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Abstract: This paper aims to develop a new group decision making (GDM) approach with
intuitionistic multiplicative preference relations (IMPRs) by considering the consistency and
consensus. Using the distance between a given IMPR and its corresponding underlying consistent
IMPR, the concept of acceptably consistent IMPR is introduced, then an automatic algorithm is
designed to repair the inconsistent IMPR to be of acceptable consistency. Meanwhile, each decision
maker’s consensus level is evaluated by the deviation between his/her individual IMPR and the group
IMPR, and another algorithm for reaching acceptable level of consensus is provided. Moreover, the
consensus improving process can guarantee that the modified IMPRs still be acceptably consistent, then
the normalized intuitionistic multiplicative priority weight vector can be obtained from a mathematical
programming model. A step-by-step algorithm based on the consistency and consensus of IMPRs
is offered. Finally, two examples and the corresponding comparative analyses are presented to
demonstrate the effectiveness of the proposed method.
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1. Introduction

Group decision making (GDM), which needs some decision makers to select the best alternative,
takes place widely in various fields of operations research and management science. Nowadays, due
to the increasing complexity and fuzziness of the decision problems, it is almost impossible for a
single expert to consider all the relevant aspects. Thus, GDM method becomes an interesting and
important tool to solve many practical real-life problems. For the GDM problems, preference
relations are good techniques to collect the wisdom of a group of decision makers, and pairwise
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comparison method is more accurate than non-pairwise comparison method [1]. Until now, many
researchers have developed different kinds of preference relations, such as fuzzy preference relation
(FPR) [2], multiplicative preference relation (MPR) [3], linguistic preference relation (LPR) [4],
intuitionistic FPR (IFPR) [5], intuitionistic MPR (IMPR) [6], intuitionistic fuzzy LPR (IFLPR) [7],
intuitionistic multiplicative LPR (IMLPR) [8], probabilistic LPR (PLPR) [9], hesitant FPR (HFPR)
[10], hesitant fuzzy LPR (HFLPR) [11]. Moreover, various types of interval-valued preference
relations have also been investigated. In the literature, many different GDM methods have been
proposed by some researchers. Li et al. [12] solved a heterogeneous GDM problem with real values,
intervals, triangular and trapezoidal fuzzy numbers based on the weighted-power average operator
and TOPSIS method. By considering the preferred and non-preferred information simultaneously,
Meng et al. [13] dealt with four preference relations under different intuitionistic environments. Li et
al. [14] developed a GDM approach for supplier selection in view of multi-period fuzzy information
and opinion interaction of decision makers. Meng et al. [15] proposed the linguistic intuitionistic
fuzzy preference relation and applied it to multi-criteria GDM. Wu et al. [16] presented the
eigenvector method and the corresponding adjustment method to address the site selection for
earthquake shelters by using the hesitant multiplicative linguistic preference relation.

Generally speaking, the preference relations mainly defined on two term sets: the symmetric term
set and the non-symmetric term set. The MPR, which uses Saaty’s scale [1/9, 9] to measure the
degree that one alternative is preferred to another, is one of the most important preference relations,
but the elements in MPR are only characterized by a membership function which cannot describe the
non-preferred information. Since intuitionistic fuzzy set can be used to depict the preference degree,
the non-preference degree and the hesitancy degree jointly, and inspired by the IFPR [17], Xia et al.
[6] put forward the IMPR, which defined on the intuitionistic multiplicative set (IMS). IMS uses an
unbalanced, asymmetric scale to express the three different aspects of preference values and provide the
comprehensive intuitive information. Thus, IMPR can deal with the unbalanced recognition for real-
life decision making problems, one example is the law of diminishing marginal utility in economics.
Sometimes, from the point of psychology, people are more sensitive to loss than gain, and in this
situation, it needs to effectively reflect the asymmetrical and unbalanced views of decision makers. For
this reason, the GDM with IMPRs has attracted increasing attentions in recent years.

When we try to rank the alternatives from the preference relations, a commonly used approach is
the priority weights ranking method, which is divided into the aggregation method and the modeling
method [18]. The aggregation method is using the aggregation operators to fuse preference
information in the preference relations. For the GDM with IMPRs, many intuitionistic multiplicative
aggregation operators have been investigated to fuse the preference information, such as intuitionistic
multiplicative weighted averaging (IMWA) operator, intuitionistic multiplicative weighted geometric
(IMWG) operator, intuitionistic multiplicative ordered weighted averaging (IMOWA) operator,
intuitionistic multiplicative ordered weighted geometric (IMOWG) operator, generalized IMOWA
(GIMOWA) operator, generalized IMOWG (GIMOWG) operator. For more details, one can refer to
[6, 19–24]. However, it is known that different ranking orders may be obtained with respect to
different aggregation operators, and there is no argument about which operator is better. Thus, in this
paper, we mainly consider the modeling method to deal with GDM with IMPRs.

The modeling method is developed based on the consistency of preference relations and the
consensus level among decision makers. In order to avoid illogical and contradictory ranking order,
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the consistency and consensus should be studied. Consistency is utilized to measure the degree of
agreement among the preference values, while consensus is adopted to depict the degree of agreement
among the decision makers [25]. Up to now, several different consistency concepts for IMPRs have
been proposed [26–31]. Zhang and Pedrycz [31] revealed that the consistency of IMPRs in [29–31]
satisfies the upper triangular property and the robust property. Thus, this concept is reasonable and
can be taken as a good measurement for the consistency of IMPRs. In order to get the priority weight
vector from an IMPR, some researchers [29–33] have established the relationship between an IMPR
and a normalized intuitionistic fuzzy (multiplicative) weight vector. Li et al. [34] pointed out that
these transformation formulas have some shortcomings and constructed a new transformation
formula. Moreover, in a real GDM problem, it is almost impossible for the experts to give consistent
IMPRs, especially when the number of objects is large, which means the consistency improving
process should be considered. Until now, several different consistency indexes have been proposed to
measure the acceptably consistent IMPRs, and some algorithms are also developed to improve the
consistency of inconsistent IMPRs, readers can refer to [30, 32, 35–37]. Regrading to the consensus
checking and improving process, there are also many achievements. Jiang et al. [38] studied some
compatibility measures and gave two different consensus models to improve the group consensus
level in GDM with IMPRs. Using a novel symmetric intuitionistic multiplicative aggregation
operator, Xu and Ma [39] provided a method for checking and reaching consensus. Zhang et al. [40]
proposed an intuitionistic multiplicative GDM method based on a new outranking flow-based
consensus measure.

Generally speaking, to solve a GDM problem with IMPRs, we should perform three processes [41]:
(1) the consistency checking and repairing process of each IMPR; (2) the consensus checking and
reaching process for the group; (3) the selection process. Sometimes, the consistency and consensus of
a GDM with preference relations can be considered in two steps [42–45]. Firstly, a consistency index
is introduced and a consistency control process is designed to repair an inconsistent preference relation
to be of acceptable consistency. Secondly, the group consensus index is defined and one algorithm
for reaching acceptable level of consensus is developed. Meanwhile, after reaching the consensus
level, the modified preference relations should be still of acceptable consistency. As far as we know,
only Meng et al. [28] and Zhang and Pedrycz [41] have developed a GDM method with IMPRs
based on the consistency and consensus analysis. In Meng et al.’s method [28], it is very complex
and complicated to judge the consistency and consensus of IMPRs. Meng et al. [28] employed the
complete consistency analysis, and the complete consistency may take lots of time to reach and lose
some information. Moreover, Meng et al. [28] calculated the geometric mean value of each row to
fuse the preference information, which can not avoid the shortcomings in the aggregation method. All
in all, the computation cost in [28] is too large and the proposed method is not convenient to use.
In Zhang and Pedrycz’s method [41], they established one goal programming model to improve the
consistency and consensus simultaneously. Compared with the two steps approach, the constraints in
model (M-6) [41] are too strict, and the finally modified IMPRs may lose more information. Zhang
and Pedrycz [41] used the expected proximity degree of all IMPRs to define a consensus index, it is
quite complicated. When the group has acceptable consensus, we can not guarantee that the proximity
degrees of all IMPRs are larger than a predefined threshold value. For the IMPRs, it is reasonable to
use the intuitionistic multiplicative priority weight vector to reflect the importance of the alternatives,
but Zhang and Pedrycz [41] only obtained the crisp priority weights. Thus, in order to circumvent the
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aforesaid drawbacks, we should do some other studies about GDM with IMPRs.
In this paper, we focus on the consistency and consensus of a GDM with IMPRs in two steps.

Motivated by the acceptably multiplicative consistent IFPR [46], we first introduce the concept of
acceptably consistent IMPR, then one automatic algorithm is developed to improve the consistency of
an inconsistent IMPR. Meanwhile, the consensus index of each decision maker is defined and another
algorithm for reaching acceptable level of consensus is proposed, which can guarantee that the
consensus index of each expert is not smaller than a predefined threshold value. Moreover, the
modified IMPRs in the consensus improving process still be acceptably consistent. Based on a
mathematical programming model, the normalized intuitionistic multiplicative priority weight vector
is generated from the fused group IMPR. Compared with the methods in [28, 30, 31, 34, 41], the
advantages of the proposed approach are illustrated by two examples.

The rest of the paper is organized as follows. Section 2 reviews some basic knowledge related to
the IMPRs. In Section 3, an automatic Algorithm I is designed to repair the inconsistent IMPR to be
of acceptable consistency. Section 4 focuses on the consensus degree among the experts, and an
Algorithm II is developed to help the group reach consensus. In Section 5, two examples are
presented to show the validation and effectiveness of the proposed method, and the thorough
comparative analyses are also conducted. Finally, Section 6 concludes the paper.

2. Preliminaries

In this section, we review some basic knowledge related to the IMPRs.

Definition 2.1. ([6]) Let X be a fixed set, an IMS is defined as D = {< x, ρD(x), σD(x) >| x ∈ X}, which
assigns to each element x a membership information ρD(x) and a non-membership information σD(x),
with the conditions 1/9 ≤ ρD(x), σD(x) ≤ 9 and ρD(x)σD(x) ≤ 1.

For convenience, Xia et al. [6] called (ρD(x), σD(x)) an intuitionistic multiplicative number (IMN)
and denoted it by α = (ρα, σα), where 1/9 ≤ ρα, σα ≤ 9 and ρασα ≤ 1. For an IMN α = (ρα, σα), Xia
et al. [6] defined an accuracy function h(α) = ρασα , Jiang et al. [47] introduced a distance function
p(α) = 1−log9 σα

2−log9 ρα−log9 σα
. Then, a method for ranking two IMNs α1 = (ρα1 , σα1) and α2 = (ρα2 , σα2) can

be given as follows [47]:
If p(α1) > p(α2), then α1 > α2.
If p(α1) = p(α2), and

if h(α1) > h(α2), then α1 > α2;
if h(α1) = h(α2), then α1 = α2.

Jiang et al. [47] have pointed out that their ranking method is more stable and less sensitive than
the method in [6], and it can obtain a consistent result when little changes of the parameters of IMNs
take place. Thus, in this paper, we use the above ranking method to compare IMNs.

By using IMNs to express pairwise judgments instead of exact numerical values in the MPR, Xia et
al. [6] introduced the concept of IMPR.

Definition 2.2. ([6]) An IMPR on the alternative set X = {x1, x2, · · · , xn} is defined as a matrix R =(
αi j

)
n×n =

(
(ραi j , σαi j)

)
n×n, where ραi j , σαi j ∈ [1/9, 9], ραi jσαi j ≤ 1, ραi j = σα ji , σαi j = ρα ji , ραii = σαii = 1,

and ραi j indicates the degree to which the object xi is preferred to the object x j, σαi j means the degree
to which the object xi is not preferred to the object x j.
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For convenience, IMN αi j = (ραi j , σαi j) can be denoted as αi j = (ρi j, σi j).

Definition 2.3. ([48]) Let Rk =
(
αk

i j
)

n×n with αk
i j = (ρk

i j, σ
k
i j) (k = 1, 2) be two IMPRs, then the distance

measure between them comes as

d(R1,R2) =
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

1
i j − log9 ρ

2
i j| + | log9 σ

1
i j − log9 σ

2
i j|
)
. (2.1)

In order to obtain a logical conclusion from preference relations, consistency is a basic property
which should be considered, and one reasonable concept for the consistency of IMPRs is given as
follows.

Definition 2.4. ([29–31]) An IMPR R = (αi j)n×n with αi j = (ρi j, σi j) is called consistent if the following
transitivity is satisfied:

ρi j · ρ jk · ρki = σi j · σ jk · σki, i, j, k = 1, 2, · · · , n. (2.2)

Note that the equations used to define the consistency of IMPRs in [29–31] are equivalent to Eq.
(2.2).

Theorem 2.1. ([30, 31]) Let R = (αi j)n×n be an IMPR with αi j = (ρi j, σi j), then the following two
statements are equivalent:

(1) ρi j · ρ jk · ρki = σi j · σ jk · σki, i, j, k = 1, 2, · · · , n,
(2) ρi j · ρ jk · ρki = σi j · σ jk · σki, i, j, k = 1, 2, · · · , n, i < j < k.

Suppose ω = (ω1, ω2, · · · , ωn)T be the underlying intuitionistic multiplicative priority weight vector
of an IMPR R = (αi j)n×n, where ωi = (ωρ

i , ω
σ
i ) (i = 1, 2, · · · , n) is an IMN, which satisfies ωρ

i , ω
σ
i ∈

[1/9, 9] and ω
ρ
iω

σ
i ≤ 1. ω

ρ
i and ωσ

i indicate the membership and non-membership degrees of the
alternative xi as per a fuzzy concept of “importance", respectively. The normalization of ω can be done
via the following definition.

Definition 2.5. ([29, 30, 32]) An intuitionistic multiplicative weight vector ω = (ω1, ω2, · · · , ωn)T with
ωi = (ωρ

i , ω
σ
i ), ωρ

i , ω
σ
i ∈ [1/9, 9] and ωρ

iω
σ
i ≤ 1 is said to be normalized if it satisfies the following

conditions:
n∏

j=1, j,i

ω
ρ
j ≤ ω

σ
i , ω

ρ
i ≥

n∏
j=1, j,i

ωσ
j , i = 1, · · · , n.

The relationship between an IMPR and a normalized intuitionistic multiplicative weight vector
have been studied by some researchers [29, 30, 32], Li et al. [34] analyzed the shortcomings of these
formulas and proposed a new transformation formula.

Theorem 2.2. ([34]) Let ω = (ω1, ω2, · · · , ωn)T =
(
(ωρ

1, ω
σ
1 ), (ωρ

2, ω
σ
2 ), · · · , (ωρ

n, ω
σ
n )

)T be a normalized
intuitionistic multiplicative weight vector with ω

ρ
i , ω

σ
i ∈ [1/9, 9], ωρ

iω
σ
i ≤ 1,

∏n
j=1, j,i ω

ρ
j ≤ ωσ

i and
ω
ρ
i ≥

∏n
j=1, j,i ω

σ
j , for all i = 1, 2, · · · , n, then the preference relation P = (pi j)n×n is a consistent IMPR,

where

pi j = (pρi j, pσi j) =

(1, 1), i = j,(√
ω
ρ
iω

σ
j ,

√
ωσ

i ω
ρ
j
)
, i , j.
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Corollary 2.1. For an IMPR R = (αi j)n×n with αi j = (ρi j, σi j), if there exists a normalized intuitionistic
multiplicative weight vector ω = (ω1, ω2, · · · , ωn)T =

(
(ωρ

1, ω
σ
1 ), (ωρ

2, ω
σ
2 ), · · · , (ωρ

n, ω
σ
n )

)T , such that

αi j = (ρi j, σi j) =

(1, 1), i = j,(√
ω
ρ
iω

σ
j ,

√
ωσ

i ω
ρ
j
)
, i , j,

then R = (αi j)n×n is a consistent IMPR.

In a decision making process, for the purpose of getting a reasonable result, the IMPR R = (αi j)n×n

provided by the decision maker should be consistent. However, in most decision making problems, it
is hard for a decision maker to build such a consistent IMPR, then it is expected that the deviation
between the given IMPR and its corresponding underlying consistent IMPR should be as small as
possible. Using the relationship between an IMN and the associated intuitionistic fuzzy number (IFN)
given by Jiang et al. [47], and motivated by the programming model in [49], Li et al. [34] established
the following Model 1 to get the normalized intuitionistic multiplicative weight vector
ω = (ω1, ω2, · · · , ωn)T from an IMPR R = (αi j)n×n =

(
(ρi j, σi j)

)
n×n.

Model 1 min J =
n−1∑
i=1

n∑
j=i+1

(
ε̂+i j + ε̂

−
i j + η̂

+
i j + η̂

−
i j
)

s.t.


0.5 log9 ρi j − 0.25 log9 ω

ρ
i − 0.25 log9 ω

σ
j − ε̂

+
i j + ε̂

−
i j = 0, i = 1, 2, · · · , n − 1, j = i + 1, · · · , n

0.5 log9 σi j − 0.25 log9 ω
σ
i − 0.25 log9 ω

ρ
j − η̂

+
i j + η̂

−
i j = 0, i = 1, 2, · · · , n − 1, j = i + 1, · · · , n

ω
ρ
i , ω

σ
i ∈ [1/9, 9], ωρ

iω
σ
i ≤ 1,

∏n
j=1, j,i ω

ρ
j ≤ ω

σ
i , ω

ρ
i ≥

∏n
j=1, j,i ω

σ
j , i = 1, 2, · · · , n

ε̂+i j ≥ 0, ε̂−i j ≥ 0, η̂+i j ≥ 0, η̂−i j ≥ 0, ε̂+i jε̂
−
i j = 0, η̂+i jη̂

−
i j = 0, i = 1, 2, · · · , n − 1, j = i + 1, · · · , n

In order to use the Model 1 in a more convenient way, we can modify it into a similar Model 2,
where ε+i j =

|εi j |+εi j

2 , ε−i j =
|εi j |−εi j

2 , η+i j =
|ηi j |+ηi j

2 , η−i j =
|ηi j |−ηi j

2 , and εi j = log9 ρi j − 0.5 log9 ω
ρ
i − 0.5 log9 ω

σ
j ,

ηi j = log9 σi j − 0.5 log9 ω
σ
i − 0.5 log9 ω

ρ
j .

Model 2 min J =
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
ε+i j + ε

−
i j + η

+
i j + η

−
i j
)

s.t.


log9 ρi j − 0.5 log9 ω

ρ
i − 0.5 log9 ω

σ
j − ε

+
i j + ε

−
i j = 0, i = 1, 2, · · · , n − 1, j = i + 1, · · · , n

log9 σi j − 0.5 log9 ω
σ
i − 0.5 log9 ω

ρ
j − η

+
i j + η

−
i j = 0, i = 1, 2, · · · , n − 1, j = i + 1, · · · , n

ω
ρ
i , ω

σ
i ∈ [1/9, 9], ωρ

iω
σ
i ≤ 1,

∏n
j=1, j,i ω

ρ
j ≤ ω

σ
i , ω

ρ
i ≥

∏n
j=1, j,i ω

σ
j , i = 1, 2, · · · , n

ε+i j ≥ 0, ε−i j ≥ 0, η+i j ≥ 0, η−i j ≥ 0, ε+i jε
−
i j = 0, η+i jη

−
i j = 0, i = 1, 2, · · · , n − 1, j = i + 1, · · · , n

It is obvious that the optimal normalized intuitionistic multiplicative priority weights obtained from
the Model 1 and Model 2 are same. We can verify that ωρ

i = ω
σ
i = 1, ωρ

j = ω
σ
j = 1, ε+i j =

| log9 ρi j |+log9 ρi j

2 ,

ε−i j =
| log9 ρi j |−log9 ρi j

2 , η+i j =
| log9 σi j |+log9 σi j

2 and η−i j =
| log9 σi j |−log9 σi j

2 satisfy the constraints in the Model
2, i.e., the feasible set of Model 2 is non-empty. Thus, the Model 2 always has a solution. Using
some optimization computer packages to solve the Model 2 (such as Lingo or Matlab), we can derive
the optimal objective function value J∗ and the normalized intuitionistic multiplicative priority weight
vector ω∗ = (ω∗1, ω

∗
2, · · · , ω

∗
n)T =

(
(ωρ∗

1 , ω
σ∗
1 ), (ωρ∗

2 , ω
σ∗
2 ), · · · , (ωρ∗

n , ω
σ∗
n )

)T .
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Remark 2.1. From Theorem 2.2, a consistent IMPR P∗ = (p∗i j)n×n can be constructed by the optimal
normalized intuitionistic multiplicative priority weight vector ω∗ = (ω∗1, ω

∗
2, · · · , ω

∗
n)T , where

p∗i j = (pρ∗i j , pσ∗i j ) =

(1, 1), i = j,(√
ω
ρ∗
i ω

σ∗
j ,

√
ωσ∗

i ω
ρ∗
j
)
, i , j.

(2.3)

Moreover, the optimal objective function value J∗ in the Model 2 can be easily expressed as

J∗ =min J = min
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
ε+i j + ε

−
i j + η

+
i j + η

−
i j
)

=min
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
|εi j| + |ηi j|

)
=

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρi j − 0.5 log9 ω

ρ∗
i − 0.5 log9 ω

σ∗
j |

+ | log9 σi j − 0.5 log9 ω
σ∗
i − 0.5 log9 ω

ρ∗
j |

)
=

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣ log9 ρi j − log9

√
ω
ρ∗
i ω

σ∗
j

∣∣∣ + ∣∣∣ log9 σi j − log9

√
ωσ∗

i ω
ρ∗
j

∣∣∣).
According to Definition 2.3, the optimal objective function value J∗ is actually the distance measure
between the given IMPR R = (αi j)n×n and the corresponding underlying consistent IMPR P∗ = (p∗i j)n×n,
i.e., J∗ = d(R, P∗).

3. Acceptable consistency of intuitionistic multiplicative preference relations

When we solve the Model 2, if the optimal objective function value J∗ = 0, from Remark 2.1, we
can easily get ρi j =

√
ω
ρ∗
i ω

σ∗
j , σi j =

√
ωσ∗

i ω
ρ∗
j , i, j = 1, 2, · · · , n, i , j. According to Corollary 2.1,

IMPR R = (αi j)n×n is consistent, and the derived normalized intuitionistic multiplicative priority weight
vector is reasonable. If J∗ , 0, which means R = (αi j)n×n is inconsistent, although the underlying
intuitionistic multiplicative weight vector can still be obtained, we should not forget that inconsistent
IMPR may generate unreasonable result. In such situation, a better way is to return the inconsistent
IMPR to decision maker to revaluate and give new IMPR until the consistency is reached or accepted.
However, in some cases, we cannot find the initial expert (or the expert is not willing) to modify
his/her preference values, so an automatic method should be developed to improve the consistency of
inconsistent IMPRs.

From Model 2, we can always derive the optimal objective function value J∗ and the
corresponding normalized intuitionistic multiplicative priority weight vector ω∗ = (ω∗1, ω

∗
2, · · · , ω

∗
n)T ,

then a underlying consistent IMPR P∗ = (p∗i j)n×n with p∗i j = (pρ∗i j , pσ∗i j ) can be constructed from Eq.
(2.3). Motivated by the Definition 7 given in Liao and Xu [46], we introduce the following concept of
acceptably consistent IMPR.
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Definition 3.1. Let R = (αi j)n×n be an IMPR with αi j = (ρi j, σi j), then we call R an acceptably
consistent IMPR, if

d(R, P∗) = J∗ ≤ ξ, (3.1)

where ξ is the consistency threshold and d(R, P∗) is the distance measure between the given IMPR R
and its corresponding underlying consistent IMPR P∗.

Note that from Remark 2.1, the distance measure d(R, P∗) can also be calculated by

d(R, P∗) =
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρi j − log9 pρ∗i j | + | log9 σi j − log9 pσ∗i j |

)
=

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣ log9 ρi j − log9

√
ω
ρ∗
i ω

σ∗
j

∣∣∣ + ∣∣∣ log9 σi j − log9

√
ωσ∗

i ω
ρ∗
j

∣∣∣). (3.2)

Remark 3.1. Considering the definition of an acceptably consistent IMPR given by Zhang and Guo
[30], these two definitions are similar but our definition is more reasonable. Zhang and Guo [30] also
used the distance measure d(R,R∗) to define the acceptable consistency, where the consistent IMPR R∗

only has the smallest distance from R. However, in our Definition 3.1, except the smallest distance,
the consistent IMPR P∗ is actually constructed by the normalized intuitionistic multiplicative priority
weights of R. Thus, compared with the consistent IMPR R∗ in [30], the corresponding underlying
consistent IMPR P∗ we use can provide more information. At the end of this section, an example is
presented to illustrate this remark.

In a practical decision making problem, the consistency threshold ξ can be given in advance,
different values reflect different preference of the decision makers, but there is no theoretical
methodology to determine such a value. Motivated by the work of Zhang and Guo [30], we propose
the following automatic algorithm to improve the consistency of an unacceptably consistent IMPR.

Algorithm I.
Input: An IMPR R = (αi j)n×n with αi j = (ρi j, σi j), the consistency threshold ξ and the adjustment

parameter θ ∈ (0, 1).
Output: An acceptably consistent IMPR R and the distance measure J

∗
.

Step 1: Let h = 0 and R(0) = R.
Step 2: Solve Model 2 for R(h) to obtain the optimal objective function value J(h)∗ and the normalized

intuitionistic multiplicative priority weight vector ω(h)∗ = (ω(h)∗
1 , ω(h)∗

2 , · · · , ω(h)∗
n )T . If distance measure

J(h)∗ ≤ ξ, go to Step 4. Otherwise, build a consistent IMPR P(h)∗ = (p(h)∗
i j )n×n with p(h)∗

i j = (p(h)ρ∗
i j , p(h)σ∗

i j )
according to Eq (2.3), go to Step 3.

Step 3: Build a new IMPR R(h+1) = (α(h+1)
i j )n×n with α(h+1)

i j = (ρ(h+1)
i j , σ(h+1)

i j ), whereρ(h+1)
i j = (ρ(h)

i j )1−θ(p(h)ρ∗
i j )θ,

σ(h+1)
i j = (σ(h)

i j )1−θ(p(h)σ∗
i j )θ.

(3.3)

Let h = h + 1, go to Step 2.
Step 4: Let R = R(h) and J

∗
= J(h)∗, then output R and J

∗
.
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Theorem 3.1. The automatic Algorithm I is convergent.

Proof. When we solve the Model 2 for R(h+1) to obtain the optimal objective function value J(h+1)∗,
and note that the normalized intuitionistic multiplicative priority weight vector
ω(h)∗ = (ω(h)∗

1 , ω(h)∗
2 , · · · , ω(h)∗

n )T of R(h) is a feasible solution, then from Eq (3.2), we can have

J(h+1)∗ =d(R(h+1), P(h+1)∗)

=
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

(h+1)
i j − log9 p(h+1)ρ∗

i j | + | log9 σ
(h+1)
i j − log9 p(h+1)σ∗

i j |
)

≤
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

(h+1)
i j − log9 p(h)ρ∗

i j | + | log9 σ
(h+1)
i j − log9 p(h)σ∗

i j |
)

=
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
|(1 − θ) log9 ρ

(h)
i j + θ log9 p(h)ρ∗

i j − log9 p(h)ρ∗
i j |

+ |(1 − θ) log9 σ
(h)
i j + θ log9 p(h)σ∗

i j − log9 p(h)σ∗
i j |

)
=(1 − θ)

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

(h)
i j − log9 p(h)ρ∗

i j | + | log9 σ
(h)
i j − log9 p(h)σ∗

i j |
)

=(1 − θ)J(h)∗.

Thus, we can easily get J(h+1)∗ ≤ (1−θ)h+1J(0)∗, which means lim
h→∞

J(h+1)∗ = 0, and the proof of Theorem
3.1 is completed. �

From Theorem 3.1, we can see that for any consistency threshold ξ ∈ (0, 1), we can always find an
IMPR R by Algorithm I, such that R is an acceptably consistent IMPR.

Remark 3.2. In the Algorithm I, if the maximum iteration number is assumed to be H, we can adjust
the iterative formula Eq (3.3) to beρ(h+1)

i j = (ρ(h)
i j )1− h+1

H (p(h)ρ∗
i j )

h+1
H ,

σ(h+1)
i j = (σ(h)

i j )1− h+1
H (p(h)σ∗

i j )
h+1
H .

The above iteration process is also convergent, and this proof is similar to the proof of Theorem 1 in
[44], which is omitted here. In this paper, we use Algorithm I to repair the inconsistent IMPR to be of
acceptable consistency.

Definition 3.2. Let Rl = (αl
i j)n×n with αl

i j = (ρl
i j, σ

l
i j) be an IMPR given by the decision maker dl

(l = 1, 2, · · · ,m), and λ = {λ1, λ2, · · · , λm}
T be the weight vector of the decision makers, such that

λl > 0 and
∑m

l=1 λl = 1, then Rc = (αc
i j)n×n with αc

i j = (ρc
i j, σ

c
i j) =

(∏m
l=1(ρl

i j)
λl ,

∏m
l=1(σl

i j)
λl
)

is called a
group IMPR.

Xu [26] have showed that Rc is still an IMPR, Zhang and Guo [30] proved that if all individual
IMPRs Rl (l = 1, 2, · · · ,m) are consistent, then the group IMPR Rc is also consistent. In fact, under
our definition of acceptable consistency, the following theorem can also be obtained which is similar
to the Theorem 8 in [30].

AIMS Mathematics Volume 6, Issue 6, 6603–6629.



6612

Theorem 3.2. If all individual IMPRs Rl = (αl
i j)n×n given by the decision makers are acceptably

consistent, then the group IMPR Rc = (αc
i j)n×n is also acceptably consistent.

Proof. Since each individual Rl is an acceptably consistent IMPR, from Eqs (3.1) and (3.2), we have

Jl∗ =d(Rl, Pl∗) =
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

l
i j − log9 pl,ρ∗

i j | + | log9 σ
l
i j − log9 pl,σ∗

i j |
)

=
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣ log9 ρ
l
i j − log9

√
ω

l,ρ∗
i ωl,σ∗

j

∣∣∣ + ∣∣∣ log9 σ
l
i j − log9

√
ωl,σ∗

i ω
l,ρ∗
j

∣∣∣) ≤ ξ,
where ωl∗ = (ωl∗

1 , ω
l∗
2 , · · · , ω

l∗
n )T with ωl∗

i = (ωl,ρ∗
i , ωl,σ∗

i ) is the normalized intuitionistic multiplicative
priority weight vector of Rl and the consistent IMPR Pl∗ = (pl∗

i j)n×n =
(
(pl,ρ∗

i j , pl,σ∗
i j )

)
n×n is constructed by

the Eq (2.3).
Let υρi =

∏m
l=1(ωl,ρ∗

i )λl and υσi =
∏m

l=1(ωl,σ∗
i )λl (i = 1, 2, · · · , n), we can easily get υρi , υ

σ
i ∈ [1/9, 9]

and υρi υ
σ
i ≤ 1, i.e., (υρi , υ

σ
i ) is an IMN. Moreover,

n∏
j=1, j,i

υ
ρ
j =

n∏
j=1, j,i

m∏
l=1

(ωl,ρ∗
j )λl =

m∏
l=1

( n∏
j=1, j,i

ω
l,ρ∗
j

)λl
≤

m∏
l=1

(ωl,σ∗
i )λl = υσi .

Similarly, we can also have υρi ≥
∏n

j=1, j,i υ
σ
j . Thus, υ = (υ1, υ2, · · · , υn)T with υi = (υρi , υ

σ
i ) is a

normalized intuitionistic multiplicative vector, which means υ is a feasible solution for the
corresponding Model 2, then we can obtain

Jc∗ =d(Rc, Pc∗) ≤
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣ log9 ρ
c
i j − log9

√
υ
ρ
i υ

σ
j

∣∣∣ + ∣∣∣ log9 σ
c
i j − log9

√
υσi υ

ρ
j

∣∣∣)
=

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣∣ log9

m∏
l=1

(ρl
i j)

λl − log9

√√
m∏

l=1

(ωl,ρ∗
i ωl,σ∗

j )λl

∣∣∣∣
+

∣∣∣∣ log9

m∏
l=1

(σl
i j)

λl − log9

√√
m∏

l=1

(ωl,σ∗
i ω

l,ρ∗
j )λl

∣∣∣∣)
=

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣ m∑
l=1

λl log9 ρ
l
i j −

m∑
l=1

λl log9

√
ω

l,ρ∗
i ωl,σ∗

j

∣∣∣
+

∣∣∣ m∑
l=1

λl log9 σ
l
i j −

m∑
l=1

λl log9

√
ωl,σ∗

i ω
l,ρ∗
j

∣∣∣)
≤

m∑
l=1

λl
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(∣∣∣ log9 ρ
l
i j − log9

√
ω

l,ρ∗
i ωl,σ∗

j

∣∣∣
+

∣∣∣ log9 σ
l
i j − log9

√
ωl,σ∗

i ω
l,ρ∗
j

∣∣∣) = m∑
l=1

λlJl∗ ≤ ξ.

According to the Definition 3.1, the group IMPR Rc is acceptably consistent. �
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In the following, we use an example to illustrate how to check and improve the consistency of an
IMPR.

Example 3.1. ([30]) Let X = {x1, x2, x3, x4} be the set of four alternatives, and an IMPR is provided
by a decision maker as

A =


(1, 1) (1/4, 3) (1/3, 1) (1/3, 1)

(3, 1/4) (1, 1) (1/4, 1) (1/4, 2)
(1, 1/3) (1, 1/4) (1, 1) (1/3, 2)
(1, 1/3) (2, 1/4) (2, 1/3) (1, 1)

 .

By solving the models (M-2) and (M-3) in [30], the consistency index of A is calculated as 0.0866 >
ξ = 0.08, and the consistent IMPR is derived as

A∗1 =


(1, 1) (0.3560, 0.7551) (1/3, 1) (0.1382, 2.3456)

(0.7551, 0.3560) (1, 1) (0.3128, 0.4423) (1/4, 2)
(1, 1/3) (0.4423, 0.3128) (1, 1) (0.3334, 1.8859)

(2.3456, 0.1382) (2, 1/4) (1.8859, 0.3334) (1, 1)

 .

Using the Eq (13) in [30], an acceptably consistent IMPR A1 is given by

A1 =


(1, 1) (0.2880, 1.7278) (1/3, 1) (0.2344, 1.4064)

(1.7278, 0.2880) (1, 1) (0.2734, 0.7216) (1/4, 2)
(1, 1/3) (0.7216, 0.2734) (1, 1) (0.3334, 1.9535)

(1.4064, 0.2344) (2, 1/4) (1.9535, 0.3334) (1, 1)

 .

If we insert IMPR A into our Model 2, we can get the following Model 3.

Model 3 min J =
1

24
(
ε+12 + ε

−
12 + η

+
12 + η

−
12 + ε

+
13 + ε

−
13 + η

+
13 + η

−
13 + ε

+
14 + ε

−
14 + η

+
14 + η

−
14

+ ε+23 + ε
−
23 + η

+
23 + η

−
23 + ε

+
24 + ε

−
24 + η

+
24 + η

−
24 + ε

+
34 + ε

−
34 + η

+
34 + η

−
34
)
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s.t.



log9
1
4 − 0.5 log9 ω

ρ
1 − 0.5 log9 ω

σ
2 − ε

+
12 + ε

−
12 = 0,

log9 3 − 0.5 log9 ω
σ
1 − 0.5 log9 ω

ρ
2 − η

+
12 + η

−
12 = 0,

log9
1
3 − 0.5 log9 ω

ρ
1 − 0.5 log9 ω

σ
3 − ε

+
13 + ε

−
13 = 0,

log9 1 − 0.5 log9 ω
σ
1 − 0.5 log9 ω

ρ
3 − η

+
13 + η

−
13 = 0,

log9
1
3 − 0.5 log9 ω

ρ
1 − 0.5 log9 ω

σ
4 − ε

+
14 + ε

−
14 = 0,

log9 1 − 0.5 log9 ω
σ
1 − 0.5 log9 ω

ρ
4 − η

+
14 + η

−
14 = 0,

log9
1
4 − 0.5 log9 ω

ρ
2 − 0.5 log9 ω

σ
3 − ε

+
23 + ε

−
23 = 0,

log9 1 − 0.5 log9 ω
σ
2 − 0.5 log9 ω

ρ
3 − η

+
23 + η

−
23 = 0,

log9
1
4 − 0.5 log9 ω

ρ
2 − 0.5 log9 ω

σ
4 − ε

+
24 + ε

−
24 = 0,

log9 2 − 0.5 log9 ω
σ
2 − 0.5 log9 ω

ρ
4 − η

+
24 + η

−
24 = 0,

log9
1
3 − 0.5 log9 ω

ρ
3 − 0.5 log9 ω

σ
4 − ε

+
34 + ε

−
34 = 0,

log9 2 − 0.5 log9 ω
σ
3 − 0.5 log9 ω

ρ
4 − η

+
34 + η

−
34 = 0,

1/9 ≤ ωρ
1 ≤ 9, 1/9 ≤ ωσ

1 ≤ 9, 1/9 ≤ ωρ
2 ≤ 9, 1/9 ≤ ωσ

2 ≤ 9, 1/9 ≤ ωρ
3 ≤ 9,

1/9 ≤ ωσ
3 ≤ 9, 1/9 ≤ ωρ

4 ≤ 9, 1/9 ≤ ωσ
4 ≤ 9, ωρ

1ω
σ
1 ≤ 1, ωρ

2ω
σ
2 ≤ 1, ωρ

3ω
σ
3 ≤ 1,

ω
ρ
4ω

σ
4 ≤ 1, ωρ

2ω
ρ
3ω

ρ
4 ≤ ω

σ
1 , ω

ρ
1ω

ρ
3ω

ρ
4 ≤ ω

σ
2 , ω

ρ
1ω

ρ
2ω

ρ
4 ≤ ω

σ
3 , ω

ρ
1ω

ρ
2ω

ρ
3 ≤ ω

σ
4 ,

ω
ρ
1 ≥ ω

σ
2ω

σ
3ω

σ
4 , ω

ρ
2 ≥ ω

σ
1ω

σ
3ω

σ
4 , ω

ρ
3 ≥ ω

σ
1ω

σ
2ω

σ
4 , ω

ρ
4 ≥ ω

σ
1ω

σ
2ω

σ
3 ,

ε+12 ≥ 0, ε−12 ≥ 0, η+12 ≥ 0, η−12 ≥ 0, ε+13 ≥ 0, ε−13 ≥ 0, η+13 ≥ 0, η−13 ≥ 0,
ε+14 ≥ 0, ε−14 ≥ 0, η+14 ≥ 0, η−14 ≥ 0, ε+23 ≥ 0, ε−23 ≥ 0, η+23 ≥ 0, η−23 ≥ 0,
ε+24 ≥ 0, ε−24 ≥ 0, η+24 ≥ 0, η−24 ≥ 0, ε+34 ≥ 0, ε−34 ≥ 0, η+34 ≥ 0, η−34 ≥ 0,
ε+12ε

−
12 = 0, η+12η

−
12 = 0, ε+13ε

−
13 = 0, η+13η

−
13 = 0, ε+14ε

−
14 = 0, η+14η

−
14 = 0,

ε+23ε
−
23 = 0, η+23η

−
23 = 0, ε+24ε

−
24 = 0, η+24η

−
24 = 0, ε+34ε

−
34 = 0, η+34η

−
34 = 0.

Using the Lingo software, we can find that the optimal objective function value is also given by
J∗ = 0.0866, and the normalized intuitionistic multiplicative priority weight vector is derived as

ω∗ =
(
(0.1667, 1.5000), (0.3750, 0.6667), (0.6667, 0.6667), (6.000, 0.1667)

)T
.

Then, from Remark 2.1, we can construct a consistent IMPR A∗2,

A∗2 =


(1, 1) (0.3334, 0.7500) (0.3334, 1.0000) (0.1667, 3.0000)

(0.7500, 0.3334) (1, 1) (0.5000, 0.6667) (0.2500, 2.0000)
(1.0000, 0.3334) (0.6667, 0.5000) (1, 1) (0.3334, 2.0000)
(3.0000, 0.1667) (2.0000, 0.2500) (2.0000, 0.3334) (1, 1)

 .
Clearly, A∗1 and A∗2 are not the same, but we can easily check that d(A, A∗1) = d(A, A∗2) = 0.0866.

Zhang and Guo [30] have showed that there may be more than one consistent IMPR which has the
smallest distance from the original judgment A, and we can see that the consistent IMPRs A∗1 and A∗2
both have the smallest distance. As we have explained in the Remark 3.1, the consistent IMPR A∗2 can
give us more information than A∗1, because A∗2 is actually established by the normalized intuitionistic
multiplicative priority weights of A. Therefore, compared with the method in Zhang and Guo [30], it
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is more reasonable to use our consistent IMPR A∗2 to improve the consistency of A. Let the adjustment
parameter θ in the Algorithm I be 0.4, then an acceptably consistent IMPR A2 can be generated as

A2 =


(1, 1) (0.2805, 1.7230) (0.3334, 1.0000) (0.2526, 1.5518)

(1.7230, 0.2805) (1, 1) (0.3299, 0.8503) (0.2500, 2.0000)
(1.0000, 0.3334) (0.8503, 0.3299) (1, 1) (0.3334, 2.0000)
(1.5518, 0.2526) (2.0000, 0.2500) (2.0000, 0.3334) (1, 1)

 .
In fact, taking A2 into the Model 2, we can get the optimal objective function value J∗ = 0.0519 <

ξ = 0.08, which means the IMPR A2 is of acceptable consistency.

4. Consensus for group decision making with intuitionistic multiplicative preference relations

Consider a GDM in which X = {x1, x2, · · · , xn} is the set of alternatives, D = {d1, d2, · · · , dm}

is the set of decision makers, and λ = {λ1, λ2, · · · , λm}
T is the weight vector of experts, such that

λl > 0 and
∑m

l=1 λl = 1. The decision maker dl can give an IMPR Rl = (αl
i j)n×n by making pairwise

comparisons for all alternatives, where αl
i j = (ρl

i j, σ
l
i j) is the preference information in IMN. If the

individual IMPR Rl (l = 1, 2, · · · ,m) is not acceptably consistent, we should first use Algorithm I to
improve the consistency of Rl to be acceptable. Without loss of generality, all the individual IMPRs
considered in this section are acceptably consistent, which are still denoted as Rl.

For each acceptably consistent IMPR Rl, the corresponding normalized intuitionistic multiplicative
priority weight vector ωl∗ can be obtained via Model 2, then the ranking order of the alternatives will
be derived by the comparison law for IMNs in Section 2. However, different decision makers would
produce different ranking orders, it is difficult to get a solution which is agreed by all experts. Thus, it is
very important for the decision makers to find an acceptable solution, and consensus is a good pathway
which guarantees that the final result is supported by all experts despite their different opinions [50–
52]. In order to reach consensus, the first thing we should do is to measure the consensus degree among
the decision makers whose opinions are represented by IMPRs.

Definition 4.1. For a set of IMPRs Rl = (αl
i j)n×n with αl

i j = (ρl
i j, σ

l
i j) given by the decision maker

dl (l = 1, 2, · · · ,m), and λ = {λ1, λ2, · · · , λm}
T is the weight vector of the decision makers, then the

consensus index of the lth expert dl is defined by

C(Rl) = 1 − d(Rl,Rc) = 1 −
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

l
i j − log9 ρ

c
i j| + | log9 σ

l
i j − log9 σ

c
i j|
)
, (4.1)

where Rc = (αc
i j)n×n =

(
(ρc

i j, σ
c
i j)

)
n×n is a group IMPR with ρc

i j =
∏m

l=1(ρl
i j)

λl , σc
i j =

∏m
l=1(σl

i j)
λl .

In fact, the consensus above can be explained as closeness between the individual opinion and the
group opinion. If C(Rl)=1, then the lth decision maker has full consensus with the group. Clearly, the
bigger the value of C(Rl), the closer the decision maker is to the group. For a practical GDM problem,
decision makers can determine a minimum consensus degree ζ in advance to measure the deviation
between the individual preference relation and the group preference relation. If C(Rl) ≥ ζ holds for all
decision makers dl (l = 1, 2, · · · ,m), then an acceptable level of consensus is achieved, i.e., the group
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reaches consensus. Inspired by the iterative model in Chu et al. [45], we give the following automatic
algorithm to help decision makers reach consensus.

Algorithm II.
Input: The weight vector λ = {λ1, λ2, · · · , λm}

T , the IMPRs Rl = (αl
i j)n×n with αl

i j = (ρl
i j, σ

l
i j)

(l = 1, 2, · · · ,m), the maximum number of iterations hmax and the predefined consensus degree ζ.
Output: Modified IMPRs R̃l and the consensus index C(R̃l).
Step 1: Let h = 0 and Rl(0) = (αl(0)

i j )n×n with αl(0)
i j = (ρl(0)

i j , σ
l(0)
i j ) = (ρl

i j, σ
l
i j) (l = 1, 2, · · · ,m).

Step 2: Fuse the individual preference relations Rl(h) into a group IMPR
Rc(h) = (αc(h)

i j )n×n =
(
(ρc(h)

i j , σc(h)
i j )

)
n×n, where ρc(h)

i j =
∏m

l=1(ρl(h)
i j )λl , σc(h)

i j =
∏m

l=1(σl(h)
i j )λl .

Step 3: Calculate the consensus index C(Rl(h)) by Eq. (4.1). If C(Rl(h)) ≥ ζ for all l = 1, 2, · · · ,m or
h ≥ hmax, go to Step 5. Otherwise, continue with the next step.

Step 4: Suppose that C(Rτ(h)) = min
l
{C(Rl(h))}, and construct some IMPRs Rl(h+1) = (αl(h+1)

i j )n×n =(
(ρl(h+1)

i j , σl(h+1)
i j )

)
n×n, where

ρl(h+1)
i j =

(ρl(h)
i j )1−βh(ρc(h)

i j )βh , l = τ,

ρl(h)
i j , l , τ,

, σl(h+1)
i j =

(σl(h)
i j )1−βh(σc(h)

i j )βh , l = τ,

σl(h)
i j , l , τ,

(4.2)

with βh ∈

(
0, 1 −max

l,τ

{ d(Rl(h),Rc(h))
d(Rτ(h),Rc(h))

}]
.

Set h = h + 1, go to Step 2.
Step 5: Let R̃l = Rl(h) and C(R̃l) = C(Rl(h)) (l = 1, 2, · · · ,m), then output R̃l and C(R̃l).

Theorem 4.1. Suppose Rl(h) be the IMPR in the (h)th iteration by Algorithm II. If min
l
{C(Rl(h))} < ζ,

then min
l
{C(Rl(h+1))} > min

l
{C(Rl(h))}.

Proof. Assume the decision maker dk has the smallest consensus level in the hth iteration, which means
C(Rk(h)) = min

l
{C(Rl(h))}. According to the Algorithm II, the IMPR Rk(h) should be modified in the

(h + 1)th iteration based on Eq (4.2), and we can have

log9 ρ
c(h+1)
i j − log9 ρ

c(h)
i j =

m∑
l=1

λl log9 ρ
l(h+1)
i j −

m∑
l=1

λl log9 ρ
l(h)
i j = λk log9 ρ

k(h+1)
i j − λk log9 ρ

k(h)
i j

= λk(1 − βh) log9 ρ
k(h)
i j + λkβh log9 ρ

c(h)
i j − λk log9 ρ

k(h)
i j = λkβh log9 ρ

c(h)
i j − λkβh log9 ρ

k(h)
i j . (4.3)

Similarly, we can also get

log9 σ
c(h+1)
i j − log9 σ

c(h)
i j = λkβh log9 σ

c(h)
i j − λkβh log9 σ

k(h)
i j . (4.4)

In the following, we consider two cases.
Case 1: l = k.
Using Eqs (4.3) and (4.4), it follows that

d(Rk(h+1),Rc(h+1))

=
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

k(h+1)
i j − log9 ρ

c(h+1)
i j | + | log9 σ

k(h+1)
i j − log9 σ

c(h+1)
i j |

)
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=
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
|(1 − βh) log9 ρ

k(h)
i j + βh log9 ρ

c(h)
i j − (1 + λkβh) log9 ρ

c(h)
i j + λkβh log9 ρ

k(h)
i j |

+ |(1 − βh) log9 σ
k(h)
i j + βh log9 σ

c(h)
i j − (1 + λkβh) log9 σ

c(h)
i j + λkβh log9 σ

k(h)
i j |

)
=

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
|(1 − βh + λkβh) log9 ρ

k(h)
i j − (1 − βh + λkβh) log9 ρ

c(h)
i j |

+ |(1 − βh + λkβh) log9 σ
k(h)
i j − (1 − βh + λkβh) log9 σ

c(h)
i j |

)
=(1 − βh + λkβh)d(Rk(h),Rc(h)) < (1 − βh + βh)d(Rk(h),Rc(h)) = d(Rk(h),Rc(h)).

Consequently,
1 − d(Rk(h+1),Rc(h+1)) > 1 − d(Rk(h),Rc(h)),

which means
C(Rk(h+1)) > C(Rk(h)) = min

l
{C(Rl(h))}. (4.5)

Case 2: l , k.

Obviously, d(Rl(h),Rc(h)) < d(Rk(h),Rc(h)) holds. Since βh ∈

(
0, 1 − max

l,k

{ d(Rl(h),Rc(h))
d(Rk(h),Rc(h))

}]
, we have

d(Rl(h),Rc(h)) ≤ (1 − βh)d(Rk(h),Rc(h)) for all l , k. Thus, from Eqs (4.3) and (4.4), we get

d(Rl(h+1),Rc(h+1))

=
1

2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

l(h+1)
i j − log9 ρ

c(h+1)
i j | + | log9 σ

l(h+1)
i j − log9 σ

c(h+1)
i j |

)
=

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
|(log9 ρ

l(h)
i j − log9 ρ

c(h)
i j ) + λkβh(log9 ρ

k(h)
i j − log9 ρ

c(h)
i j )|

+ |(log9 σ
l(h)
i j − log9 σ

c(h)
i j ) + λkβh(log9 σ

k(h)
i j − log9 σ

c(h)
i j )|

)
≤

1
2n(n − 1)

n−1∑
i=1

n∑
j=i+1

(
| log9 ρ

l(h)
i j − log9 ρ

c(h)
i j | + λkβh| log9 ρ

k(h)
i j − log9 ρ

c(h)
i j |

+ | log9 σ
l(h)
i j − log9 σ

c(h)
i j | + λkβh| log9 σ

k(h)
i j − log9 σ

c(h)
i j |

)
=d(Rl(h),Rc(h)) + λkβhd(Rk(h),Rc(h)) ≤ (1 − βh + λkβh)d(Rk(h),Rc(h))
<(1 − βh + βh)d(Rk(h),Rc(h)) = d(Rk(h),Rc(h)).

Thus, for l , k,
1 − d(Rl(h+1),Rc(h+1)) > 1 − d(Rk(h),Rc(h)),

which means
C(Rl(h+1)) > C(Rk(h)) = min

l
{C(Rl(h))}. (4.6)

We summarize the above two cases, from Eqs (4.5) and (4.6), it is obvious that min
l
{C(Rl(h+1))} >

min
l
{C(Rl(h))}. �
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Theorem 4.1 shows that the modified IMPR has a better consensus level, and the minimum
consensus index after implementing Algorithm II is better than the last one. In each iteration, the
adjustment parameter βh is further restricted, the reason is that this restricted condition can
theoretically guarantee the minimum consensus index is increasing during the group consensus
improving process. Generally speaking, for a practical decision making problem, after implementing
the process finite times, the group can achieve a predefined consensus level even for βh ∈ (0, 1), but in
this case, the minimum consensus index may not always be increasing. Moreover, according to
Theorem 3.2, we know that the modified IMPR R̃l in Algorithm II is also acceptably consistent. Now
we can obtain the group IMPR R̃C according to Definition 3.2, and solve Model 2 for R̃C to generate
the optimal normalized intuitionistic multiplicative priority weight vector ω∗ = (ω∗1, ω

∗
2, · · · , ω

∗
n)T .

Finally, the ranking order of the alternatives can be derived via the comparison law for IMNs in
Section 2.

For the convenience of application, the concrete steps of the proposed method for GDM with IMPRs
are described in the following.

Step 1. Decision makers construct some IMPRs Rl (l = 1, 2, · · · ,m) by making pairwise
comparisons for all alternatives.

Step 2. Solve Model 2 for each Rl to obtain the optimal objective function value Jl∗ and the
normalized intuitionistic multiplicative priority weight vector ωl∗.

Step 3. Check the consistency of each IMPR Rl by using Definition 3.1. If all of the IMPRs are of
acceptable consistency, let R

l
= Rl, go to Step 5; Otherwise, go to Step 4.

Step 4. Repair the inconsistent IMPRs Rl (l = 1, 2, · · · ,m) to be R
l

with acceptable consistency
according to Algorithm I.

Step 5. Calculate the consensus index C(R
l
) for each IMPR R

l
according to Eq. (4.1), if the group

reaches consensus, let R̃l = R
l
, go to Step 7; Otherwise, go to Step 6.

Step 6. Using the iteration Algorithm II to improve the group consensus level and get the modified
IMPRs R̃l (l = 1, 2, · · · ,m).

Step 7. Fuse the IMPRs R̃l (l = 1, 2, · · · ,m) into a group IMPR R̃C according to Definition 3.2.
Step 8. Solve Model 2 for R̃C to generate the optimal normalized intuitionistic multiplicative priority

weight vector ω∗ = (ω∗1, ω
∗
2, · · · , ω

∗
n)T .

Step 9. Compare the intuitionistic multiplicative priority weights ω∗1, ω
∗
2, · · · , ω

∗
n to derive the

ranking order of the alternatives.

5. Numerical example and comparative analysis

In this section, two numerical examples and the corresponding comparison analyses are presented
to illustrate the effectiveness and superiority of the proposed method.

Example 5.1. ([26, 30, 31]) Four university students want to install broadband Internet connection,
and there are four available options, which are provided by three Internet-service providers 1) x1: 1
Mb/s broadband; 2) x2: 2 Mb/s broadband; 3) x3: 3 Mb/s broadband; 4) x4: 8 Mb/s broadband. The
Internet service and its monthly bill will be shared among the four students dk (k = 1, 2, 3, 4) (whose
weight vector is λ = (0.3, 0.3, 0.2, 0.2)T ), and they decide to perform a group decision analysis. The
four students construct the following IMPRs Rk (k = 1, 2, 3, 4) to reveal their preference relations for
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the options independently.

R1 =


(1, 1) (1/5, 3) (1/3, 1) (1/2, 1)

(3, 1/5) (1, 1) (1/4, 2) (1/3, 2)
(1, 1/3) (2, 1/4) (1, 1) (1/3, 1)
(1, 1/2) (2, 1/3) (1, 1/3) (1, 1)

 ,

R2 =


(1, 1) (1/3, 2) (1/4, 2) (1/3, 1)

(2, 1/3) (1, 1) (1/5, 3) (1/4, 2)
(2, 1/4) (3, 1/5) (1, 1) (1/2, 1)
(1, 1/3) (2, 1/4) (1, 1/2) (1, 1)

 ,

R3 =


(1, 1) (2, 1/3) (1/3, 2) (1, 1/3)

(1/3, 2) (1, 1) (1/4, 3) (1/5, 3)
(2, 1/3) (3, 1/4) (1, 1) (1, 1/2)
(1/3, 1) (3, 1/5) (1/2, 1) (1, 1)

 ,

R4 =


(1, 1) (1/3, 1) (1/2, 1) (1/2, 1/2)

(1, 1/3) (1, 1) (1/5, 4) (1/4, 3)
(1, 1/2) (4, 1/5) (1, 1) (1/2, 1)

(1/2, 1/2) (3, 1/4) (1, 1/2) (1, 1)

 .
Taking R1, R2, R3 and R4 into the Model 2, respectively, and we can have

J1∗ = 0.0985, ω1∗ =
(
(0.3197, 0.9986), (0.3466, 1.3902), (1.0014, 0.3475), (2.8773, 0.3206)

)T
,

J2∗ = 0.0776, ω2∗ =
(
(0.2853, 1.9828), (0.3295, 2.6340), (2.0173, 0.2191), (1.5187, 0.1897)

)T
,

J3∗ = 0.0590, ω3∗ =
(
(0.6667, 0.6667), (0.1667, 6.0000), (2.0000, 0.1667), (1.5000, 0.5000)

)T
,

J4∗ = 0.0908, ω4∗ =
(
(0.6687, 0.7477), (0.2492, 4.0123), (1.3374, 0.3738), (2.2431, 0.2508)

)T
.

Without loss of generality, let the consistency threshold ξ be 0.08, then J1∗ > ξ and J4∗ > ξ, which
means IMPRs R1 and R4 need to be adjusted. Let the adjustment parameter θ be 0.4, using Algorithm
I, we obtain two adjusted IMPRs R

1
and R

4
.

R
1
=


(1, 1) (0.3237, 1.5636) (0.3333, 1.0000) (0.4183, 1.2350)

(1.5636, 0.3237) (1, 1) (0.2850, 1.6194) (0.3333, 2.0000)
(1.0000, 0.3333) (1.6194, 0.2850) (1, 1) (0.4121, 1.0000)
(1.2350, 0.4183) (2.0000, 0.3333) (1.0000, 0.4121) (1, 1)

 ,

R
4
=


(1, 1) (0.6301, 0.7146) (0.5000, 1.0000) (0.4616, 0.7316)

(0.7146, 0.6301) (1, 1) (0.2368, 3.2149) (0.2500, 3.0000)
(1.0000, 0.5000) (3.2149, 0.2368) (1, 1) (0.5303, 0.9654)
(0.7316, 0.4616) (3.0000, 0.2500) (0.9654, 0.5303) (1, 1)

 .
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Table 1. The consensus indexes for R
l(h)

(l = 1, 2, 3, 4) in each step h.

h βh C(R
1(h)

) C(R
2(h)

) C(R
3(h)

) C(R
4(h)

)
0 0.9382 0.9410 0.8803 0.9599
1 0.1 0.9405 0.9428 0.8899 0.9592
2 0.1 0.9427 0.9444 0.8987 0.9586
3 0.1 0.9447 0.9459 0.9068 0.9575
4 0.1 0.9465 0.9473 0.9143 0.9562
5 0.1 0.9482 0.9486 0.9211 0.9550

Taking R
1

and R
4

into the Model 2, we can get J
1∗
= 0.0591 < ξ and J

4∗
= 0.0545 < ξ. Thus, four

acceptably consistent IMPRs R
1
, R

2
= R2, R

3
= R3 and R

4
are derived, and the group IMPR R

c
is given

by

R
c
=


(1, 1) (0.5370, 1.0567) (0.3316, 1.4142) (0.4744, 0.8034)

(1.0567, 0.5370) (1, 1) (0.2406, 2.5281) (0.2606, 2.3522)
(1.4142, 0.3316) (2.5281, 0.2406) (1, 1) (0.5484, 0.8644)
(0.8034, 0.4744) (2.3522, 0.2606) (0.8644, 0.5484) (1, 1)

 .
Then, according to Eq (4.1), we have C(R

1
) = 0.9382, C(R

2
) = 0.9410, C(R

3
) = 0.8803 and

C(R
4
) = 0.9599. Let the consensus degree ζ be 0.92, which means the group consensus is not reached,

and the IMPR R
3

need to be modified.
Using Algorithm II, from Table 1, we can see that the group consensus is reached after 5 steps.

Moreover, it is obvious that min
1≤l≤4
{C(Rl(h+1))} > min

1≤l≤4
{C(Rl(h))} for each 0 ≤ h ≤ 4, which verifies the

conclusion of Theorem 4.1. When the Algorithm II is terminated, four IMPRs R̃1, R̃2, R̃3 and R̃4 are
obtained, where R̃1 = R

1
, R̃2 = R

2
= R2, R̃4 = R

4
and R̃3 is given by

R̃3 =


(1, 1) (1.1421, 0.5450) (0.3327, 1.7254) (0.7278, 0.4849)

(0.5450, 1.1421) (1, 1) (0.2459, 2.7890) (0.2240, 2.7046)
(1.7254, 0.3327) (2.7890, 0.2459) (1, 1) (0.7742, 0.6313)
(0.4849, 0.7278) (2.7046, 0.2240) (0.6313, 0.7742) (1, 1)

 .
According to Theorem 3.2, the IMPR R̃3 is still acceptably consistent. In fact, utilizing Model 2 to

solve R̃3, we will find J̃3∗ = 0.0409 < ξ. Now, from R̃1, R̃2, R̃3 and R̃4, we can get a group IMPR R̃c,

R̃c =


(1, 1) (0.4801, 1.1658) (0.3315, 1.3731) (0.4452, 0.8659)

(1.1658, 0.4801) (1, 1) (0.2398, 2.4915) (0.2666, 2.3039)
(1.3731, 0.3315) (2.4915, 0.2398) (1, 1) (0.5210, 0.9057)
(0.8659, 0.4452) (2.30396, 0.2666) (0.9057, 0.5210) (1, 1)

 .
Using Model 2 to generate the optimal normalized intuitionistic multiplicative priority weight vector
ω∗, which is given by

ω∗ = (ω∗1, ω
∗
2, ω

∗
3, ω

∗
4)T =

(
(0.4641, 1.2507), (0.2428, 4.1179), (1.5074, 0.2368), (1.2890, 0.2927)

)T
.
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Table 2. Priority weights obtained with different methods.

Methods Priority weights Checking and Checking and Ranking orders
improving consistency improving consensus

Model (M-6) in [31] IFNs No No x4 > x3 > x1 > x2

Model 4 in [34] IMNs No No x4 > x3 > x1 > x2

Models (M-7), (M-8) in [30] IMNs Yes No x4 > x3 > x1 > x2

Algorithm 2 in [41] Real numbers Yes Yes x3 > x4 > x1 > x2

New method IMNs Yes Yes x3 > x4 > x1 > x2

Calculate the distance functions of the intuitionistic multiplicative priority weights ω∗1, ω∗2, ω∗3 and
ω∗4, we can obtain p(ω∗1) = 0.3996, p(ω∗2) = 0.1779, p(ω∗3) = 0.6706 and p(ω∗4) = 0.6381. Then from
the ranking method in Section 2, we have ω∗3 > ω∗4 > ω∗1 > ω∗2, which means the four options can be
ranked as x3 > x4 > x1 > x2.

In this example, when some different methods are adopted, the ranking orders and detailed
comparison results are summarized in Table 2, and the proposed algorithm in this paper has the
following advantages.

(1) The methods in [31, 34] did not check and improve the consistency and consensus for IMPRs,
and the priority weights of alternatives are directly derived from the original individual IMPRs, while
Zhang and Guo [30] only focused on the consistency checking and improving for individual IMPRs
without considering the group consensus. As we have showed before, consistency is the basis to
obtain valid solution for GDM with preference relations and a solution with a high level of consensus
should be satisfied. Thus, the priority weights derived by these methods are less reasonable and might
not reflect the opinions of the group. We can see that the ranking order obtained in [30, 31, 34] is
x4 > x3 > x1 > x2, which is different from the ranking order x3 > x4 > x1 > x2 when the consistency
improving process and consensus improving process are both involved. In fact, from Example 5.1, we
know that the IMPRs R1 and R4 have unacceptable consistency, and the group consensus is not reached
after the consistency improving process. Moreover, Li et al. [34] showed that the transformation
formulas used to construct a consistent IMPR in [30, 31] are also unreasonable, which means the
theories in [30, 31] are inappropriate and the final results are not convincing.

(2) Although our method and the Algorithm 2 in Zhang and Pedrycz [41] both consider how to check
and improve the consistency and consensus for IMPRs, our method still has some advantages. In the
Example 5.1, we assume the consistency threshold be 0.08 and the consensus degree be 0.92, while the
indexes in [41] are 0.1 and 0.9, respectively. Compared with the approach in Zhang and Pedrycz [41],
our method can keep more original information, even the thresholds in this paper are stricter. In fact,
in order to obtain the final IMPRs with acceptable consistency and acceptable consensus, all the four
original IMPRs in [41] are changed, but only three IMPRs R1, R3 and R4 are modified in this paper.
Moreover, Zhang and Pedrycz [41] used the score matrix of a collective IMPR to get the crisp priority
weights, the score matrix may lose some evaluation information and the crisp weights cannot indicate
the membership and non-membership degrees of the alternative as a fuzzy concept of "importance",
while our results coincide with the assumption that the priority weights derived from IMPRs are IMNs.

In the Example 5.1, we consider a GDM problem with IMPRs based on the acceptable consistency
analysis. In [28], Meng et al. introduced an approach to construct completely consistent IMPR. In
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order to further compare the method in [28] with our proposed method, another example is conducted.
Example 5.2. ([28]) There are four decision makers {e1, e2, e3, e4}, who are responsible for a partner

selection problem, and four partners {x1, x2, x3, x4} are identified as candidates. Each expert gives
his/her preference information by constructing the following IMPRs:

A1 =


(1, 1) (2/3, 1) (3/2, 1/2) (5/3, 1/2)

(1, 2/3) (1, 1) (1, 1/3) (1, 1/2)
(1/2, 3/2) (1/3, 1) (1, 1) (1/2, 1)
(1/2, 5/3) (1/2, 1) (1, 1/2) (1, 1)

 ,

A2 =


(1, 1) (2, 1/3) (3, 1/4) (2, 1/6)

(1/3, 2) (1, 1) (3/2, 1/3) (3, 1/4)
(1/4, 3) (1/3, 3/2) (1, 1) (9/10, 1)
(1/6, 2) (1/4, 3) (1, 9/10) (1, 1)

 ,

A3 =


(1, 1) (1/2, 1) (2, 1/3) (1, 1/3)

(1, 1/2) (1, 1) (3, 1/4) (2, 1/4)
(1/3, 2) (1/4, 3) (1, 1) (1/4, 2)
(1/3, 1) (1/4, 2) (2, 1/4) (1, 1)

 ,

A4 =


(1, 1) (1, 1/2) (2/3, 1/2) (2, 1/3)

(1/2, 1) (1, 1) (2/3, 5/6) (2, 1/5)
(1/2, 2/3) (5/6, 2/3) (1, 1) (3, 2/7)
(1/3, 2) (1/5, 2) (2/7, 3) (1, 1)

 .
Taking A1, A2, A3 and A4 into the Model 2, respectively, and we can have

J∗A1
= 0.0251, ω∗A1

=
(
(1.2247, 0.8165), (1.2247, 0.3629), (0.3062, 1.8371), (0.5443, 0.8165)

)T
,

J∗A2
= 0.0417, ω∗A2

=
(
(3.2863, 0.1352), (0.8216, 0.3043), (0.3651, 2.7386), (0.2054, 2.2183)

)T
,

J∗A3
= 0.0317, ω∗A3

=
(
(1.1547, 0.3849), (2.5981, 0.2165), (0.2887, 3.4641), (0.2887, 0.8660)

)T
,

J∗A4
= 0.0305, ω∗A4

=
(
(0.8607, 0.2905), (0.8607, 0.3586), (1.9365, 0.5164), (0.1581, 4.6476)

)T
.

Using Eq (2.3), we can construct four consistent IMPRs, shown as follows:

A1 =


(1, 1) (0.6667, 1.0000) (1.5000, 0.5000) (1.0000, 0.6666)

(1.0000, 0.6667) (1, 1) (1.5000, 0.3333) (1.0000, 0.4444)
(0.5000, 1.5000) (0.3333, 1.5000) (1, 1) (0.5000, 1.0000)
(0.6666, 1.0000) (0.4444, 1.0000) (1.0000, 0.5000) (1, 1)

 ,

A2 =


(1, 1) (1.0000, 0.3333) (3.0000, 0.2222) (2.7000, 0.1666)

(0.3333, 1.0000) (1, 1) (1.5000, 0.3333) (1.3500, 0.2500)
(0.2222, 3.0000) (0.3333, 1.5000) (1, 1) (0.8999, 0.7500)
(0.1666, 2.7000) (0.2500, 1.3500) (0.7500, 0.8999) (1, 1)

 ,

A3 =


(1, 1) (0.5000, 1.0000) (2.0000, 0.3333) (1.0000, 0.3333)

(1.0000, 0.5000) (1, 1) (3.0000, 0.2500) (1.5000, 0.2500)
(0.3333, 2.0000) (0.2500, 3.0000) (1, 1) (0.5000, 1.0000)
(0.3333, 1.0000) (0.2500, 1.5000) (1.0000, 0.5000) (1, 1)

 ,
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A4 =


(1, 1) (0.5556, 0.5000) (0.6667, 0.7500) (2.0000, 0.2143)

(0.5000, 0.5556) (1, 1) (0.6667, 0.8333) (2.0000, 0.2381)
(0.7500, 0.6667) (0.8333, 0.6667) (1, 1) (3.0000, 0.2857)
(0.2143, 2.0000) (0.2381, 2.0000) (0.2857, 3.0000) (1, 1)

 .
In fact, if we take A1, A2, A3 and A4 into the Model 2, the four optimal objective function values

will be derived as 0.4741 × 10−5, 0.7798 × 10−5, 0.1896 × 10−5 and 0.5436 × 10−5, respectively. Thus,
the four IMPRs A1, A2, A3 and A4 can also be regarded as consistent.

Under the definition of consistency introduced by Meng et al. [28], we can construct four consistent
IMPRs A

Meng
1 , A

Meng
2 , A

Meng
3 and A

Meng
4 from the four consistent RIFMPRs (reciprocal intuitionistic

fuzzy multiplicative preference relations) given by Meng et al. (see Page 2960, [28]).

A
Meng
1 =


(1, 1) (0.7049, 1.0746) (1.0299, 0.4401) (0.7825, 0.7208)

(1.0746, 0.7049) (1, 1) (1.1067, 0.3102) (0.8409, 0.5081)
(0.4401, 1.0299) (0.3102, 1.1067) (1, 1) (0.6105, 1.3161)
(0.7208, 0.7825) (0.5081, 0.8409) (1.3161, 0.6105) (1, 1)

 ,

A
Meng
2 =


(1, 1) (1.5197, 0.4855) (2.7832, 0.1844) (2.8372, 0.1551)

(0.4855, 1.5197) (1, 1) (1.8314, 0.3799) (1.8670, 0.3195)
(0.1844, 2.7832) (0.3799, 1.8314) (1, 1) (1.0194, 0.8409)
(0.1551, 2.8372) (0.3195, 1.8670) (0.8409, 1.0194) (1, 1)

 ,

A
Meng
3 =


(1, 1) (0.5000, 1.0746) (2.3784, 0.2803) (0.8409, 0.3689)

(1.0746, 0.5000) (1, 1) (3.8337, 0.2102) (1.6818, 0.3433)
(0.2803, 2.3784) (0.2102, 3.8337) (1, 1) (0.3536, 1.3161)
(0.3689, 0.8409) (0.3433, 1.6818) (1.3161, 0.3536) (1, 1)

 ,

A
Meng
4 =


(1, 1) (1.0000, 0.7071) (0.6667, 0.5904) (2.0000, 0.1996)

(0.7071, 1.0000) (1, 1) (0.6667, 0.8349) (2.0000, 0.2823)
(0.5904, 0.6667) (0.8349, 0.6667) (1, 1) (2.9580, 0.3333)
(0.1996, 2.0000) (0.2823, 2.0000) (0.3333, 2.9580) (1, 1)

 .
Utilizing Eq (2.1), we can easily get

∑4
i=1 d(Ai, Ai) =0.0251+0.0417+0.0317+0.0305=0.129, while∑4

i=1 d(Ai, A
Meng
i ) =0.0491+0.0531+0.0449+0.0292=0.1763. Thus, compared with method in Meng et

al. [28], the four consistent IMPRs we obtained can preserve more information. Then, from A1, A2, A3

and A4, and using the weight vector of decision makers λ = (0.2667, 0.2659, 0.2357, 0.2317)T given
by Meng et al. [28], the group IMPR A

c
can be derived as

A
c
=


(1, 1) (0.6652, 0.6359) (1.5995, 0.4023) (1.5291, 0.3010)

(0.6359, 0.6652) (1, 1) (1.4637, 0.3851) (1.3993, 0.2882)
(0.4023, 1.5995) (0.3851, 1.4637) (1, 1) (0.8854, 0.6930)
(0.3010, 1.5291) (0.2882, 1.3993) (0.6930, 0.8854) (1, 1)

 .
We can easily check that A

c
is also consistent. Moreover, according to Eq (4.1), we have C(A1) =

0.9273, C(A2) = 0.9264, C(A3) = 0.9246 and C(A4) = 0.8722. Let the consensus degree ζ be 0.9,
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which means the group consensus is not reached, and the IMPR A4 need to be modified. Let the
parameter in Algorithm II be 0.3, we can get four IMPRs Ã1 = A1, Ã2 = A2, Ã3 = A3, and Ã4 is given
by

Ã4 =


(1, 1) (0.5864, 0.5374) (0.8669, 0.6222) (1.8453, 0.2373)

(0.5374, 0.5864) (1, 1) (0.8441, 0.6611) (1.7968, 0.2521)
(0.6222, 0.8669) (0.6611, 0.8441) (1, 1) (2.0803, 0.3727)
(0.2373, 1.8453) (0.2521, 1.7968) (0.3727, 2.0803) (1, 1)

 .
According to Theorem 3.2, the IMPR Ã4 is still consistent (i.e., when the consistency threshold takes

0). If we use Model 2 to solve Ã4, the optimal objective function value will be J∗
Ã4
= 0.3052×10−5 ≈ 0.

Now, from Ã1, Ã2, Ã3 and Ã4, we can get a group IMPR Ãc,

Ãc =


(1, 1) (0.6736, 0.6466) (1.6998, 0.3853) (1.5009, 0.3082)

(0.6466, 0.6736) (1, 1) (1.5459, 0.3650) (1.3650, 0.2920)
(0.3853, 1.6998) (0.3650, 1.5459) (1, 1) (0.8134, 0.7370)
(0.3082, 1.5009) (0.2920, 1.3650) (0.7370, 0.8134) (1, 1)

 .
From Theorem 3.2, the IMPR Ãc is also consistent. In fact, using Model 2 to solve Ãc, we have

J∗
Ãc = 0.6700 × 10−5,

ω̃∗
Ãc = (ω̃∗1, ω̃

∗
2, ω̃

∗
3, ω̃

∗
4)T =

(
(1.4122, 0.3579), (1.1681, 0.3213), (0.4148, 2.0459), (0.2654, 1.5951)

)T
.

Thus, the distance functions of the intuitionistic multiplicative priority weights are p(ω̃∗1) = 0.6352,
p(ω̃∗2) = 0.6201, p(ω̃∗3) = 0.3250, p(ω̃∗4) = 0.3293, and the ranking order will be given by x1 > x2 >

x4 > x3. Using the geometric mean value of each row, Meng et al. [28] derived four preference
values from the group IMPR, α1 = (1.7660, 0.5428), α2 = (1.1919, 0.6023), α3 = (0.5950, 1.2064),
α4 = (0.5597, 1.1841), and we have p(α1) = 0.6330, p(α2) = 0.5722, p(α3) = 0.4252, p(α4) = 0.4220,
which means the ranking order is x1 > x2 > x3 > x4. We can see that the method in [28] obtains
the best choice with our method, but the ranking order is different. In the Example 5.2, we apply the
Algorithm II to improve the consensus when the group consensus is not reached, while the consensus
requirement is satisfied in [28], and this may result in the different ranking order.

Compared with Meng et al.’s method [28], there are several merits of our method: (1) Meng et al.
[28] called an IMPR consistent if there is an associated consistent RIFMPR. Generally speaking,
there are 2

n(n−1)
2 −1 different RIFMPRs for a n order IMPR, and it is not an easy work to construct such a

consistent RIFMPR. Thus, judging the consistency of an IMPR is very complex and complicated. In
this paper, we use Eq (2.2) to define the consistency of IMPRs. Clearly, our concept is simple and
convenient, and the consistency checking process does not need too much computation cost; (2) Our
method adopts the acceptable consistency analysis, while Meng et al. [28] employed the complete
consistency analysis. In a real decision making problem, it takes lots of time and efforts to reach the
complete consistency, and sometimes the complete consistency may lose some information. Under
this view, an acceptable consistency concept is more suitable. Moreover, if we let the acceptable
consistency threshold be equal to 0, we will derive the GDM method with IMPRs based on the
complete consistency analysis; (3) With respect to the group IMPR, Meng et al. [28] calculated the
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geometric mean value of each row. Although using the aggregation operator to get the weight vector
is an important method, different ranking orders may be obtained when different aggregation
operators are adopted, and there is no argument about which operator is better. In our method, based
on the relationship between the normalized intuitionistic multiplicative weights and a consistent
IMPR, we build a mathematical programming model to derive the priority weight vector without
using the aggregation operator.

6. Conclusion

This paper generalizes the method in [34] by considering how to check and improve the
consistency of individual IMPRs and the group consensus. The main contributions of this paper
include: (1) The acceptable consistency of IMPRs is investigated and an automatic Algorithm I is
provided to improve the consistency of an unacceptably consistent IMPR; (2) Consensus index is
defined to describe the agreement degree among the decision makers, and an Algorithm II is designed
to improve the consensus when the group consensus is not reached; (3) The rectified IMPRs are still
acceptably consistent after the consensus improving process; (4) The normalized intuitionistic
multiplicative priority weights are obtained from the group IMPR by establishing a mathematical
programming model without using the aggregation operator; (5) Numerical examples and comparison
analyses are offered. There are also some drawbacks of our method which should be dealt with in the
future: (i) This paper dose not consider the case of incomplete IMPR; (ii) The proposed model does
not discuss how to determine the appropriate thresholds; (iii) This paper does not analyze the effect of
the adjusted parameters; (iv) The proposed method does not consider how to get the weights of the
decision makers. In the future research, we will try to solve these problems. Moreover, how to
generalize the similar method to the interval-valued intuitionistic multiplicative environment [53, 54]
is also interesting and meaningful.
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