which described by the following sequence
{xn}: {

x0 ∈ E,
xn+1 = (1 − α1

n)xn + α1
nT xn, n ≥ 0,

(2.2)

where {α1
n}
∞
n=0ε[0, 1].

The Ishikawa iteration process [2] is a two step iterative process given by the following sequence
{xn}: 

x0 ∈ E,
xn+1 = (1 − α1

n)xn + α1
nTyn,

yn = (1 − α2
n)xn + α2

nT xn, n ≥ 0,
(2.3)
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where {α1
n}
∞
n=0, {α

2
n}
∞
n=0 ε[0, 1].

Motivated by [2], a two step iteration was proposed in [3], which is known as Agarwal et al.
iteration; 

x0 ∈ E,
xn+1 = (1 − α1

n)T xn + α1
nTyn,

yn = (1 − α2
n)xn + α2

nT xn, n ≥ 0,
(2.4)

where {α1
n}
∞
n=0, {α

2
n}
∞
n=0 ε[0, 1].

In 2013, Khan [8] proposed a new iteration namely ‘Picard-Mann-hybrid iteration’ which is given
by the sequence 

x0 ∈ E,
xn+1 = Tyn,

yn = (1 − α1
n)xn + α1

nT xn, n ≥ 0,
(2.5)

where {α1
n}
∞
n=0 ∈ [0, 1].

Noor iteration [4] is a three step iterative procedure defined by the following scheme {xn}:
x0 ∈ E,
xn+1 = (1 − α1

n)xn + α1
nTyn,

yn = (1 − α2
n)xn + α2

nTzn,

zn = (1 − α3
n)xn + α3

nT xn, n ≥ 0,

(2.6)

where {α1
n}
∞
n=0, {α

2
n}
∞
n=0, {α

3
n}
∞
n=0 ε [0, 1].

The SP-iteration is a three step iteration introduced in 2011 [5] as;
x0 ∈ E,
xn+1 = (1 − α1

n)yn + α1
nTyn,

yn = (1 − α2
n)zn + α2

nTzn,

zn = (1 − α3
n)xn + α3

nT xn, n ≥ 0,

(2.7)

where {α1
n}
∞
n=0, {α

2
n}
∞
n=0, {α

3
n}
∞
n=0 ε [0, 1].

The CR iteration was introduced Chugh et al. in 2012 [6] as;
x0 ∈ E,
xn+1 = (1 − α1

n)yn + α1
nTyn,

yn = (1 − α2
n)T xn + α2

nTzn,

zn = (1 − α3
n)xn + α3

nT xn, n ≥ 0,

(2.8)

where {α1
n}
∞
n=0, {α

2
n}
∞
n=0, {α

3
n}
∞
n=0 ε [0, 1].

The Picard-S-iteration [9] was introduced as;
u0 ∈ E,
un+1 = Tvn,

vn = (1 − α1
n)Tun + α1

nTwn,

wn = (1 − α2
n)un + α2

nTun, n ≥ 0,

(2.9)

where {α1
n}
∞
n=0, {α

2
n}
∞
n=0 ε [0, 1].
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Kadioglu & Yildirim [10] studied the following iteration procedure:
u0 ∈ E,
un+1 = Tvn,

vn = (1 − α1
n)wn + α1

nTwn,

wn = (1 − α2
n)un + α2

nTun, n ≥ 0,

(2.10)

where {α1
n}
∞
n=0, {α

2
n}
∞
n=0 ε [0, 1].

Ullah and Arshad [16] introduce following a new modified iteration-process, known as K∗ iteration
process: 

x0 ∈ E,
xn+1 = Tyn,

yn = T ((1 − α1
n)zn + α1

nTzn),
zn = (1 − α2

n)xn + α2
nT xn, n ≥ 0,

(2.11)

where {α1
n}
∞
n=0, {α

2
n}
∞
n=0 ε [0, 1].

The iteration procedure (2.11) is stable and performs better than all above mentioned iterations.
The different stability results have been studied by Osilike in [17] by using the following definition

of contractive

Definition 1. Let x, y ∈ X, then we have 0 ≤ δ < 1 and L ≥ 0 satisfying;

d(T x,Ty) ≤ δd(x, y) + Ld(x,T x). (2.12)

The authors in [18] proved the results of stability by using the following more general definition;

d(T x,Ty) ≤ δd(x, y) + φ(d(x,T x)). (2.13)

Here x, y ∈ X and 0 ≤ δ < 1. Moreover φ : R+ → R+ is aan increasing function satisfying φ(0) = 0.
Recently, Bosede and Rhoades [19] pointed out that assumptions (2.12), (2.13) and its several

variants are pointless. Indeed, if x = T x∗ = x∗, then (2.12) and (2.13) reduce to the following: For
x, y ∈ X, there exist 0 ≤ δ < 1 satisfying

d(x∗,Ty) ≤ δd(x∗, y) (2.14)

and in the real normed spaces, for each x, y ∈ X, there exist 0 ≤ δ < 1 such that

‖x∗ − Ty‖ ≤ δ ‖x∗ − y‖ . (2.15)

For examples to illustrate that the (2.15) is more general than that of (2.12) and (2.13) see [20].

Lemma 1. [21] Consider the real sequences {ψn}
∞
n=0 and {ϕn}

∞
n=0 that are non-negative and

ψn+1 ≤ (1 − φn)ψn + ϕn,

holds, where φn ∈ (0, 1) for all n0 ∈ N,
∞∑

n=0
φn = ∞ and ϕn

φn
→ 0 as n→ ∞, then limn→∞ ψn = 0.
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Lemma 2. [22] Consider a real non-negative sequence {ψn}
∞
n=0 and n0 ∈ N and

ψn+1 ≤ (1 − φn)ψn + φnϕn,

holds for all n ≥ n0, where φn ∈ (0, 1) for all n ∈ N,
∞∑

n=0
φn = ∞ and ϕn ≥ 0 for all n ∈ N. Then

0 ≤ lim
n→∞

supψn ≤ lim
n→∞

supϕn.

Definition 2. ( [23]) Consider two convergent real sequences {an}
∞
n=0 and {bn}

∞
n=0 that converges to a

and b, respectively. The convergence rate of {an}
∞
n=0 is faster than that of {bn}

∞
n=0 if we have

lim
n→∞

‖an − a‖
‖bn − b‖

= 0

Definition 3. ( [23]) Consider two iterations {un}
∞
n=0 and {vn}

∞
n=0 converge to the common FP p. If

‖un − p‖ ≤ an and ‖vn − p‖ ≤ bn, for all n ≥ 0, where {an}
∞
n=0 and {bn}

∞
n=0 two convergent sequences

of real number that converges to 0. Then the convergence of {un}
∞
n=0 is faster than that of {vn}

∞
n=0 if the

convergence of {an}
∞
n=0 is faster than that of {bn}

∞
n=0.

Definition 4. ( [24]) Let {tn}
∞
n=0 be an arbitrary sequence in C. Then, an iteration procedure xn+1 =

f (T, xn), converging to fixed point p, is said to be T -stable or stable with respect to T , if for εn =

‖tn+1 − f (T, tn)‖ , n = 0, 1, 2, 3, ..., we have limn→∞ ∈n= 0⇔ limn→∞ tn = x∗.

3. Main results

Theorem 3.1. Consider a real normed (E, ‖.‖) and a mapping T : E → E with a FP x∗

satisfying (2.15). Let {xn}
∞
n=0 be defined by (2.11), where {α1

n}
∞
n=0 and {α2

n}
∞
n=0 are in [0, 1] and

∞∑
n=0

α1
nα

2
n = ∞. Then {xn}

∞
n=0 converges to x∗ (strongly).

Proof. From (2.11), by means of simple calculation, we get

‖zn − x∗‖ = (1 − (1 − δ)α2
n) ‖xn − x∗‖ , (3.1)

and

‖yn − x∗‖ =
∥∥∥T ((1 − α1

n)zn + α1
nTzn) − x∗

∥∥∥
≤ δ

∥∥∥(1 − α1
n)zn + α1

nTzn − x∗
∥∥∥

≤ δ
∥∥∥(1 − α1

n)(zn − x∗) + α1
n(Tzn − x∗)

∥∥∥
≤ δ[(1 − α1

n) ‖zn − x∗‖ + δα1
n ‖zn − x∗‖]

= δ[(1 − α1
n) + δα1

n] ‖zn − x∗‖ . (3.2)

By using (3.1) in (3.2) we obtain

‖yn − x∗‖

≤ δ[(1 − (1 − δ)α1
n)(1 − (1 − δ)α2

n)] ‖xn − x∗‖
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= δ[1 − (1 − δ)α1
n − (1 − δ)α2

n + (1 − δ)2α1
nα

2
n] ‖xn − x∗‖

≤ δ[1 − (1 − δ)α1
nα

2
n

− (1 − δ)α1
nα

2
n + (1 − δ)α1

nα
2
n] ‖xn − x∗‖

= δ[1 − (1 − δ)α1
nα

2
n] ‖xn − x∗‖ . (3.3)

Thus from (3.3)

‖xn+1 − x∗‖ = ‖Tyn − x∗‖

≤ δ ‖yn − x∗‖

≤ δ2(1 − (1 − δ)α1
nα

2
n) ‖xn − x∗‖ . (3.4)

Now, by (3.4) we inductively obtain,

‖xn+1 − x∗‖ ≤
(
δ2(n+1)

)∞
k=0

(1 − (1 − δ)α1
kα

2
k) ‖x0 − x∗‖ , n ≥ 0. (3.5)

Using 0 < δ < 1, {α1
n}
∞
n=0 and {α2

n}
∞
n=0 are in [0, 1] and

∞∑
n=0

α1
nα

2
n = ∞, we get

lim
n→∞
‖xn+1 − x∗‖ = 0

that is, {xn}
∞
n=0 converges strongly to x∗. �

Theorem 3.2. Consider a real normed space (E, ‖.‖) and a mapping T : E → E with a FP x∗

satisfying (2.15). Let {xn}
∞
n=0 be defined by (2.11), where {α1

n}
∞
n=0, {α2

n}
∞
n=0 ε [0, 1] such that

∞∑
n=0

α1
nα

2
n = ∞. Then, the {xn}

∞
n=0 is T−stable.

Proof. The sequence defined in (2.11) converges to x∗ by Theorem 3.1 so consider real sequences
{tn}

∞
n=0, {un}

∞
n=0 and {vn}

∞
n=0 in E, where

tn+1 = Tun,

un = T ((1 − α1
n)vn + α1

nTvn),
vn = (1 − α2

n)tn + α2
nTtn, n ≥ 0,

(3.6)

Let ∈n= ‖tn+1 − Tun‖ . We shall prove that limn→∞ ∈n= 0 ⇔ limn→∞ tn = x∗. Let limn→∞ ∈n= 0, Then
we shall prove that limn→∞ tn = x∗ for mapping satisfying condition (2.15). That is,

‖tn+1 − x∗‖ ≤ ‖tn+1 − Tun‖ + ‖Tun − x∗‖

≤∈n + ‖Tun − x∗‖ (3.7)

Using condition (2.15), we have
‖Tun − x∗‖ ≤ δ ‖un − x∗‖ (3.8)

substituting (3.8) in (3.7), we get

‖tn+1 − x∗‖ ≤∈n +δ ‖un − x∗‖ (3.9)
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Then using (3.3)
‖tn+1 − x∗‖ ≤∈n +δ[δ(1 − (1 − δ)α1

nα
2
n] ‖tn − x∗‖ (3.10)

Since 0 < α1α2 < α1
nα

2
n,

‖tn+1 − x∗‖ ≤∈n +δ2(1 − (1 − δ)α1α2) ‖tn − x∗‖ (3.11)

by mean of Lemma 1 in (3.11) we get
lim
n→∞

tn = x∗.

Conversely, let limn→∞ tn = x∗. We show that limn→∞ ∈n= 0

∈n= ‖tn+1 − Tun‖

≤ ‖tn+1 − x∗‖ + ‖x∗ − Tun‖

≤ ‖tn+1 − x∗‖ + δ ‖un − x∗‖

≤ ‖tn+1 − x∗‖ + δ2(1 − (1 − δ)α1
nα

2
n) ‖tn − x∗‖

Hence limn→∞ ∈n= 0 and the iteration (2.11) is T -stable. �

Theorem 3.3. Consider a real normed space (E, ‖.‖) and a mapping T : E → E with FP x∗

satisfying (2.15). Let the sequences {xn}
∞
n=0 and {un}

∞
n=0 as in (2.11) and (2.10) respectively, where

{α1
n}
∞
n=0 and {α2

n}
∞
n=0 are in [0, 1] and

∞∑
n=0

α1
nα

2
n = ∞. Then the convergence of iteration scheme {xn}

∞
n=0 to

x∗ of T is faster than that of {un}
∞
n=0.

Proof. Using Theorem 3.1,

‖xn+1 − x∗‖ ≤ δ2(n+1) ‖x0 − x∗‖∞k=0 (1 − (1 − δ)α1
kα

2
k),∀n ≥ 0. (3.12)

Let
an = δ2(n+1) ‖x0 − x∗‖∞k=0 (1 − (1 − δ)α1

kα
2
k),∀n ≥ 0, (3.13)

From (2.10), we have

‖wn − x∗‖ =
∥∥∥(1 − α2

n)un + α2
nTun − x∗

∥∥∥
=

∥∥∥(1 − α2
n)(un − x∗) + α2

n(Tun − x∗)
∥∥∥

≤ (1 − α2
n) ‖un − x∗‖ + δα2

n ‖un − x∗‖

= (1 − (1 − δ)α2
n) ‖un − x∗‖ . (3.14)

Similarly

‖vn − x∗‖ =
∥∥∥(1 − α1

n)wn + α1
nTwn − x∗

∥∥∥
=

∥∥∥(1 − α1
n)(wn − x∗) + α1

n(Twn − x∗)
∥∥∥

≤ (1 − α1
n) ‖wn − x∗‖ + δα1

n ‖wn − x∗‖

= (1 − (1 − δ)α1
n) ‖wn − x∗‖ . (3.15)
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From (3.14) and (3.15), we get

‖vn − x∗‖

≤ (1 − (1 − δ)α1
n)(1 − (1 − δ)α2

n) ‖un − x∗‖

= (1 − (1 − δ)α2
n − (1 − δ)α1

n + (1 − δ)2α1
nα

2
n) ‖un − x∗‖

≤ (1 − (1 − δ)α1
nα

2
n

− (1 − δ)α1
nα

2
n + (1 − δ)α1

nα
2
n) ‖un − x∗‖

≤ (1 − (1 − δ)α1
nα

2
n) ‖un − x∗‖ . (3.16)

‖un+1 − x∗‖ ≤ ‖Tvn − x∗‖

≤ δ ‖vn − x∗‖

≤ δ(1 − α1
nα

2
n(1 − δ)) ‖(un − x∗)‖ . (3.17)

Now, by (3.17) we inductively obtain,

‖un+1 − x∗‖ ≤ δn+1 ‖u0 − x∗‖∞k=0 (1 − (1 − δ)α1
kα

2
k),∀n ≥ 0. (3.18)

Let

bn = δn+1 ‖u0 − x∗‖∞k=0 (1 − (1 − δ)α1
kα

2
k),∀n ≥ 0. (3.19)

Since 0 < δ < 1, then

lim
n→∞

‖xn+1 − x∗‖
‖un+1 − x∗‖

= lim
n→∞

an

bn

= lim
n→∞

δn+1

= 0.

�

Example 3.4. Consider the usual normed space E = R, S = [1, 100] and a mapping T : S → S defined
as T x =

√
x2 − 8x + 40 ∀ x ∈ S . Then, T satisfies the condition (2.15) with δ ∈ [0.5222, 0.9987] and

has a unique FP x∗ = 5. Take α1
n = α2

n = α3
n = 1

2 and initial guess x0 = u0 = 100. It can be observed
from Tables 1 and 2 that the convergence of K∗ iteration to x∗ = 5 is faster than that of SP, Noor,
Ishikawa ARS, Picard-Mann, Abbas, CR, Picard-S and Kadioglu & Yildirim iterations.

AIMS Mathematics Volume 6, Issue 7, 6699–6714.



6707

Table 1. Comparison of convergence of different iteraitons.

Iter. No. AS iteration Picard-S Kadioglu & Yildirim Abbas CR
0 100 100 100 100 100
1 88.3923 91.2889 92.2564 92.7394 93.2231
2 76.8413 82.6076 84.5359 85.4988 86.4638
3 65.3657 73.9626 76.8430 78.2820 79.7244
...

...
...

...
...

...

12 5.00000 5.88655 11.9615 16.4250 21.3496
...

...
...

...
...

...

16 5.00000 5.00188 5.02389 5.37398
...

...
...

...
...

19 5.00000 5.00001 5.00038

20
... 5.00000 5.00003

21
... 5.00000

Table 2. Comparison of convergence of different iterations.

Iter. No. Picard-Maan ARS SP Noor Ishikawa Maan
0 100 100 100 100 100 100
1 94.1899 95.1574 95.1580 96.6119 97.0950 98.0624
2 88.3923 90.3232 90.3246 93.2280 94.1930 96.1262
3 82.6088 85.4984 85.5007 89.8486 91.2942 94.1913
...

...
...

...
...

...
...

24 5.00000 5.01818 5.04720 21.6024 31.9246 54.0134
...

...
...

...
...

...
...

29 5.00000 5.00004 9.29078 19.0506 44.6622
...

...
...

...
...

...

31 5.00000 6.69608 14.4208 40.9632
...

...
...

...
...

52 5.00000 5.00018 7.57905
...

...
...

...

57 5.00000 5.32335
...

...
...

78 5.00000

4. Application of K∗ iteration

Polynomiography defined by Kalantari in 2005 as “the art and science of visualization in
approximation of the zeros of complex polynomials, via fractal and non fractal images produced
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using the convergence properties of iteration functions” [25]. The image obtained is named
“polynomiograph”. Polynomiography gives a different approach to solve the old problem by utilizing
some calculations and computer. Like fractals [26], the polynomiographs can be obtained by means
of various iterations. A “polynomiographer” can control the shape in a predictable way by using
various iteration for a variety of complex polynomials [27–30]. These patterns can be used for
textures, carpet and tapestry designs etc.

4.1. Modification of AS iteration

The famous Newton method is given by;

zn+1 = zn −
p(zn)
p′(zn)

, n = 0, 1, 2, ..., (4.1)

for complex polynomial p. Here zo ∈ C is an initial guess. Here, we modify Newton method by
means of AS iteration the orbits for generation of polynomiograph is totally different than the orbits
of Picard iteration and the iterations studied in [27–30]. Thus the obtained Basins of attraction are
entirely different from the existing ones.

Consider a Banach space X = C and vo = (xo, yo) and α1
n = α1, α2

n = α2 such that 0 < α1 ≤ 1 and
0 ≤ α2 ≤ 1. Setting (2.11) in (4.1) for the Newton method, we obtain the following formula that is
used to generate polinomiographs:


zn+1 = T

(
un −

p(un)
p′(un)

)
,

un = T
(
(1 − α1)vn + α1

(
vn −

p(vn)
p′(vn)

))
,

vn = (1 − α2)zn + α2
(
zn −

p(zn)
p′(zn)

)
, n ≥ 0,

(4.2)

where 0 < α1 ≤ 1 and 0 ≤ α2 ≤ 1.

4.2. Graphical examples

Polynomiographs for complex polynomial equation z3 − 1 = 0 are presented in Figures 1–6 and
Figures 7–12 presented examples of complex polynomial equation z3 − 2z + 2 = 0 with the use of
the following parameters: Resolution 500 × 500 pixels and were generated with maximum number
of iterations = 15, accuracy ε = 0.001 and A = [−2, 2]2. For polynomiographs presented in the
following figures, one can observe that for changing parameters α1 and α2 images have different basins
of attraction.
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Figure 1. Polynomiograph for α1 = 0.75, α2 = 0.15.
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Figure 2. Polynomiograph for α1 = 0.5, α2 = 0.2.
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Figure 3. Polynomiograph for α1 = 0.3, α2 = 0.5.
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Figure 4. Polynomiograph for α1 = 0.45, α2 = 0.85.
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Figure 5. Polynomiograph for α1 = 0.2, α2 = 0.8.
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Figure 6. Polynomiograph for α1 = 0.05, α2 = 0.04.
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Figure 7. Polynomiograph for α1 = 0.1, α2 = 0.3.
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Figure 8. Polynomiograph for α1 = 0.3, α2 = 0.3.
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Figure 9. Polynomiograph for α1 = 0.5, α2 = 0.4.
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Figure 10. Polynomiograph for α1 = 0.85, α2 = 0.15.
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Figure 11. Polynomiograph for α1 = 0.02, α2 = 0.05.
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Figure 12. Polynomiograph for α1 = 0.6, α2 = 0.7.

5. Conclusions

We have introduced K∗ iteration for finding FP of a general class of contractive-like operators.
Theorem 3.1 shows that our iterative method converges strongly to the FP of contractive-like operators.
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In Theorem 3.3 it is concluded that K∗ iteration procedure performs faster than the leading Kadioglu
& Yildirim iteration process (2.10). Example 3.4 is given to verify our claim. We have presented
polynomiographs for complex cubic polynomials via K∗ iteration process. A large variety of nicely
looking aesthetic patterns can be obtained by changing parameters α1 and α2 and ε involved in our
iterative procedure.
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