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Abstract: In this paper we investigate bifurcation phenomena in a single-species reaction-diffusion
model with spatiotemporal delay under the conditions of the weak and strong kernel functions. We
have found that when the weak kernel function is introduced there is Hopf bifurcation but no Turing
bifurcation and wave bifurcation to occur, but when the strong kernel function is introduced there exist
Hopf bifurcation and wave bifurcation but no Turing bifurcation to occur. Especially, taking the inverse
of the average time delay as a bifurcation parameter, we investigate influences of the time delay on the
formation of spatiotemporal patterns through the numerical method. Some spatiotemporal patterns
induced by Hopf bifurcation and wave bifurcation are respectively shown to illustrate the mechanism
of the complexity of spatiotemporal dynamics.
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1. Introduction

A single-species reaction-diffusion model with spatiotemporal delay which was firstly proposed by
Britton [1] is considered as follows:

∂u
∂t = d∆u + ru

(
1 + αu − βu2 − (1 + α − β)(ψ ∗ u)

)
, (1.1)

where u = u(x, t) for (x, t) ∈ R×[0,+∞) presents the density of a single-species at space x and time t, ψ
is a given function and ψ ∗ u means a convolution in space x and time t, the parameters d, r, α and β are
all positive constants and 1 +α− β > 0. For the biological explanations of all terms in the model (1.1),
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according to references [1, 2], we have known that d > 0 is the diffusive coefficient, the term αu is
a measure of the advantage to individuals in aggregating or grouping and βu2 represents competition
for space. Besides, the spatio-temporal convolution ψ ∗ u, which represents competition between the
individuals for food resources, is interpreted as a weighted average of the values of u over all past time
and over all points in space and has the following form

(ψ ∗ u)(x, t) =

∫
R

∫ t

−∞

ψ(x − y, t − s)u(y, s)dyds,

where ψ(x, t) is a given positive kernel function which satisfies∫
R

∫ +∞

0
ψ(x, t)dxdt = 1.

For model (1.1), a lot of work had been done by many researchers Britton [1], Gourley [3] and
Billingham [4] who had shown that there exist the travelling wave front solution and the periodic
travelling wave solution.

However, in the recent several decades there has been an increasing interest in the two species
reaction-diffusion equations that incorporate spatially and temporally nonlocal terms in the form of
the convolution of a kernel function, see [5–9]. Their studied results demonstrated that the
predator-prey models with the nonlocal term have many bifurcation phenomena which lead to the
complex spatio-temporal patterns to occur. For example, the work of [5] had shown that when the
nonlocal term was introduced the more bifurcation phenomena would occur than the system without
the nonlocal term. Besides, in order to explore the mechanism of emergence of complex
spatiotemporal patterns, the bifurcation behaviours including Hopf bifurcation, Turing bifurcation,
wave bifurcation, Turing-Hopf bifurcation an so on, are also investigated in reaction-diffusion
equations by many researchers [10–15]. The definitions of these bifurcations are introduced in the
references [16, 17] and have the important relations with roots of the characteristic equation of the
studied system. The complex spatiotemporal patterns which include the spatially inhomogeneous
periodic solution, homogeneous solution [10], stationary spatial patterns [11] and quasi-periodic
solution [12] are also pointed out by them, respectively.

In this paper, according to [1], we take the particular kernel functions on the basis of a random walk
argument as follows

ψ(x, t) =
1
√

4dπt
exp (−

|x|2

4dt
)τ exp (−τt)

and

ψ(x, t) =
1
√

4dπt
exp (−

|x|2

4dt
)τ2t exp (−τt),

which are respectively called the weak kernel and strong kernel, where x is the spatial variable, t is
the temporal variable, τ = 1

τ̃
and τ̃ called the average time delay means the competition time for food

resources. We mainly consider all kinds of bifurcation phenomena including Hopf bifurcation, Turing
bifurcation and wave bifurcation for Eq (1.1) with the weak and strong kernel functions. We take
the inverse of the average time delay in the kernel function as a bifurcation parameter and explore
influences of the time delay on the emergence of the different bifurcation behaviours including Hopf
bifurcation, Turing bifurcation and wave bifurcation. The studied results have found that there only
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exists Hopf bifurcation in Eq (1.1) with the weak kernel and there are Hopf bifurcation and wave
bifurcation in Eq (1.1) with the strong kernel. Furthermore, we suppose that Eq (1.1) has the positive
initial condition φ(x) for x ∈ R. And because there is zero population flux across the boundary tending
to the infinity the following homogeneous Neumman boundary condition ∂u(x,t)

∂n = 0 is supposed for
Eq (1.1), where n is the outward unit normal vector of the boundary which tends to infinity.

The rest of this paper is organized as follows. In Section 2, the bifurcation analyses of a single-
species reaction-diffusion model with spatiotemporal delay including the weak kernel and the strong
kernel is given, respectively. The conditions of occurrence of Hopf and wave bifurcation are also
obtained. In Section 3, we investigate the effect of the time delay on the spatiotemporal patterns
through the numerical method. We finally give some conclusions in Section 4.

2. Bifurcation analysis under the different kernel functions

In this section we will employ the linearized analysis to study bifurcation phenomena of Eq (1.1) as
the parameter τ varies. The conditions of the emergence of Hopf bifurcation, Turing bifurcation and
wave bifurcation in Eq (1.1) under the weak kernel and strong kernel are also given, respectively.

2.1. The case of the weak kernel function

When the kernel function has the following weak form

ψ(x, t) =
1
√

4dπt
exp (−

|x|2

4dt
)τ exp (−τt),

according to the results in the references [1, 18], we let

v(x, t) = ψ ∗ u, (2.1)

which leads to transform Eq (1.1) into the following form{
∂u
∂t = d∆u + f1(u, v),
∂v
∂t = d∆v + f2(u, v),

(2.2)

where f1(u, v) = ru(1 + αu − βu2 − (1 + α − β)v), f2(u, v) = τ(u − v). Eq (2.2) has three equilibrium
points (0, 0), (1, 1) and (− 1

β
,− 1

β
). From the viewpoints of population biology, we pay our attention to

the equilibrium point E+ = (1, 1) which corresponds to the maximum state of the studied species. The
linearized equations of system (2.2) are as follows{

∂u
∂t = d∆u + a11u + a12v,
∂v
∂t = d∆v + a21u + a22v,

(2.3)

where
a11 =

∂ f1(u,v)
∂u |u=1,v=1 = r(α − 2β),

a12 =
∂ f1(u,v)
∂v |u=1,v=1 = −r(1 + α − β),

a21 =
∂ f2(u,v)
∂u |u=1,v=1 = τ,

a22 =
∂ f2(u,v)
∂v |u=1,v=1 = −τ.
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Let (
u
v

)
=

(
c1

c2

)
exp(λt + ik · r), (2.4)

where c1 and c2 are coefficients, k denotes the wave numbers in the X direction, and λ is the growth rate
of perturbation in time t, i is the imaginary unit and i2 = −1, r is the spatial vector in one-dimensional
space. Thus, substituting Eq (2.4) into Eq (2.3), we get the characteristic equation which is

λ2 + Tr(k2)λ + ∆(k2) = 0, (2.5)

where Tr(k2) = 2dk2 − a11 − a22 and ∆(k2) = (dk2 − a11)(dk2 − a22) − a12a21.
Assume that α > 2β, from the equation Tr(0) = a11 + a22 = 0, we obtain

τ = τHc = r(α − 2β). (2.6)

That is to say, when τ = τHc, the characteristic Eq (2.5) for k2 = 0 becomes

λ2 + a11a22 − a12a21 = 0,

which has a pair of purely imaginary roots ±
√

a11a22 − a12a21 = ±
√

rτHc(1 + β). Besides, the following
transversality condition

dReλ
dτ

∣∣∣∣
τ=τHc

= −
1
2
< 0

is also satisfied.
When k2 = 0, the roots of Eq (2.5) will determine the local stability of the equilibrium point E+.

If the equilibrium point E+ is stable for k2 = 0, then for k2 , 0, it is also stable because Tr(k2) =

2dk2 + Tr(0) and ∆(k2) = d2k4 + Tr(0)k2 + ∆(0) are both positive under the conditions of Tr(0) and
∆(0) > 0 through using the Routh-Hurwtiz criterion. Connecting the above analyses, the following
results are obtained immediately.

Theorem 2.1 Assume that f1 and f2 ∈ C1(R2,R), α > 2β, Tr0 = τ − r(α − 2β), ∆0 = rτ(1 + β) and
τ = τHc is defined by (2.6).

(i) When k2 = 0, the equilibrium point E+ is asymptotically stable for τ > τHc and unstable for 0 ≤
τ < τHc, and Eq (2.2) undergoes Hopf bifurcation at τ = τHc which leads to the spatially homogeneous
periodic solution to occur;

(ii) When k2 , 0, the equilibrium point E+ of Eq (2.2) is also stable because roots of the
characteristic Eq (2.5) have the negative real parts under the conditions of Tr(k2) = 2dk2 + Tr0,
∆(k2) = d2k4 + Tr0k2 + ∆0, Tr0 > 0 and ∆0 > 0. That is to say, there are not Turing bifurcation and
wave bifurcation to occur.

2.2. The case of the srong kernel function

When the kernel function has the following strong form

ψ(x, t) =
1
√

4dπt
exp (−

|x|2

4dt
)τ2t exp (−τt),
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we use the same symbols as the subsection 2.1 for the convenience of our studies and let v(x, t) =
∫
R

∫ t

−∞

1
√

4dπ(t−s)
exp (− |x−y|2

4d(t−s) )τ
2(t − s) exp (−τ(t − s))u(y, s)dyds,

w(x, t) =
∫
R

∫ t

−∞

1
√

4dπ(t−s)
exp (− |x−y|2

4d(t−s) )τ exp (−τ(t − s))u(y, s)dyds,
(2.7)

according to the results in the references [1, 18], which lead to (1.1) to transform into the following
form 

∂u
∂t = d∆u + g1(u, v,w),
∂v
∂t = d∆v + g2(u, v,w),
∂w
∂t = d∆w + g3(u, v,w),

(2.8)

where g1(u, v,w) = ru(1 + αu − βu2 − (1 + α − β)v), g2(u, v,w) = τ(w − v) and g3(u, v,w) = τ(u − w).
Similar to Eq (2.2), Eq (2.8) has three equilibrium points (0, 0, 0), (1, 1, 1) and (− 1

β
,− 1

β
,− 1

β
).

The linearized equations of (2.8) at E+ = (1, 1, 1) are
∂u
∂t = d∆u + b11u + b12v + b13w,
∂v
∂t = d∆v + b21u + b22v + b23w,
∂w
∂t = d∆w + b31u + b32v + b33w,

(2.9)

where
b11 =

∂g1(u,v,w)
∂u |u=1,v=1,w=1 = r(α − 2β),

b12 =
∂g1(u,v,w)

∂v |u=1,v=1,w=1 = −r(1 + α − β),
b13 =

∂g1(u,v,w)
∂w |u=1,v=1,w=1 = 0,

b21 =
∂g2(u,v,w)

∂u |u=1,v=1,w=1 = 0,
b22 =

∂g2(u,v,w)
∂v |u=1,v=1,w=1 = −τ,

b23 =
∂g2(u,v,w)

∂v |u=1,v=1,w=1 = τ,

b31 =
∂g3(u,v,w)

∂u |u=1,v=1,w=1 = τ,

b32 =
∂g3(u,v,w)

∂v |u=1,v=1,w=1 = 0,
b33 =

∂g3(u,v,w)
∂v |u=1,v=1,w=1 = −τ.

Similarly, we can get the characteristic equation as follows

λ3 + m1(k2)λ2 + m2(k2)λ + m3(k2) = 0, (2.10)

where
m1(k2) = 3dk2 − b11 + 2τ,
m2(k2) = (dk2 + τ)2 + 2(dk2 + τ)(dk2 − b11),
m3(k2) = (dk2 + τ)2(dk2 − b11) − τ2b12.

According to the Routh-Hurwitz criterion, the conditions of the emergence of Hopf bifurcation,
Turing bifurcation and wave bifurcation have the relation with the distribution of roots of Eq (2.10) at
k2 = 0 and k2 , 0, respectively. That is to say, we need to discuss whether the following results hold.

For k2 = 0, if m1(0) > 0, m3(0) > 0 and m1(0)m2(0) − m3(0) > 0 are satisfied, then the roots of
Eq (2.10) have the negative real parts which lead the equilibrium point E+ to be asymptotically stable.

For k2 = 0, if m1(0) > 0 and m1(0)m2(0) − m3(0) = 0 hold, then Eq (2.10) has a pair of purely
imaginary roots which lead to Hopf bifurcation to occur at the equilibrium point E+.
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For k2 , 0, when the characteristic Eq (2.10) has a zero root and the other roots with negative real
parts under the conditions of m1(0) > 0,m2(0) > 0 and m3(0) > 0, there is possible Turing bifurcation
to occur in Eq (2.8).

For k2 , 0, when the characteristic Eq (2.10) has a pair of purely imaginary roots and the another
root with negative real part under the conditions of m1(0) > 0,m2(0) > 0 and m3(0) > 0, there possibly
exist wave bifurcation in Eq (2.8).

According to the above discussions of the root distributions of Eq (2.10) the following results are
obtained immediately.

Theorem 2.2 Assume that g1, g2 and g3 ∈ C1(R3,R), 17β − 9α − 1 < 0, m1(0) > 0, m3(0) > 0 and
τ = τshc±, τ = τswc are defined by (2.13) and (2.19), respectively.

(i) For k2 = 0, the constant equilibrium point E+ is asymptotically stable for 0 ≤ τ < τshc− and
τ > τshc+ and unstable for τshc− < τ < τshc+, and Eq (2.8) undergoes the Hopf bifurcation at τ = τshc±;

(ii) For k2 , 0, under the conditions of m1(0) > 0, m3(0) > 0 and m1(0)m2(0) − m3(0) > 0, there
does not exist the Turing bifurcation in Eq (2.8);

(iii) For k2 , 0, under the conditions of conditions of m1(0) > 0, m3(0) > 0 and m1(0)m2(0)−m3(0) >
0, Eq (2.8) undergoes the wave bifurcation at τ = τswc at the critical wave number k = kwc = b11−τswc

2d .
Proof: (i) For k2 = 0, the characteristic equation becomes into

λ3 + m1(0)λ2 + m2(0)λ + m3(0) = 0, (2.11)

where m1(0) = 2τ − b11, m2(0) = τ2 − 2τb11 and m3(0) = −τ2(b11 + b12). If Eq (2.8) exists the
Hopf bifurcation, the sufficient conditions are that Eq (2.11) has a pair of purely imaginary roots
±iω0(ω0 > 0) and the another root has the negative real part. Substituting λ = ±iω0 into the Eq (2.11),
we get

m1(0)m2(0) − m3(0) = 0. (2.12)

Through the detailed calculations about Eq (2.12), under the condition of 17β − 9α − 1 < 0 the critical
value of the bifurcation parameter τ is as follows

τ =

 τshc+ =
4b11−b12+

√
b2

12−8b11b12

4 ,

τshc− =
4b11−b12−

√
b2

12−8b11b12

4 .
(2.13)

And the another root of Eq (2.11) is λ = −m1(0). In order to obtain the transversality condition, we
need to differentiate about the parameter τ on the two sides of Eq (2.11) and get

dλ
dτ

=
−λ2 dm1(0)

dτ − λ
dm2(0)

dτ −
dm3(0)

dτ

3λ2 + 2m1(0)λ + m2(0)
. (2.14)

Connecting
dm1(0)

dτ
= 2,

dm2(0)
dτ

= 2τ − 2b11 and
dm3(0)

dτ
= −2τ(b11 + b12),

we have
dλ
dτ

=
−2λ2 − 2λ(τ − b11) + 2τ(b11 + b12)

3λ2 + 2m1(0)λ + m2(0)
.
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So when τ = τshc±,
dλ
dτ

∣∣∣∣
τ=τshc±

=
ω2

0 + τshc(b11 + b12) − ω0(τshc − b11)i

−ω2
0 + ω0(2τshc − b11)i

.

And the transversality condition of occurrence of Hopf bifurcation

dReλ
dτ

∣∣∣∣
τ=τshc±

=
3(τshc − b11)2

ω2
0 + (2τshc − b11)2

> 0

is also satisfied.
(ii) For k2 , 0, the conditions of Eq (2.8) undergoing Turing bifurcation are that Eq (2.10) has a

zero root and the equilibrium point E+ is asymptotically stable for k2 = 0. These conditions need the
following results simultaneously hold

m3(k2) = 0,
m1(0) > 0,
m3(0) > 0,
m1(0)m2(0) − m3(0) > 0.

(2.15)

Let z = k2, then

m3(k2) = m3(z) = (dz + τ)2(dz − b11 − τ
2b12) = d3z3 + d2(2τ − b11)z2 + dτ(τ − 2b11)z − τ2(b11 + b12).

The derivative function of m3(z) about the variable z is

dm3(z)
dz = 3d3z2 + 2d2(2τ − b11)z + dτ(τ − 2b11) = 3d3(z + 2τ−b11

3d )2 −
d(τ+b11)2

3 . (2.16)

Because the zero points of the derivative function dm3(z)
dz correspond the local extreme value of m3(z),

we get the two zero points z1 = − τd and z2 = 2b11−τ
3d from dm3(z)

dz = 0. Because z = k2 is positive, we can
obtain the only zero point z = z2 = 2b11−τ

3d = k2 > 0 which leads to 2b11 − τ > 0. And connecting the
equality m2(0) = τ(τ − 2b11), we get m2(0) < 0. Then combining with the inequalities m1(0) > 0 and
m3(0) > 0, we have m1(0)m2(0)−m3(0) < 0. There exists a contradiction with m1(0)m2(0)−m3(0) > 0.
This contradiction demonstrates that for k2 , 0 there does not exist Turing bifurcation in Eq (2.8).

(iii) For k2 , 0, the conditions of Eq (2.8) undergoing wave bifurcation are that Eq (2.10) has
a pair of purely imaginary roots and a root with the negative real and the equilibrium point E+ is
asymptotically stable for k2 = 0. These conditions need also the following results simultaneously hold

m1(k2)m2(k2) − m3(k2) = 0,
m1(0) > 0,
m3(0) > 0,
m1(0)m2(0) − m3(0) > 0.

(2.17)

In order to get the critical value of the bifurcation parameter τ about the wave bifurcation, we firstly let
z = k2 and F(z) = m1(z)m2(z) − m3(z). By the detailed calculations, we get the expression of function
F(z) about the variable z as follows

F(z) = 8d3z3 + 8d2(2τ − b11)z2 + 2d(τ − b11)(5τ − b11)z + τ(2τ − b11)(τ − 2b11) + τ2(b11 + b12).
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The derivative function of F(z) about the variable z is

dF(z)
dz

= 24d3z2 + 16d2(2τ − b11)z + 2d(τ − b11)(5τ − b11). (2.18)

Letting dF(z)
dz = 0, we obtain that the zero points of the derivative function dF(z)

dz are zmin = b11−5τ
6d and

zmax = b11−τ
2d which correspond the local extreme maximum value and local minimum value of the

function F(z), respectively. Let the local extreme minimum F(zmax) of the function F(z) be equal to
zero, we get the critical value of the bifurcation parameter

τswc =
b11

b11 + b12
, (2.19)

and the corresponding critical wave number k2
wc = zmax = b11−τswc

2d . In order to obtain the transversality
condition, we need to differentiate about the parameter τ on the two sides of Eq (2.10) and get

dλ
dτ

=
−λ2 dm1(k2)

dτ − λ dm2(k2)
dτ −

dm3(k2)
dτ

3λ2 + 2m1(k2)λ + m2(k2)
. (2.20)

Connecting

dm1(k2)
dτ

= 2,
dm2(k2)

dτ
= 2(dk2 + τ) + 2(dk2 − b11) and

dm3(k2)
dτ

= 2(dk2 − b11)(dk2 + τ) − 2τb12,

we have
dλ
dτ

=
p1

3λ2 + 2m1(k2)λ + m2(k2)
,

where
p1 = −2λ2 − 2λ((dk2 + τ) + (dk2 − b11)) − 2((dk2 − b11)(dk2 + τ) − τb12).

So when τ = τswc and k2 = k2
wc,

dλ
dτ

∣∣∣∣
τ=τswc

=
p2

q
,

where

p2 = ω2
0 − ((dk2

wc − b11)(dk2
wc + τswc) − τswcb12) + ω0((dk2

wc + τswc) + (dk2
wc − b11))i

and
q = −ω2

0 + m1(k2
wc)ω0i.

The transversality condition of the wave bifurcation

dReλ
dτ

∣∣∣∣
τ=τswc

=
τshcr(1 + α − β)
ω2

0 + m2
1(k2

wc)
> 0

is also satisfied. The proof is completed.
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3. Numerical simulations of spatiotemporal patterns

In this section we will give some numerical results when this single-species reaction-diffusion model
with the strong kernel function. According to the results in Theorem 2.2 of subsection 2.2, we fix
d = 1, r = 2, β = 0.2 and take the parameters τ and α as variables. The pictures of Hopf bifurcation
curve and wave bifurcation curve are given in the parameter plane spanned by τ and α, see Figure 1.

B

A

C

D

0.0 0.2 0.4 0.6 0.8 1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Α

Τ

Bifurcation space spanned by Α and Τ

Figure 1. Parameter space of bifurcation spanned by α and τ according to Theorem 2.2.
Red line and green line are Hopf bifurcation lines which is determined by τshc− and τshc+,
respectively, and blue line is wave bifurcation line.

Next, we fix the parameters α = 0.32 and obtain the critical value of τshc− = 0.333939 about Hopf
bifurcation and the critical value of τswc = 0.066667 about wave bifurcation, respectively. If we take
τ = 0.01, τ = 0.05 and τ = 0.2, respectively corresponding to the points A, B and C, we would get the
spatiotemporal evolution pictures of u with the initial conditions u(0, x) = 1 − 0.1cos(1.3x), v(0, x) =

1 − 0.1cos(1.3x) and w(0, x) = 1 − 0.1cos(1.3x), see Figure 2 (A–C).

Because of τ = 0.01 < 0.333939 = τshc−, Figure 2 (A) presents that the state of u will tend to the
stable state E+ = (1, 1, 1) as the time varies.

Because of τ = 0.05 and τshc− = 0.333939 < 0.05 < 0.066667 = τswc, Figure 2 (B) describes that
there exists the spatially homogeneous and temporally periodic state induced by Hopf bifurcation.

Because of τ = 0.2 > 0.066667 = τswc, Figure 2 (C) shows that there exists the temporally
oscillation pattern induced by the interactions of Hopf bifurcation and wave bifurcation. Because the
Hopf bifurcation is much more prominent than the wave bifurcation, we would obtain the seriously
oscillatory pattern in the temporal direction.

Besides, if we take the parameters α = 0.8 and τ = 0.05 corresponding to the point D, we get the
spatiotemporal pictures about wave bifurcation which leads to the spatially heterogeneous pattern to
occur, see Figure 2 (D).
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Figure 2. Spatiotemporal evolution pictures of speciesu at the different position of parameter
space spanned by α and τ. (A) α = 0.32, τ = 0.01, (B) α = 0.32, τ = 0.05, (C) α = 0.32, τ =

0.2 and (D) α = 0.8, τ = 0.05.

4. Conclusions

The bifurcation behaviours resulting in the occurrence of all kinds of patterns in the
reaction-diffusion equations have been focused in the mathematical biology. It is well known that
these bifurcation behaviors including Hopf bifurcation, Turing bifurcation, wave bifurcation and
interactions of them are reported by many researchers. Recently, the spatiotemporal patterns in the
reaction-diffusion equations due to the presence of the nonlocal reaction have been a fascinating
subject on the study of the pattern formation [5, 8]. What’s more, the effect of the kernel functions on
the spatial pattern formation are also discussed by [19]. In this paper, we mainly pay our attention to
influences of the different kernel function, which are respectively called weak kernel and strong
kernel, on pattern formation in a single-species reaction-diffusion equation. We have found that when
the weak kernel function is introduced there only exists Hopf bifurcation which induces the spatially
homogeneous pattern to occur, but when the strong kernel is introduced there are Hopf bifurcation
and wave bifurcation which can induce the spatially homogeneous pattern and the spatially
heterogeneous pattern to occur, respectively. It is shown that the rich spatiotemporal patterns occur
when the different kernel functions are introduced.
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