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1. Introduction

In 1935, D. H. Lehmer [20] introduced and investigated generalized Euler numbers Wn, defined by
the generating function

3
et + eωt + eω2t

=

∞∑
n=0

Wn
tn

n!
, (1.1)

where ω = −1+
√
−3

2 and ω2 = ω̄ = −1−
√
−3

2 are the cube roots of unity. Notice that Wn = 0 unless n ≡ 0
(mod 3). The sequence of these numbers is given by
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{W3n}n≥0 = 1,−1, 19,−1513, 315523,−136085041, 105261234643,
− 132705221399353, 254604707462013571, · · ·

and the sequence of these absolute values is recorded in [22, A002115]. In [15], the complementary
numbers W ( j)

n ( j = 0, 1, 2) to Lehmer’s Euler numbers are defined by the generating function

∞∑
n=0

W ( j)
n

tn

n!
=

1 +

∞∑
l=1

t3l

(3l + j)!

−1

. (1.2)

Notice that W ( j)
n = 0 unless n ≡ 0 (mod 3). When j = 0, Wn = W (0)

n are the original Lehmer’s Euler
numbers. When j = 1, we also have

∞∑
n=0

W (1)
n

tn

n!
=

3t
et + ω2eωt + ωeω2t

. (1.3)

Lehmer’s Euler numbers and their complementary numbers W ( j)
n can be considered analogous of the

classical Euler numbers En and their complementary Euler numbers Ên ([11, 19]). For, their generating
functions are given by

∞∑
n=0

En
tn

n!
=

1
cosh t

=
2

et + e−t =

 ∞∑
l=0

t2l

(2l)!

−1

(1.4)

and
∞∑

n=0

Ên
tn

n!
=

t
sinh t

=
2t

et − e−t =

 ∞∑
l=0

t2l

(2l + 1)!

−1

, (1.5)

respectively. Still similar numbers are the well-known classical Bernoulli numbers defined by

∞∑
n=0

Bn
tn

n!
=

t
et − 1

=

 ∞∑
l=0

tl

(l + 1)!

−1

. (1.6)

Recently, Barman et al. ([3]) introduce more general numbers, so-called hypergeometric Lehmer-
Euler numbers W ( j)

N,n,r ( j = 0, 1) of grade r , defined by

∞∑
n=0

W ( j)
N,n,r

tn

n!

=

(
1Fr

(
1;

rN + j + 1
r

,
rN + j + 2

r
, · · · ,

rN + j + r
r

;
( t
r

)r
))−1

=

1 +

∞∑
n=1

(rN + j)!
(rN + rn + j)!

trn

−1

(N ≥ 0) ,

where 1Fr(a; b1, . . . , br; z) is the hypergeometric function, defined by

1Fr(a; b1, . . . , br; z) =

∞∑
n=0

(a)(n)

(b1)(n) · · · (br)(n)

zn

n!
.
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and (x)(n) = x(x+1) · · · (x+n−1) (n ≥ 1) is the rising factorial with (x)(0) = 1. A determinant expression
is given by

W ( j)
N,n,r = (−1)n(rn)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(rN+ j)!
(rN+ j+r)! 1 0

(rN+ j)!
(rN+ j+2r)!

(rN+ j)!
(rN+ j+r)!

...
...

. . . 1 0
(rN+ j)!

(rN+rn+ j−r)!
(rN+ j)!

(rN+rn+ j−2r)! · · ·
(rN+ j)!

(rN+ j+r)! 1
(rN+ j)!

(rN+rn+ j)!
(rN+ j)!

(rN+rn+ j−r)! · · ·
(rN+ j)!

(rN+ j+2r)!
(rN+ j)!

(rN+ j+r)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.7)

When N = 0 and r = 3, W ( j)
n = W ( j)

0,n,3 are the Lehmer’s generalized Euler numbers ( j = 0) in
(1.1) and their complementary numbers ( j = 1) in (1.3). When N = 0 and r = 2, En = W ( j)

0,n,2 are the
classical Euler numbers ( j = 0) in (1.4) and their complementary numbers ( j = 1) in (1.5). A famous
determinant expression of Euler numbers discovered by Glaisher in 1875 ([6, p.52])

E2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2 1 0
1
4!

1
2

...
...

. . . 1 0
1

(2n−2)!
1

(2n−4)! · · ·
1
2 1

1
(2n)!

1
(2n−2)! · · ·

1
4!

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.8)

and an expression of the complementary numbers ([11, 19])

Ê2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
3! 1 0
1
5!

1
3!

...
...

. . . 1 0
1

(2n−1)!
1

(2n−3)! · · ·
1
3! 1

1
(2n+1)!

1
(2n−1)! · · ·

1
5!

1
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.9)

When r = 1 and j = 0, BN,n = W (0)
N,n,1 are the hypergeometric Bernoulli numbers. When N = r = 1

and j = 0 in (1.7), Bn = W (0)
1,n,1 are the classical Bernoulli numbers in (1.6). The determinant expression

for the classical Bernoulli numbers was discovered by Glaisher ([6, p.53]).

Bn = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2 1 0
1
3!

1
2

...
...

. . . 1 0
1
n!

1
(n−1)! · · ·

1
2 1

1
(n+1)!

1
n! · · · 1

3!
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.10)

However, the classical Cauchy numbers and their generalized numbers are not involved in the
numbers W ( j)

N,n,r. Hypergeometric Cauchy numbers cN,n ([9]) are defined by

1

2F1(1,N; N + 1;−t)
=

(−1)N−1tN/N
log(1 + t) −

∑N−1
n=1 (−1)n−1tn/n
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=

∞∑
n=0

cN,n
tn

n!
, (1.11)

where 2F1(a, b; c; z) is the hypergeometric function defined by

2F1(a, b; c; z) =

∞∑
n=0

(a)(n)(a)(b)

(c)(n)

zn

n!
.

When N = 1, cn = c1,n are the classical Cauchy numbers defined by

t
log(1 + t)

=

∞∑
n=0

cn
tn

n!
. (1.12)

The determinant expression of hypergeometric Cauchy numbers is given by

cN,n = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N
N+1 1 0

N
N+2

N
N+1

...
...

. . . 1 0
N

N+n−1
N

N+n−2 · · · N
N+1 1

N
N+n

N
N+n−1 · · · N

N+2
N

N+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.13)

([2, 18]). The determinant expression for the classical Cauchy numbers was discovered by Glaisher ([6,
p.50]). Other generalized Cauchy numbers, having similar properties, are Leaping Cauchy numbers
[13] and Shifted Cauchy numbers [16].

A generalized version for Bernoulli and Euler numbers has been established in [17], where the
elements contain factorials, as seen in (1.8), (1.9), (1.10) and (1.7). However, expressions for Cauchy
and their generalized numbers cannot be included because they do not contain the factorial elements,
as seen in (1.13). Universal Bernoulli numbers were studied in [1] and [8], and particularly, some
universal Kummer congruences were established in [1] and [8].

In this paper, we introduce the hypergeometric Cauchy numbers of higher grade that are introduced
as generalizations of both hypergeometric Cauchy numbers and the classical Cauchy numbers. We
give several expressions and identities.

2. Hypergeometric Cauchy numbers of higher grade

For N ≥ 1 and n ≥ 0, define hypergeometric Cauchy numbers V ( j)
N,n,r ( j = 0, 1) of grade r by

∞∑
n=0

V ( j)
N,n,r

tn

n!
=

(
2F1

(
1,N +

j
r

; N + 1 +
j
r

; (−t)r
))−1

, (2.1)

where 2F1(a, b; c; z) is the Gauss hypergeometric function, defined by

2F1(a, b; c; z) =

∞∑
n=0

(a)(n)(b)(n)

(c)(n)

zn

n!
.
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From the definition, V ( j)
N,n,r ≡ 0 (mod r) unless n ≡ 0 (mod r). When r = 1 and j = 0 in (2.1),

cN,n = V (0)
N,n,1 are the hypergeometric Cauchy numbers in (1.11). When N = 1, r = 1 and j = 0 in (2.1),

cn = V (0)
1,n,1 are the classical Cauchy numbers in (1.12).

We can write (2.1) as

2F1

(
1,N +

j
r

; N + 1 +
j
r

; (−t)r
)

=

∞∑
n=0

(−1)n(rN + j)
rN + rn + j

trn = 1 +

∞∑
n=1

(−1)n(rN + j)
rN + rn + j

trn . (2.2)

The definition (2.1) with (2.2) may be obvious or artificial for the readers with different
backgrounds. However, our initial motivations were from Combinatorics, in particular, graph theory.
In 1989, Cameron [5] considered the operator A defined on the set of sequences of non-negative
integers as follows: for x = {xn}n≥1 and z = {zn}n≥1, set Ax = z, where

1 +

∞∑
n=1

zntn =

1 − ∞∑
n=1

xntn

−1

. (2.3)

Cameron’s operators deal with only nonnegative integers, but the operators can be used extensively for
rational numbers. In the sense of Cameron’s operator A, we have the following relation.

A
{

(−1)n−1(rN + j)
rN + rn + j

}
=

V ( j)
N,rn,r

(rn)!


This relation is interchangeable in the sense of determinants too. See Section 5 about Trudi’s formula.

We have the following recurrence relation.

Proposition 1. For N ≥ 0 and j = 0, 1, we have

V ( j)
N,rn,r =

n−1∑
k=0

(−1)n−k−1(rn)!(rN + j)
(rN + rn − rk + j)(rk)!

V ( j)
N,rk,r (n ≥ 1)

with V ( j)
N,0,r = 1.

Proof. By (2.1), we get

1 =

1 +

∞∑
l=1

(−1)l(rN + j)
rN + rl + j

trl

  ∞∑
n=0

V ( j)
N,rn,r

trn

(rn)!


=

∞∑
n=0

V ( j)
N,rn,r

trn

(rn)!
+

∞∑
n=1

n−1∑
k=0

(−1)n−k(rN + j)V ( j)
N,rk,r

(rN + rn − rk + j)(rk)!
trn .

Comparing the coefficient on both sides, we obtain

V ( j)
N,rn,r

(rn)!
+

n−1∑
k=0

(−1)n−k(rN + j)V ( j)
N,rk,r

(rN + rn − rk + j)(rk)!
= 0 (n ≥ 1) .

�
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We have an explicit expression of V ( j)
N,n,r.

Theorem 1. Let j = 0, 1. For n ≥ 1,

V ( j)
N,rn,r = (rn)!

n∑
k=1

(−1)n−k
∑

i1+···+ik=n
i1 ,...,ik≥1

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
.

Proof. The proof is done by induction on n. From Proposition 1 with n = 1,

V ( j)
N,r,r =

r!(rN + j)
rN + j + r

V ( j)
N,0,r =

r!(rN + j)
rN + j + r

.

This matches the result when n = 1. Assume that the result is valid up to n − 1. Then by Proposition 1

V ( j)
N,rn,r

(rn)!
=

n−1∑
l=0

(−1)n−l−1(rN + j)
rN + rn − rl + j

V ( j)
N,rl,r

(rl)!

=

n−1∑
l=1

(−1)n−l−1(rN + j)
rN + rn − rl + j

l∑
k=1

(−1)l−k
∑

i1+···+ik=l
i1 ,...,ik≥1

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

+
(−1)n−1(rN + j)

rN + rn + j

=

n−1∑
k=1

(−1)n−k−1
n−1∑
l=k

(rN + j)
rN + rn − rl + j

∑
i1+···+ik=l
i1 ,...,ik≥1

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

+
(−1)n−1(rN + j)

rN + rn + j

=

n∑
k=2

(−1)n−k
n−1∑

l=k−1

rN + j
rN + rn − rl + j

∑
i1+···+ik−1=l
i1 ,...,ik−1≥1

(rN + j)k−1

(rN + ri1 + j) · · · (rN + rik−1 + j)

+
(−1)n−1(rN + j)

rN + rn + j

=

n∑
k=2

(−1)n−k
∑

i1+···+ik=n
i1 ,...,ik≥1

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

+
(−1)n−1(rN + j)
(rN + rn + j)

(n − l = ik)

=

n∑
k=1

(−1)n−k
∑

i1+···+ik=n
i1 ,...,ik≥1

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
.

�

There is an alternative form of V ( j)
N,n,r by using binomial coefficients. The proof is similar to that of

Theorem 1 and is omitted.
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Theorem 2. For n ≥ 1,

V ( j)
N,rn,r = (rn)!

n∑
k=1

(−1)n−k

(
n + 1
k + 1

) ∑
i1+···+ik=n
i1 ,...,ik≥0

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
.

3. Determinantal expressions

In this section, we shall show an expression of hypergeometric Cauchy numbers of higher grade in
terms of determinants. This result is a generalization of those of the hypergeometric and the classical
Cauchy numbers. For simplification of determinant expressions, we use the Jordan matrix

J =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...

0 0 · · · 1 0


.

J0 is the identity matrix and JT is the transpose matrix of J.

Theorem 3. For n ≥ 1,

V ( j)
N,rn,r = (rn)!

∣∣∣∣∣∣∣JT +

n∑
k=1

rN + j
r(N + k) + j

Jk−1

∣∣∣∣∣∣∣ .
Proof. For simplicity, put ṼN,n = V ( j)

N,n,r/n!. Then, we shall prove that for any n ≥ 1

ṼN,rn =

∣∣∣∣∣∣∣JT +

n∑
k=1

rN + j
r(N + k) + j

Jk−1

∣∣∣∣∣∣∣ . (3.1)

When n = 1, (3.1) is valid because by Theorem 1 we get

ṼN,r =
rN + j

rN + j + r
.

Assume that (3.1) is valid up to n − 1. Notice that by Proposition 1, we have

ṼN,rn =

n−1∑
k=0

(−1)n−k−1(rN + j)
rN + rn − rk + j

ṼN,rk .

Thus, by expanding the right-hand side of (3.1) along the first row, it is equal to

rN + j
rN + j + r

ṼN,rn−r −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rN+ j
rN+ j+2r 1 0

rN+ j
rN+ j+3r

rN+ j
rN+ j+r

...
...

. . . 1 0
rN+ j

rN+rn+ j−r
rN+ j

rN+rn+ j−3r · · ·
rN+ j

rN+ j+r 1
rN+ j

rN+rn+ j
rN+ j

rN+rn+ j−2r · · ·
rN+ j

rN+ j+2r
rN+ j

rN+ j+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
AIMS Mathematics Volume 6, Issue 7, 6630–6646.
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=
rN + j

rN + j + r
ṼN,rn−r −

rN + j
rN + j + 2r

ṼN,rn−2r + · · · + (−1)n

∣∣∣∣∣∣∣
rN+ j

rN+rn+ j−r 1
rN+ j

rN+rn+ j
rN+ j

rN+ j+r

∣∣∣∣∣∣∣
=

n−1∑
k=0

(−1)n−k−1(rN + j)
rN + rn − rk + j

ṼN,rk = ṼN,rn .

�

Remark. When r = 1 and j = 0, the determinant expression in Theorem 3 is reduced to that in (1.13)
for the hypergeometric Cauchy numbers cN,n = V (0)

N,n,1. When N = 1, r = 1 and j = 0, we have a
determinant expression of the Cauchy numbers cn = V (0)

1,n,1 ([6, p.50]).

4. Incomplete hypergeometric Cauchy numbers of higher grade

As applications or variations to generalize the hypergeometric numbers V ( j)
N,n,r of higher grade, we

shall introduce two kinds of incomplete hypergeometric Cauchy numbers of higher grade. Similar but
slightly different kinds of incomplete numbers are considered in [10, 12, 14, 17]. In addition, similar
techniques can be found in [24] and later cited in [7]. For j = 0, 1 and n ≥ m ≥ 1, define the restricted
hypergeometric Cauchy numbers V ( j)

N,n,r,≤m of grade r by

∞∑
n=0

V ( j)
N,n,r,≤m

tn

n!
=

1 +

m∑
l=1

(−1)l(rN + j)
rN + rl + j

trl

−1

(4.1)

and the associated hypergeometric Cauchy numbers V ( j)
N,n,r,≥m of grade r by

∞∑
n=0

V ( j)
N,n,r,≥m

tn

n!
=

1 +

∞∑
l=m

(−1)l(rN + j)
rN + rl + j

trl

−1

. (4.2)

When m → ∞ in (4.1) and m = 1 in (4.2), V ( j)
N,n,r = V ( j)

N,n,r,≤∞ = V ( j)
N,n,r,≥1 are the original hypergeometric

Cauchy numbers of grade r, defined in (2.1) with (2.2). Hence, both incomplete numbers are reduced
to the hypergeometric Cauchy numbers too.

Notice that V ( j)
N,n,r,≤m = V ( j)

N,n,r,≥m = 0 unless n ≡ 0 (mod r).
The restricted and associated hypergeometric Cauchy numbers satisfy the following recurrence

relations.

Proposition 2. For j = 0, 1, we have

V ( j)
N,rn,r,≤m =

n−1∑
k=max{n−m,0}

(−1)n−k−1(rn)!(rN + j)
(rN + rn − rk + j)(rk)!

V ( j)
N,rk,r,≤m (n ≥ 1)

with V ( j)
N,0,r,≤m = 1, and

V ( j)
N,rn,r,≥m =

n−m∑
k=0

(−1)n−k−1(rn)!(rN + j)
(rN + rn − rk + j)(rk)!

V ( j)
N,rk,r,≥m (n ≥ m)

with V ( j)
N,0,r,≥m = 1 and V ( j)

N,r,r,≥m = · · · = V ( j)
N,r(m−1),r,≥m = 0.

AIMS Mathematics Volume 6, Issue 7, 6630–6646.
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Proof. First, we shall prove the relation for the restricted hypergeometric Cauchy numbers. By the
definition (4.1), we get

1 =

1 +

m∑
l=1

(−1)l(rN + j)trl

rN + rl + j

  ∞∑
n=0

V ( j)
N,rn,r,≤m

trn

(rn)!


=

∞∑
n=0

V ( j)
N,rn,r,≤m

trn

(rn)!
+

∞∑
n=1

n−1∑
k=max{n−m,0}

(−1)n−k(rN + j)V ( j)
N,rk,r,≤m

(rN + rn − rk + j)(rk)!
trn .

Comparing the coefficient on both sides, we obtain the first identity.
Next, we prove the relation for the associated hypergeometric Cauchy numbers. By the definition

(4.2), we get

1 =

1 +

∞∑
l=m

(−1)l(rN + j)!trl

rN + rl + j

  ∞∑
n=0

V ( j)
N,rn,r,≥m

trn

(rn)!


=

∞∑
n=0

V ( j)
N,rn,r,≥m

trn

(rn)!
+

∞∑
n=m

n−m∑
k=0

(−1)n−k(rN + j)V ( j)
N,rk,r,≥m

(rN + rn − rk + j)(rk)!
trn .

Comparing the coefficient on both sides, we obtain the desired result. �

The restricted and associated hypergeometric Cauchy numbers have the following expressions in
terms of determinants. From the expression of Theorem 3, all the elements change to 0 in more
diagonal directed bands.

Theorem 4. For integers n and m with n ≥ m ≥ 1, we have

V ( j)
N,rn,r,≤m = (rn)!

∣∣∣∣∣∣∣JT +

m∑
k=1

rN + j
r(N + k) + j

Jk−1

∣∣∣∣∣∣∣
and

V ( j)
N,rn,r,≥m = (rn)!

∣∣∣∣∣∣∣JT +

n∑
k=m

rN + j
r(N + k) + j

Jk−1

∣∣∣∣∣∣∣ .
Proof. First, we shall prove the first expression for the restricted hypergeometric Cauchy numbers. For
simplicity, put ṼN,rn,≤m = V ( j)

N,rn,r,≤m/(rn)! and prove that for n ≥ m ≥ 1

ṼN,rn,≤m =

∣∣∣∣∣∣∣JT +

m∑
k=1

rN + j
r(N + k) + j

Jk−1

∣∣∣∣∣∣∣ . (4.3)

When n = m, we have ṼN,rm,≤m = ṼN,rm, and the result reduces to Theorem 3. Assume that (4.3) is valid
up to n − 1. If n ≥ 2m, then the determinant on the right-hand side of (4.3) is equal to

ṼN,rn−r,≤m(rN + j)
rN + j + r

−
ṼN,rn−2r,≤m(rN + j)

rN + j + 2r
+ · · ·
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+ (−1)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rN+ j
rN+rm+ j 1 0

0 rN+ j
rN+r+ j 1
...

rN+ j
rN+rm+ j

. . . 1
rN+ j

rN+rm+ j · · ·
rN+ j

rN+r+ j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

ṼN,rn−r,≤m(rN + j)
rN + r + j

−
ṼN,rn−2r,≤m(rN + j)

rN + 2r + j
+ · · · + (−1)m−1 ṼN,rn−rm,≤m(rN + j)

rN + rm + j
= ṼN,rn,≤m .

If m < n ≤ 2m, then the determinant on the right-hand side of (4.3) is equal to

Ṽ ( j)
N,rn−r,≤m(rN + j)

rN + r + j
−

Ṽ ( j)
N,rn−2r,≤m(rN + j)

rN + 2r + j
+ · · ·

+ (−1)m−n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rN+ j
rN+rn−rm+ j 1 0

...
...

rN+ j
rN+rm+ j

rN+ j
rN+2rm−rn+ j

0
...

... 1
0 rN+ j

rN+rm+ j · · · · · ·
rN+ j

rN+r+ j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

ṼN,rn−r,≤m(rN + j)
rN + r + j

−
ṼN,rn−2r,≤m(rN + j)

rN + 2r + j
+ · · · + (−1)n−m−1 ṼN,rm,≤m(rN + j)

rN + rn − rm + j

=
ṼN,rn−r,≤m(rN + j)

rN + r + j
−

ṼN,rn−2r,≤m(rN + j)
rN + 2r + j

+ · · · + (−1)m−1 ṼN,rn−rm,≤m(rN + j)
rN + rm + j

= ṼN,rn,≤m .

Next, we prove the second expression for the associated hypergeometric Cauchy numbers. For
simplicity, put ṼN,rn,≥m = VN,rn,r,≥m/(rn)! and we prove that

ṼN,rn,≥m =

∣∣∣∣∣∣∣JT +

n∑
k=m

rN + j
r(N + k) + j

Jk−1

∣∣∣∣∣∣∣ . (4.4)

If m ≤ n ≤ 2m, the determinant on the right-hand side of (4.4) is equal to

(−1)n−m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...

0
rN+ j

rN+rm+ j
...

rN+ j
rN+rn+ j

1 0

0 . . .
...

. . . 0
... 1
0 · · · · · · 0︸                  ︷︷                  ︸

m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)n−m(−1)m+1 rN + j
rN + rn + j

∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0

0 . . .
. . . 0

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+1 rN + j

rN + rn + j
.

Since only the term for k = 0 does not vanish in the second relation of Proposition 2, we have

ṼN,rn,≥m = (−1)n+1 rN + j
rN + rn + j

.

If n ≥ 2m, the determinant on the right-hand side of (4.4) is equal to

(−1)m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rN+ j
rN+rm+ j

...

...
rN+ j

rN+rn+ j

1 0

0
. . .

...
. . .

0
rN+ j

rN+rm+ j
...

. . .
rN+ j

r(N+n−m)+ j · · ·
rN+ j

r(N+m)+ j︸                               ︷︷                               ︸
n−2m+1

. . . 0

. . . 1
0 · · · 0︸          ︷︷          ︸

m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m−1

Ṽ ( j)
N,rn−rm,≥m(rN + j)

rN + rm + j

+ (−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rN+ j
rN+rm+r+ j

...

...
rN+ j

rN+rn+ j

1 0

0
. . .

...
. . .

0
rN+ j

rN+rm+ j
...

. . .
rN+ j

r(N+n−m−1)+ j · · ·
rN+ j

r(N+m)+ j︸                                  ︷︷                                  ︸
n−2m

. . . 0

. . . 1
0 · · · 0︸          ︷︷          ︸

m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · ·

= (−1)m−1
Ṽ ( j)

N,rn−rm,≥m(rN + j)

rN + rm + j
+ (−1)m

Ṽ ( j)
N,r(n−m−1),≥m(rN + j)

rN + r(m + 1) + j

+ · · · + (−1)n−m+1
Ṽ ( j)

N,rm,≥m(rN + j)

rN + r(n − m) + j
+ (−1)n−m+1(−1)m rN + j

rN + rn + j

= −

n−m∑
k=m

(−1)n−kṼN,rk,≥m(rN + j)
r(N + n − k) + j

= ṼN,rn,≥m .

Here, we used the second relation of Proposition 2 again. �

There exist explicit expressions for both incomplete Cauchy numbers.
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Theorem 5. For n,m ≥ 1,

V ( j)
N,rn,r,≤m = (rn)!

n∑
k=1

(−1)n−k
∑

i1+···+ik=n
1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
.

For n,m ≥ 1,

V ( j)
N,rn,≥m = (rn)!

n∑
k=1

(−1)n−k
∑

i1+···+ik=n
i1 ,...,ik≥m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
.

Proof. First, we shall prove the first expression for the restricted hypergeometric Cauchy numbers.
When n ≤ m, the proof is similar to that of Proposition 1. Note that in the proof of Proposition 1,

1 ≤ n − l = ik ≤ n − k + 1 ≤ n .

Let n ≥ m + 1. By the first relation of Proposition 2

V ( j)
N,rn,r,≤m

(rn)!
=

n−1∑
l=n−m

(−1)n−l−1(rN + j)V ( j)
N,rl,r,≤m

(rN + rn − rl + j)(rl)!

=

n−1∑
l=n−m

(−1)n−l−1(rN + j)
rN + rn − rl + j

l∑
k=1

(−1)l−k
∑

i1+···+ik=l
1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

=

n−1∑
l=1

(−1)n−k−1(rN + j)
rN + rn − rl + j

l∑
k=1

∑
i1+···+ik=l

1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

+

n−m−1∑
l=1

(−1)n−k(rN + j)
rN + rn − rl + j

l∑
k=1

(−1)k
∑

i1+···+ik=l
1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

=

n−1∑
k=1

(−1)n−k−1
n−1∑
l=k

rN + j
rN + rn − rl + j

∑
i1+···+ik=l

1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

+

n−m−1∑
k=1

(−1)n−k
n−m−1∑

l=k

rN + j
rN + rn − rl + j

∑
i1+···+ik=l

1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

=

n∑
k=2

(−1)n−k
n−1∑

l=k−1

rN + j
rN + rn − rl + j

∑
i1+···+ik−1=l

1≤i1 ,...,ik−1≤m

(rN + j)k−1

(rN + ri1 + j) · · · (rN + rik−1 + j)

+

n−m∑
k=2

(−1)n−k−1
n−m−1∑
l=k−1

rN + j
rN + rn − rl + j

∑
i1+···+ik−1=l

1≤i1 ,...,ik−1≤m

(rN + j)k−1

(rN + ri1 + j) · · · (rN + rik−1 + j)

=

n∑
k=n−m+1

(−1)n−k
n−1∑

l=k−1

rN + j
rN + rn − rl + j

∑
i1+···+ik−1=l

1≤i1 ,...,ik−1≤m

(rN + j)k−1

(rN + ri1 + j) · · · (rN + rik−1 + j)
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+

n−m∑
k=2

(−1)n−k
n−1∑

l=n−m

rN + j
rN + rn − rl + j

∑
i1+···+ik−1=l

1≤i1 ,...,ik−1≤m

(rN + j)k−1

(rN + ri1 + j) · · · (rN + rik−1 + j)
.

By putting ik = n−l, in the first term by n−1 ≥ l ≥ k−1 ≥ n−m, in the second term by n−1 ≥ l ≥ n−m,
we have

1 ≤ n − l = ik ≤ m .

Therefore,

V ( j)
N,rn,r,≤m

(rn)!
=

n∑
k=n−m+1

(−1)n−k
∑

i1+···+ik=n
1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

+

n−m∑
k=2

(−1)n−k
∑

i1+···+ik=n
1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

=

n∑
k=1

(−1)n−k
∑

i1+···+ik=n
1≤i1 ,...,ik≤m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
.

Note that the expression vanishes for k = 1 as n > m.
Next, we prove the second expression for the associated hypergeometric Cauchy numbers. Since

the set
{(i1, . . . , ik)|i1 + · · · + ik = n, i1, . . . , ik ≥ m}

is empty for n = 1, . . . ,m − 1, we have V ( j)
N,r,r,≥m = · · · = V ( j)

N,rm−r,r,≥m = 0. For n = m, by the second
expression of Theorem 4

V ( j)
N,rm,r,≥m = (rm)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
0 1
...

0 1
rN+ j

rN+rm+ j 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (rm)!(−1)m−1 rN + j

rN + rm + j
=

(−1)m−1(rN + j)
rN + rm + j

,

which matches the result for n = m. Assume that the result is valid up to n − 1(≥ m). Then by the
second relation of Proposition 2

VN,rn,r,≥m

(rn)!
=

n−m∑
l=0

(−1)n−l−1(rN + j)
(rN + rn − rl + j)(rl)!

V ( j)
N,rl,r,≥m

=
(−1)n−1(rN + j)

rN + rn + j

+

n−m∑
l=1

(−1)n−l−1(rN + j)
rN + rn − rl + j

l∑
k=1

(−1)l−k
∑

i1+···+ik=l
i1 ,...,ik≥m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
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=
(−1)n−1(rN + j)

rN + rn + j

+

n−m∑
k=1

(−1)n−k−1
n−m∑
l=k

rN + j
rN + rn − rl + j

∑
i1+···+ik=l
i1 ,...,ik≥m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

=
(−1)n−1(rN + j)

rN + rn + j

+

n−m+1∑
k=2

(−1)n−k
n−m∑

l=k−1

rN + j
rN + rn − rl + j

∑
i1+···+ik−1=l
i1 ,...,ik−1≥m

(rN + j)k−1

(rN + ri1 + j) · · · (rN + rik−1 + j)

=
(−1)n−1(rN + j)

rN + rn + j

+

n−m+1∑
k=2

(−1)n−k
∑

i1+···+ik=n
i1 ,...,ik≥m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

(ik = n − l)

=

n−m+1∑
k=1

(−1)n−k
∑

i1+···+ik=n
i1 ,...,ik≥m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)

=

n∑
k=1

(−1)n−k
∑

i1+···+ik=n
i1 ,...,ik≥m

(rN + j)k

(rN + ri1 + j) · · · (rN + rik + j)
.

Note that ik = n − l ≥ m as l ≤ n − m. As 1 ≤ m ≤ n − 1, we have m(n − m + 2) > n, so the set

{(i1, . . . , ik)|i1 + · · · + ik = n, i1, . . . , ik ≥ m}

is empty for n − m + 2 ≤ k ≤ n. �

5. Applications by Trudi’s formula

We shall use Trudi’s formula to obtain different explicit expressions and inversion relations for the
numbers V ( j)

N,n. Denote the multinomial coefficients by
(

t1+···+tn
t1,...,tn

)
=

(t1+···+tn)!
t1!···tn! .

Lemma 1. For a positive integer n, we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · ·

a2 a1
. . .

...
...

...
. . .

. . . 0
an−1 · · · a1 a0

an an−1 · · · a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−a0)n−t1−···−tnat1

1 at2
2 · · · a

tn
n .
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This relation is known as Trudi’s formula [21, Vol.3, p.214],[23] and the case a0 = 1 of this formula
is known as Brioschi’s formula [4],[21, Vol.3, pp.208–209].

In addition, there exists the following inversion formula (see, e.g., [17]), which is based upon the
relation

n∑
k=0

(−1)n−kαkD(n − k) = 0 (n ≥ 1)

or Cameron’s operator in (2.3).

Lemma 2. For the sequence {αn}n≥0 defined by α0 = 1 and

αn =

∣∣∣∣∣∣∣∣∣∣∣∣∣
D(1) 1

D(2) . . .
. . .

...
. . .

. . . 1
D(n) · · · D(2) D(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, we have D(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
α1 1

α2
. . .

. . .
...

. . .
. . . 1

αn · · · α2 α1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From Trudi’s formula, it is possible to give the combinatorial expression

αn =
∑

t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−1)n−t1−···−tn D(1)t1 D(2)t2 · · ·D(n)tn .

By applying these lemmas to Theorem 4, we obtain explicit expressions for the incomplete
hypergeometric Cauchy numbers of higher grade defined in (4.1) and (4.2).

Theorem 6. For n ≥ m ≥ 1, we have

V ( j)
N,rn,r,≤m = (rn)!

∑
t1+2t2+···+mtm=n

(
t1 + · · · + tm

t1, . . . , tm

)
(−1)n−t1−···−tm

(
rN + j

rN + j + r

)t1

· · ·

(
rN + j

rN + rm + j

)tm

and

V ( j)
N,rn,r,≥m = (rn)!

∑
mtm+(m+1)tm+1+···+ntn=n

(
tm + tm+1 + · · · + tn

tm, tm+1, . . . , tn

)

× (−1)n−tm−tm+1−···−tn

(
rN + j

rN + rm + j

)tm (
rN + j

rN + rm + j + r

)tm+1
(

rN + j
rN + rn + j

)tn

.

As a special case of Theorem 6, we can obtain the expressions for the original hypergeometric
Cauchy numbers.

Corollary 1. For n ≥ 1, we have

V ( j)
N,rn,r = (rn)!

∑
t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−1)n−t1−···−tn

(
rN + j

rN + j + r

)t1

· · ·

(
rN + j

rN + rn + j

)tn

.
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By applying the inversion relation in Lemma 2 to Theorem 3, we have the following.

Theorem 7. Let j = 0, 1. For n ≥ 1, we have

rN + j
rN + rn + j

=

∣∣∣∣∣∣∣JT +

n∑
k=1

V ( j)
N,kr,r

(kr)!
Jk−1

∣∣∣∣∣∣∣ .
In this sense, we have the inversion relation of Corollary 1 too.

Corollary 2. For n ≥ 1, we have

rN + j
rN + rn + j

=
∑

t1+2t2+···+ntn=n

(
t1 + · · · + tn

t1, . . . , tn

)
(−1)n−t1−···−tn

V ( j)
N,r,r

r!


t1

· · ·

V ( j)
N,rn,r

(rn)!


tn

.

6. Conclusions

In this paper, we proposed one type of generalizations of the classical Cauchy numbers and
hypergeometric Cauchy numbers. Many other generalizations are known, but the focus of this paper
is on the determinant, which originated in Glaisher and others. Similar determinants have been dealt
with by Brioshi, Trudi and others, but have long been forgotten. A similar generalization attempt,
made by the first author of this paper with Barman in 2019, has proposed generalized numbers
including the classical Bernoulli numbers, hypergeometric Bernoulli numbers, Euler numbers,
hypergeometric Euler numbers, and so on. However, classical Cauchy numbers and hypergeometric
Cauchy numbers cannot be included in the generalization by Barman et al., and this is achieved in this
paper. The background and motivation for generalization is Cameron’s operator, which is related to
graph theory. There, only integers were targeted, but in this paper, we extended this to rational
numbers and applied it.
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