Mathematics
http://www.aimspress.com/journal/Math

Research Article

A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or q-) calculus

H. M. Srivastava ${ }^{1,2,3,4, *}$, T. M. Seoudy ${ }^{5,6}$ and M. K. Aouf ${ }^{7}$
${ }^{1}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
2^{2} Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
${ }^{3}$ Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
${ }^{4}$ Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
${ }^{5}$ Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
${ }^{6}$ Department of Mathematics, Jamoum University College, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
${ }^{7}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
* Correspondence: Email: harimsri@ math.uviv.ca; Tel: +12504725313, +12504776960;
Fax: +12507218962.

Abstract

In this paper, by using the concept of the basic (or q-) calculus and a generalized conic domain, we define two subclasses of normalized multivalent functions which map the open unit disk: $$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$ onto this generalized conic domain. We investigate a number of useful properties including (for example) the coefficient estimates and the Fekete-Szegö inequalities for each of these multivalent function classes. Our results are connected with those in several earlier works which are related to this field of Geometric Function Theory of Complex Analysis.

Keywords: analytic functions; multivalent functions; conic domain; basic (or q-) calculus; generalized conic domain; principle of subordination; coefficient estimates; Fekete-Szegö inequalities 2020 Mathematics Subject Classification: 11M35, 30C45, 30C50

1. Introduction and definitions

The theory of the basic and the fractional quantum calculus, that is, the basic (or q-) calculus and the fractional basic (or q-) calculus, play important roles in many diverse areas of the mathematical, physical and engineering sciences (see, for example, $[10,15,33,45]$). Our main objective in this paper is to introduce and study some subclasses of the class of the normalized p-valently analytic functions in the open unit disk:

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

by applying the q-derivative operator in conjunction with the principle of subordination between analytic functions (see, for details, $[8,30]$).

We begin by denoting by $\mathcal{A}(p)$ the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}:=\{1,2,3, \cdots\}), \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disk \mathbb{U}. In particular, we write $\mathcal{A}(1)=: \mathcal{A}$.
A function $f(z) \in \mathcal{A}(p)$ is said to be in the class $\mathcal{S}_{p}^{*}(\alpha)$ of p-valently starlike functions of order α in \mathbb{U} if and only if

$$
\begin{equation*}
\mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(0 \leqq \alpha<p ; z \in \mathbb{U}) . \tag{1.2}
\end{equation*}
$$

Moreover, a function $f(z) \in \mathcal{A}(p)$ is said to be in the class $\mathcal{C}_{p}(\alpha)$ of p-valently convex functions of order α in \mathbb{U} if and only if

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha \quad(0 \leqq \alpha<p ; z \in \mathbb{U}) . \tag{1.3}
\end{equation*}
$$

The p-valent function classes $\mathcal{S}_{p}^{*}(\alpha)$ and $\mathcal{C}_{p}(\alpha)$ were studied by Owa [32], Aouf [2,3] and Aouf $e t$ al. [4,5]. From (1.2) and (1.3), it follows that

$$
\begin{equation*}
f(z) \in \mathcal{C}_{p}(\alpha) \Longleftrightarrow \frac{z f^{\prime}(z)}{p} \in \mathcal{S}_{p}^{*}(\alpha) . \tag{1.4}
\end{equation*}
$$

Let \mathcal{P} denote the Carathéodory class of functions $\mathfrak{p}(z)$, analytic in \mathbb{U}, which are normalized by

$$
\begin{equation*}
\mathfrak{p}(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, \tag{1.5}
\end{equation*}
$$

such that $\mathfrak{R}(p(z))>0$.
Recently, Kanas and Wiśniowska $[18,19]$ (see also $[17,31])$ introduced the conic domain $\Omega_{k}(k \geqq 0)$, which we recall here as follows:

$$
\Omega_{k}=\left\{u+i v: u>k \sqrt{(u-1)^{2}+v^{2}}\right\}
$$

or, equivalently,

$$
\Omega_{k}=\{w: w \in \mathbb{C} \quad \text { and } \quad \mathfrak{R}(w)>k|w-1|\} .
$$

By using the conic domain Ω_{k}, Kanas and Wiśniowska $[18,19]$ also introduced and studied the class $k-\mathcal{U C V}$ of k-uniformly convex functions in \mathbb{U} as well as the corresponding class $k-\mathcal{S T}$ of k-starlike functions in \mathbb{U}. For fixed k, Ω_{k} represents the conic region bounded successively by the imaginary axis when $k=0$. For $k=1$, the domain Ω_{k} represents a parabola. For $1<k<\infty$, the domain Ω_{k} represents the right branch of a hyperbola. And, for $k>1$, the domain Ω_{k} represents an ellipse. For these conic regions, the following function plays the role of the extremal function:

$$
p_{k}(z)= \begin{cases}\frac{1+z}{1-z} & (k=0) \\ 1+\frac{2}{\pi^{2}}\left[\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right]^{2} & (k=1) \\ 1+\frac{1}{1-k^{2}} \cos \left(\frac{2 \mathrm{i}}{\pi}(\arccos k) \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right) & (0<k<1) \tag{1.6}\\ 1+\frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2 \mathrm{~K}(\kappa)} \int_{0}^{\frac{u(z)}{\sqrt{\kappa}}} \frac{\mathrm{d} t}{\sqrt{1-t^{2}} \sqrt{1-\kappa^{2} t^{2}}}\right)+\frac{k^{2}}{k^{2}-1} & (1<k<\infty)\end{cases}
$$

with

$$
u(z)=\frac{z-\sqrt{\kappa}}{1-\sqrt{\kappa z}} \quad(0<\kappa<1 ; z \in \mathbb{U})
$$

where κ is so chosen that

$$
k=\cosh \left(\frac{\pi \mathrm{K}^{\prime}(\kappa)}{4 \mathrm{~K}(\kappa)}\right)
$$

Here $\mathrm{K}(\kappa)$ is Legendre's complete elliptic integral of the first kind and

$$
\mathrm{K}^{\prime}(\kappa)=\mathrm{K}\left(\sqrt{1-\kappa^{2}}\right),
$$

that is, $\mathrm{K}^{\prime}(\kappa)$ is the complementary integral of $\mathrm{K}(\kappa)$ (see, for example, [48, p. 326, Eq 9.4 (209)]).
We now recall the definitions and concept details of the basic (or q-) calculus, which are used in this paper (see, for details, $[13,14,45]$; see also $[1,6,7,11,34,38,39,42,54,59]$). Throughout the paper, unless otherwise mentioned, we suppose that $0<q<1$ and

$$
\mathbb{N}=\{1,2,3 \cdots\}=\mathbb{N}_{0} \backslash\{0\} \quad\left(\mathbb{N}_{0}:=\{0,1,2, \cdots\}\right)
$$

Definition 1. The q-number $[\lambda]_{q}$ is defined by

$$
[\lambda]_{q}=\left\{\begin{array}{lr}
\frac{1-q^{\lambda}}{1-q} & (\lambda \in \mathbb{C}) \tag{1.7}\\
\sum_{k=0}^{n-1} q^{k}=1+q+q^{2} \cdots+q^{n-1} & (\lambda=n \in \mathbb{N}),
\end{array}\right.
$$

so that

$$
\lim _{q \rightarrow 1-}[\lambda]_{q}=\frac{1-q^{\lambda}}{1-q}=\lambda .
$$

Definition 2. For functions given by (1.1), the q-derivative (or the q-difference) operator D_{q} of a function f is defined by

$$
D_{q} f(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z} & (z \neq 0) \tag{1.8}\\ f^{\prime}(0) & (z=0)\end{cases}
$$

provided that $f^{\prime}(0)$ exists.
We note from Definition 2 that

$$
\lim _{q \rightarrow 1-} D_{q} f(z)=\lim _{q \rightarrow 1-} \frac{f(z)-f(q z)}{(1-q) z}=f^{\prime}(z)
$$

for a function f which is differentiable in a given subset of \mathbb{C}. It is readily deduced from (1.1) and (1.8) that

$$
\begin{equation*}
D_{q} f(z)=[p]_{q} z^{p-1}+\sum_{n=p+1}^{\infty}[n]_{q} a_{n} z^{n-1} . \tag{1.9}
\end{equation*}
$$

We remark in passing that, in the above-cited recently-published survey-cum-expository review article, the so-called (p, q)-calculus was exposed to be a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [42, p. 340]).

Making use of the q-derivative operator D_{q} given by (1.6), we introduce the subclass $\mathcal{S}_{q, p}^{*}(\alpha)$ of p valently q-starlike functions of order α in \mathbb{U} and the subclass $\mathcal{C}_{q, p}(\alpha)$ of p-valently q-convex functions of order α in \mathbb{U} as follows (see [54]):

$$
\begin{gather*}
f(z) \in \mathcal{S}_{q, p}^{*}(\alpha) \Longleftrightarrow \mathfrak{R}\left(\frac{1}{[p]_{q}} \frac{z D_{q} f(z)}{f(z)}\right)>\alpha \tag{1.10}\\
(0<q<1 ; 0 \leqq \alpha<1 ; z \in \mathbb{U})
\end{gather*}
$$

and

$$
\begin{gather*}
f(z) \in C_{q, p}(\alpha) \Longleftrightarrow \mathfrak{R}\left(\frac{1}{[p]_{q}} \frac{D_{p, q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right)>\alpha \tag{1.11}\\
(0<q<1 ; 0 \leqq \alpha<1 ; z \in \mathbb{U}),
\end{gather*}
$$

respectively. From (1.10) and (1.11), it follows that

$$
\begin{equation*}
f(z) \in C_{q, p}(\alpha) \Longleftrightarrow \frac{z D_{q} f(z)}{[p]_{q}} \in \mathcal{S}_{q, p}^{*}(\alpha) . \tag{1.12}
\end{equation*}
$$

For the simpler classes $\mathcal{S}_{q, p}^{*}$ and $\mathcal{C}_{q, p}^{*}$ of p-valently q-starlike functions in \mathbb{U} and p-valently q-convex functions in \mathbb{U}, respectively, we have write

$$
\mathcal{S}_{q, p}^{*}(0)=: \mathcal{S}_{q, p}^{*} \quad \text { and } \quad C_{q, p}(0)=: C_{q, p} .
$$

Obviously, in the limit when $q \rightarrow 1-$, the function classes $\mathcal{S}_{q, p}^{*}(\alpha)$ and $\mathcal{C}_{q, p}(\alpha)$ reduce to the familiar function classes $\mathcal{S}_{p}^{*}(\alpha)$ and $\mathcal{C}_{p}(\alpha)$, respectively.

Definition 3. A function $f \in \mathcal{A}(p)$ is said to belong to the class $\mathcal{S}_{q, p}^{*}$ of p-valently q-starlike functions in \mathbb{U} if

$$
\begin{equation*}
\left|\frac{z D_{q} f(z)}{[p]_{q} f(z)}-\frac{1}{1-q}\right| \leq \frac{1}{1-q} \quad(z \in \mathbb{U}) . \tag{1.13}
\end{equation*}
$$

In the limit when $q \rightarrow 1-$, the closed disk

$$
\left|w-\frac{1}{1-q}\right| \leqq \frac{1}{1-q} \quad(0<q<1)
$$

becomes the right-half plane and the class $\mathcal{S}_{q, p}^{*}$ of p-valently q-starlike functions in \mathbb{U} reduces to the familiar class \mathcal{S}_{p}^{*} of p-valently starlike functions with respect to the origin $(z=0)$. Equivalently, by using the principle of subordination between analytic functions, we can rewrite the condition (1.13) as follows (see [58]):

$$
\begin{equation*}
\frac{z D_{q} f(z)}{[p]_{q} f(z)}<\hat{p}(z) \quad\left(\hat{p}(z)=\frac{1+z}{1-q z}\right) . \tag{1.14}
\end{equation*}
$$

We note that $\mathcal{S}_{q, 1}^{*}=\mathcal{S}_{q}^{*}($ see $[12,41])$.
Definition 4. (see [50]) A function $\mathfrak{p}(z)$ given by (1.5) is said to be in the class $k-\mathcal{P}_{q}$ if and only if

$$
\mathfrak{p}(z)<\frac{2 p_{k}(z)}{(1+q)+(1-q) p_{k}(z)},
$$

where $p_{k}(z)$ is given by (1.6).
Geometrically, the function $p \in k-\mathcal{P}_{q}$ takes on all values from the domain $\Omega_{k, q}(k \geqq 0)$ which is defined as follows:

$$
\begin{equation*}
\Omega_{k, q}=\left\{w: \mathfrak{R}\left(\frac{(1+q) w}{(q-1) w+2}\right)>k\left|\frac{(1+q) w}{(q-1) w+2}-1\right|\right\} . \tag{1.15}
\end{equation*}
$$

The domain $\Omega_{k, q}$ represents a generalized conic region which was introduced and studied earlier by Srivastava et al. (see, for example, [43,50]). It reduces, in the limit when $q \rightarrow 1-$, to the conic domain Ω_{k} studied by Kanas and Wiśniowska [18]. We note the following simpler cases.
(1) $k-\mathcal{P}_{q} \subseteq \mathcal{P}\left(\frac{2 k}{2 k+1+q}\right)$, where $\mathcal{P}\left(\frac{2 k}{2 k+1+q}\right)$ is the familiar class of functions with real part greater than $\frac{2 k}{2 k+1+q}$;
(2) $\lim _{q \rightarrow 1-}\left\{k-\mathcal{P}_{q}\right\}=\mathcal{P}\left(p_{k}(z)\right)$, where $\mathcal{P}\left(p_{k}(z)\right)$ is the known class introduced by Kanas and Wiśniowska [18];
(3) $\lim _{q \rightarrow 1-}\left\{0-\mathcal{P}_{q}\right\}=\mathcal{P}$, where \mathcal{P} is Carathéodory class of analytic functions with positive real part.

Definition 5. A function $f \in \mathcal{A}(p)$ is said to be in the class $k-\mathcal{S T} \mathcal{T}_{q, p}$ if and only if

$$
\begin{equation*}
\mathfrak{R}\left(\frac{(1+q) \frac{z D_{q} f(z)}{[p]_{q} f(z)}}{(q-1) \frac{z D_{q} f(z)}{[p]_{q} f(z)}+2}\right)>k\left|\frac{(1+q) \frac{z D_{q} f(z)}{[p]_{q} f(z)}}{(q-1) \frac{z D_{q} f(z)}{[p]_{q} f(z)}+2}-1\right| \quad(z \in \mathbb{U}) \tag{1.16}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\frac{z D_{q} f(z)}{[p]_{q} f(z)} \in k-\mathcal{P}_{q} \tag{1.17}
\end{equation*}
$$

The folowing special cases are worth mentioning here.
(1) $k-\mathcal{S T}_{q, 1}=k-S \mathcal{T}_{q}$, where $k-\mathcal{S T}_{q}$ is the function class introduced and studied by Srivastava $e t$ al. [50] and Zhang et al. [60] with $\gamma=1$;
(2) $0-\mathcal{S T}_{q, p}=\mathcal{S}_{q, p}$;
(3) $\lim _{q \rightarrow 1}\left\{k-\mathcal{S T} \mathcal{T}_{q, p}\right\}=k-\mathcal{S T}$, where $k-\mathcal{S T} \mathcal{T}_{p}$ is the class of p-valently uniformly starlike functions;
(4) $\lim _{q \rightarrow 1}\left\{0-\mathcal{S T} \mathcal{T}_{q, p}\right\}=\mathcal{S}_{p}$, where \mathcal{S}_{p}^{*} is the class of p-valently starlike functions;
(5) $0-\mathcal{S T}_{q, 1}=\mathcal{S}_{q}^{*}$, where $\mathcal{S}_{q}^{*}($ see $[12,41])$;
(6) $\lim _{q \rightarrow 1}\{k-\mathcal{S T} q, 1\}=k-\mathcal{S T}$, where $k-\mathcal{S T}$ is a function class introduced and studied by Kanas and Wiśniowska [19];
(7) $\lim _{q \rightarrow 1}\left\{0-\mathcal{S T} \mathcal{T}_{q, 1}\right\}=\mathcal{S}^{*}$, where \mathcal{S}^{*} is the familiar class of starlike functions in \mathbb{U}.

Definition 6. By using the idea of Alexander's theorem [9], the class $k-\mathcal{U C} \mathcal{V}_{q, p}$ can be defined in the following way:

$$
\begin{equation*}
f(z) \in k-\mathcal{U} C \mathcal{V}_{q, p} \Longleftrightarrow \frac{z D_{q} f(z)}{[p]_{q}} \in k-\mathcal{S \mathcal { T } _ { q , p } .} \tag{1.18}
\end{equation*}
$$

In this paper, we investigate a number of useful properties including coefficient estimates and the Fekete-Szegö inequalities for the function classes $k-\mathcal{S T} \mathcal{T}_{q, p}$ and $k-\mathcal{U} C \mathcal{V}_{q, p}$, which are introduced above. Various corollaries and consequences of most of our results are connected with earlier works related to the field of investigation here.

2. A set of Lemmas

In order to establish our main results, we need the following lemmas.
Lemma 1. (see [16]) Let $0 \leqq k<\infty$ be fixed and let p_{k} be defined by (1.6). If

$$
p_{k}(z)=1+Q_{1} z+Q_{2} z^{2}+\cdots,
$$

then

$$
Q_{1}= \begin{cases}\frac{2 A^{2}}{1-k^{2}} & (0 \leqq k<1) \tag{2.1}\\ \frac{8}{\pi^{2}} & (k=1) \\ \frac{\pi^{2}}{4 \sqrt{t}\left(k^{2}-1\right)[\mathrm{K}(t)]^{2}(1+t)} & (1<k<\infty)\end{cases}
$$

and

$$
Q_{2}= \begin{cases}\frac{A^{2}+2}{3} Q_{1} & (0 \leqq k<1) \tag{2.2}\\ \frac{2}{3} Q_{1} & (k=1) \\ \frac{4[\mathrm{~K}(t)]^{2}\left(t^{2}+6 t+1\right)-\pi^{2}}{24 \sqrt{t}[\mathrm{~K}(t)]^{2}(1+t)} Q_{1} & (1<k<\infty),\end{cases}
$$

where

$$
A=\frac{2 \arccos k}{\pi}
$$

and $t \in(0,1)$ is so chosen that

$$
k=\cosh \left(\frac{\pi \mathrm{K}^{\prime}(t)}{\mathrm{K}(t)}\right)
$$

$\mathrm{K}(t)$ being Legendre's complete elliptic integral of the first kind.
Lemma 2. Let $0 \leqq k<\infty$ be fixed and suppose that

$$
\begin{equation*}
p_{k, q}(z)=\frac{2 p_{k}(z)}{(1+q)+(1-q) p_{k}(z)}, \tag{2.3}
\end{equation*}
$$

where $p_{k}(z)$ be defined by (1.6). Then

$$
\begin{equation*}
p_{k, q}(z)=1+\frac{1}{2}(1+q) Q_{1} z+\frac{1}{2}(1+q)\left[Q_{2}-\frac{1}{2}(1-q) Q_{1}^{2}\right] z^{2}+\cdots, \tag{2.4}
\end{equation*}
$$

where Q_{1} and Q_{2} are given by (2.1) and (2.2), respectively.
Proof. By using (1.6) in (2.3), we can easily derive (2.4).
Lemma 3. (see [26]) Let the function h given by

$$
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{P}
$$

be analytic in \mathbb{U} and satisfy $\mathfrak{R}(h(z))>0$ for z in \mathbb{U}. Then the following sharp estimate holds true:

$$
\left|c_{2}-v c_{1}^{2}\right| \leqq 2 \max \{1,|2 v-1|\} \quad(\forall v \in \mathbb{C}) .
$$

The result is sharp for the functions given by

$$
\begin{equation*}
g(z)=\frac{1+z^{2}}{1-z^{2}} \quad \text { or } \quad g(z)=\frac{1+z}{1-z} \tag{2.5}
\end{equation*}
$$

Lemma 4. (see [26]) If the function h is given by

$$
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{P}
$$

then

$$
\left|c_{2}-v c_{1}^{2}\right| \leqq \begin{cases}-4 v+2 & (v \leqq 0) \tag{2.6}\\ 2 & (0 \leqq v \leqq 1) \\ 4 v-2 & (v \leqq 1)\end{cases}
$$

When $v>1$, the equality holds true if and only if

$$
h(z)=\frac{1+z}{1-z}
$$

or one of its rotations. If $0<v<1$, then the equality holds true if and only if

$$
h(z)=\frac{1+z^{2}}{1-z^{2}}
$$

or one of its rotations. If $v=0$, the equality holds true if and only if

$$
h(z)=\left(\frac{1+\lambda}{2}\right)\left(\frac{1+z}{1-z}\right)+\left(\frac{1-\lambda}{2}\right)\left(\frac{1-z}{1+z}\right) \quad(0 \leqq \lambda \leqq 1)
$$

or one of its rotations. If $v=1$, the equality holds true if and only if the function h is the reciprocal of one of the functions such that equality holds true in the case when $v=0$.

The above upper bound is sharp and it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leqq 2 \quad\left(0 \leqq v \leqq \frac{1}{2}\right)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leqq 2 \quad\left(\frac{1}{2} \leq v \leqq 1\right)
$$

3. Main results

We assume throughout our discussion that, unless otherwise stated, $0 \leqq k<\infty, 0<q<1, p \in \mathbb{N}$, Q_{1} is given by (2.1), Q_{2} is given by (2.2) and $z \in \mathbb{U}$.
Theorem 1. If a function $f \in \mathcal{A}(p)$ is of the form (1.1) and satisfies the following condition:

$$
\begin{equation*}
\sum_{n=p+1}^{\infty}\left\{2(k+1)\left([n]_{q}-[p]_{q}\right)+q^{n}+2[p]_{q}-1\right\}\left|a_{n}\right|<(1+q)[p]_{q}, \tag{3.1}
\end{equation*}
$$

then the function $f \in k-\mathcal{S T} \mathcal{T}_{q, p}$.
Proof. Suppose that the inequality (3.1) holds true. Then it suffices to show that

$$
k\left|\frac{(1+q) \frac{z D_{q} f(z)}{[p]_{q} f(z)}}{(q-1) \frac{z D_{q} f(z)}{[p]_{q} f(z)}+2}-1\right|-\mathfrak{R}\left(\frac{(1+q) \frac{z D_{q} f(z)}{[p]_{q} f(z)}}{(q-1) \frac{z D_{q} f(z)}{[p]_{q} f(z)}+2}-1\right)<1 .
$$

In fact, we have

$$
k\left|\frac{(1+q) \frac{z D_{q} f(z)}{[p]_{q} f(z)}}{(q-1) \frac{z D_{q} f(z)}{[p]_{q} f(z)}+2}-1\right|-\mathfrak{R}\left(\frac{(1+q) \frac{z D_{q} f(z)}{[p]_{q} f(z)}}{(q-1) \frac{z D_{q} f(z)}{[p]_{q} f(z)}+2}-1\right)
$$

$$
\begin{aligned}
& \leqq(k+1)\left|\frac{(1+q) \frac{z D_{q} f(z)}{[p]_{q} f(z)}}{(q-1) \frac{z D_{q}(z)}{[p]_{q} f(z)}+2}-1\right| \\
& =2(k+1)\left|\frac{z D_{q} f(z)-[p]_{q} f(z)}{(q-1) z D_{q} f(z)+2[p]_{q} f(z)}\right| \\
& =2(k+1)\left|\frac{\sum_{n=p+1}^{\infty}\left([n]_{q}-[p]_{q}\right) a_{n} z^{n-p}}{(1+q)[p]_{q}+\sum_{n=p+1}^{\infty}\left((q-1)[n]_{q}+2[p]_{q}\right) a_{n} z^{n-p}}\right| \\
& \leqq 2(k+1) \frac{\sum_{n=p+1}^{\infty}\left([n]_{q}-[p]_{q}\right)\left|a_{n}\right|}{(1+q)[p]_{q}-\sum_{n=p+1}^{\infty}\left(q^{n}+2[p]_{q}-1\right)\left|a_{n}\right|} .
\end{aligned}
$$

The last expression is bounded by 1 if (3.1) holds true. This completes the proof of Theorem 1.
Corollary 1. If $f(z) \in k-\mathcal{S T} \mathcal{T}_{q, p}$, then

$$
\left|a_{n}\right| \leqq \frac{(1+q)[p]_{q}}{\left\{2(k+1)\left([n]_{q}-[p]_{q}\right)+q^{n}+2[p]_{q}-1\right\}} \quad(n \geqq p+1) .
$$

The result is sharp for the function $f(z)$ given by

$$
f(z)=z^{p}+\frac{(1+q)[p]_{q}}{\left\{2(k+1)\left([n]_{q}-[p]_{q}\right)+q^{n}+2[p]_{q}-1\right\}} z^{n} \quad(n \geqq p+1) .
$$

Remark 1. Putting $p=1$ Theorem 1, we obtain the following result which corrects a result of Srivastava et al. [50, Theorem 3.1].

Corollary 2. (see Srivastava et al. [50, Theorem 3.1]) If a function $f \in \mathcal{A}$ is of the form (1.1) (with $p=1)$ and satisfies the following condition:

$$
\sum_{n=2}^{\infty}\left\{2(k+1)\left([n]_{q}-1\right)+q^{n}+1\right\}\left|a_{n}\right|<(1+q)
$$

then the function $f \in k-\mathcal{S T}{ }_{q}$.
Letting $q \rightarrow 1$ - in Theorem 1, we obtain the following known result [29, Theorem 1] with

$$
\alpha_{1}=\beta_{1}=p, \quad \alpha_{i}=1(i=2, \cdots, s+1) \quad \text { and } \quad \beta_{j}=1(j=2, \cdots, s) .
$$

Corollary 3. If a function $f \in \mathcal{A}(p)$ is of the form (1.1) and satisfies the following condition:

$$
\sum_{n=p+1}^{\infty}\{(k+1)(n-p)+p\}\left|a_{n}\right|<p,
$$

then the function $f \in k-\mathcal{S T}{ }_{p}$.

Remark 2. Putting $p=1$ in Corollary 3, we obtain the result obtained by Kanas and Wiśniowska [19, Theorem 2.3].

By using Theorem 1 and (1.18), we obtain the following result.
Theorem 2. If a function $f \in \mathcal{A}(p)$ is of the form (1.1) and satisfies the following condition:

$$
\sum_{n=p+1}^{\infty}\left(\frac{[n]_{q}}{[p]_{q}}\right)\left\{2(k+1)\left([n]_{q}-[p]_{q}\right)+q^{n}+2[p]_{q}-1\right\}\left|a_{n}\right|<(1+q)[p]_{q},
$$

then the function $f \in k-\mathcal{U C} \mathcal{V}_{q, p}$.
Remark 3. Putting $p=1$ Theorem 1, we obtain the following result which corrects the result of Srivastava et al. [50, Theorem 3.3].
Corollary 4. (see Srivastava et al. [50, Theorem 3.3]) If a function $f \in \mathcal{A}$ is of the form (1.1) (with $p=1$) and satisfies the following condition:

$$
\sum_{n=2}^{\infty}[n]_{q}\left\{2(k+1)\left([n]_{q}-1\right)+q^{n}+1\right\}\left|a_{n}\right|<(1+q),
$$

then the function $f \in k-\mathcal{U C} \mathcal{V}_{q}$.
Letting $q \rightarrow 1$ - in Theorem 2, we obtain the following corollary (see [29, Theorem 1]) with

$$
\alpha_{1}=p+1, \quad \beta_{1}=p, \quad \alpha_{\ell}=1 \quad(\ell=2, \cdots, s+1) \quad \text { and } \quad \beta_{j}=1(j=2, \cdots, s) .
$$

Corollary 5. If a function $f \in \mathcal{A}(p)$ is of the form (1.1) and satisfies the following condition:

$$
\sum_{n=p+1}^{\infty}\left(\frac{n}{p}\right)\{(k+1)(n-p)+p\}\left|a_{n}\right|<p
$$

then the function $f \in k-\mathcal{U C} \mathcal{V}_{p}$.
Remark 4. Putting $p=1$ in Corollary 5, we obtain the following corollary which corrects the result of Kanas and Wiśniowska [18, Theorem 3.3].

Corollary 6. If a function $f \in \mathcal{A}$ is of the form (1.1) (with $p=1$) and satisfies the following condition:

$$
\sum_{n=2}^{\infty} n\{n(k+1)-k\}\left|a_{n}\right|<1,
$$

then the function $f \in k-\mathcal{U C V}$.
Theorem 3. If $f \in k-\mathcal{S T} \mathcal{T}_{q, p}$, then

$$
\begin{equation*}
\left|a_{p+1}\right| \leqq \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[1]_{q}} \tag{3.2}
\end{equation*}
$$

and, for all $n=3,4,5, \cdots$,

$$
\begin{equation*}
\left|a_{n+p-1}\right| \leqq \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[n-1]_{q}} \prod_{j=1}^{n-2}\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[j]_{q}}\right) \tag{3.3}
\end{equation*}
$$

Proof. Suppose that

$$
\begin{equation*}
\frac{z D_{q} f(z)}{[p]_{q} f(z)}=\mathfrak{p}(z), \tag{3.4}
\end{equation*}
$$

where

$$
\mathfrak{p}(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in k-\mathcal{P}_{q} .
$$

Eq (3.4) can be written as follows:

$$
z D_{q} f(z)=[p]_{q} f(z) \mathfrak{p}(z),
$$

which implies that

$$
\begin{equation*}
\sum_{n=p+1}^{\infty}\left([n]_{q}-[p]_{q}\right) a_{n} z^{n}=[p]_{q}\left(z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=1}^{\infty} c_{n} z^{n}\right) \tag{3.5}
\end{equation*}
$$

Comparing the coefficients of z^{n+p-1} on both sides of (3.5), we obtain

$$
\left([n+p-1]_{q}-[p]_{q}\right) a_{n+p-1}=[p]_{q}\left\{c_{n-1}+a_{p+1} c_{n-2}+\cdots+a_{n+p-2} c_{1}\right\} .
$$

By taking the moduli on both sides and then applying the following coefficient estimates (see [50]):

$$
\left|c_{n}\right| \leqq \frac{1}{2}(1+q) Q_{1} \quad(n \in \mathbb{N}),
$$

we find that

$$
\begin{equation*}
\left|a_{n+p-1}\right| \leqq \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[n-1]_{q}}\left\{1+\left|a_{p+1}\right|+\cdots+\left|a_{n+p-2}\right|\right\} . \tag{3.6}
\end{equation*}
$$

We now apply the principle of mathematical induction on (3.6). Indeed, for $n=2$, we have

$$
\begin{equation*}
\left|a_{p+1}\right| \leqq \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[1]_{q}}, \tag{3.7}
\end{equation*}
$$

which shows that the result is true for $n=2$. Next, for $n=3$ in (3.7), we get

$$
\left|a_{p+2}\right| \leqq \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[2]_{q}}\left\{1+\left|a_{p+1}\right|\right\} .
$$

By using (3.7), we obtain

$$
\left|a_{p+2}\right| \leqq \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[2]_{q}}\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[1]_{q}}\right),
$$

which is true for $n=3$. Let us assume that (3.3) is true for $n=t(t \in \mathbb{N})$, that is,

$$
\left|a_{t+p-1}\right| \leqq \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[t-1]_{q}} \prod_{j=1}^{t-2}\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[j]_{q}}\right) .
$$

Let us consider

$$
\begin{aligned}
\left|a_{t+p}\right| \leqq & \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[t]_{q}}\left\{1+\left|a_{p+1}\right|+\left|a_{p+2}\right|+\cdots+\left|a_{t+p-1}\right|\right\} \\
\leqq & \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[t]_{q}}\left\{1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[1]_{q}}+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[2]_{q}}\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[1]_{q}}\right)\right. \\
& \left.\quad+\cdots+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[t-1]_{q}} \prod_{j=1}^{t-2}\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[j]_{q}}\right)\right\} \\
= & \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[t]_{q}}\left\{\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[1]_{q}}\right)\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[2]_{q}}\right)\right. \\
& \left.\cdots\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[t-1]_{q}}\right)\right\} \\
= & \frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[t]_{q}} \prod_{j=1}^{t-1}\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[j]_{q}}\right)
\end{aligned}
$$

Therefore, the result is true for $n=t+1$. Consequently, by the principle of mathematical induction, we have proved that the result holds true for all $n(n \in \mathbb{N} \backslash\{1\})$. This completes the proof of Theorem 3.

Similarly, we can prove the following result.
Theorem 4. If $f \in k-\mathcal{U} C \mathcal{V}_{q, p}$ and is of form (1.1), then

$$
\left|a_{p+1}\right| \leqq \frac{(1+q)[p]_{q}^{2} Q_{1}}{2 q^{p}[p+1]_{q}}
$$

and, for all $n=3,4,5, \cdots$,

$$
\left|a_{n+p-1}\right| \leqq \frac{(1+q)[p]_{q}^{2} Q_{1}}{2 q^{p}[n+p-1]_{q}[n-1]_{q}} \prod_{j=1}^{n-2}\left(1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}[j]_{q}}\right) .
$$

Putting $p=1$ in Theorems 3 and 4, we obtain the following corollaries.
Corollary 7. If $f \in k-\mathcal{S T}{ }_{q}$, then

$$
\left|a_{2}\right| \leqq \frac{(1+q) Q_{1}}{2 q}
$$

and, for all $n=3,4,5, \cdots$,

$$
\left|a_{n}\right| \leqq \frac{(1+q) Q_{1}}{2 q[n-1]_{q}} \prod_{j=1}^{n-2}\left(1+\frac{(1+q) Q_{1}}{2 q[j]_{q}}\right) .
$$

Corollary 8. If $f \in k-\mathcal{U C} \mathcal{V}_{q}$, then

$$
\left|a_{2}\right| \leqq \frac{Q_{1}}{2 q}
$$

and, for all $n=3,4,5, \cdots$,

$$
\left|a_{n}\right| \leqq \frac{(1+q) Q_{1}}{2 q[n]_{q}[n-1]_{q}} \prod_{j=1}^{n-2}\left(1+\frac{(1+q) Q_{1}}{2 q[j]_{q}}\right) .
$$

Theorem 5. Let $f \in k-\mathcal{S T}{ }_{q, p}$. Then $f(\mathbb{U})$ contains an open disk of the radius given by

$$
r=\frac{2 q^{p}}{2(p+1) q^{p}+(1+q)[p]_{q} Q_{1}} .
$$

Proof. Let $w_{0} \neq 0$ be a complex number such that $f(z) \neq w_{0}$ for $z \in \mathbb{U}$. Then

$$
f_{1}(z)=\frac{w_{0} f(z)}{w_{0}-f(z)}=z^{p+1}+\left(a_{p+1}+\frac{1}{w_{0}}\right) z^{p+1}+\cdots .
$$

Since f_{1} is univalent, so

$$
\left|a_{p+1}+\frac{1}{w_{0}}\right| \leqq p+1 \text {. }
$$

Now, using Theorem 3, we have

$$
\left|\frac{1}{w_{0}}\right| \leqq p+1+\frac{(1+q)[p]_{q} Q_{1}}{2 q^{p}}=\frac{2 q^{p}(p+1)+(1+q)[p]_{q} Q_{1}}{2 q^{p}} .
$$

Hence

$$
\left|w_{0}\right| \geqq \frac{2 q^{p}}{2 q^{p}(p+1)+(1+q)[p]_{q} Q_{1}} .
$$

This completes the proof of Theorem 5 .
Theorem 6. Let the function $f \in k-\mathcal{S T} \mathcal{T}_{q, p}$ be of the form (1.1). Then, for a complex number μ,

$$
\left.\left.\begin{array}{rl}
\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leqq \frac{[p]_{q} Q_{1}}{2 q^{p}} \max & \left\{1, \left\lvert\, \frac{Q_{2}}{Q_{1}}+\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}}{2 q^{p}}\right.\right. \\
\cdot\left(1-\mu \frac{(1+q)^{2}[p]_{q}}{[p]_{q}(1+q)-q^{p}(1-q)}\right) \tag{3.8}
\end{array}\right)\right\} .
$$

The result is sharp.
Proof. If $f \in k-\mathcal{S T}_{q, p}$, we have

$$
\frac{z D_{q} f(z)}{[p]_{q} f(z)}<p_{k, q}(z)=\frac{2 p_{k}(z)}{(1+q)+(1-q) p_{k}(z)} .
$$

From the definition of the differential subordination, we know that

$$
\begin{equation*}
\frac{z D_{q} f(z)}{[p]_{q} f(z)}=p_{k, q}(w(z)) \quad(z \in \mathbb{U}) \tag{3.9}
\end{equation*}
$$

where $w(z)$ is a Schwarz function with $w(0)=0$ and $|w(z)|<1$ for $z \in \mathbb{U}$.

Let $h \in \mathcal{P}$ be a function defined by

$$
h(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) .
$$

This gives

$$
w(z)=\frac{1}{2} c_{1} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots
$$

and

$$
\begin{align*}
p_{k, q}(w(z)) & =1+\frac{1+q}{4} c_{1} Q_{1} z+\frac{1+q}{4}\left\{Q_{1} c_{2}+\frac{1}{2}\left(Q_{2}-Q_{1}\right.\right. \\
& \left.\left.-\frac{1-q}{2} Q_{1}^{2}\right) c_{1}^{2}\right\} z^{2}+\cdots . \tag{3.10}
\end{align*}
$$

Using (3.10) in (3.9), we obtain

$$
a_{p+1}=\frac{(1+q)[p]_{q} c_{1} Q_{1}}{4 q^{p}}
$$

and

$$
a_{p+2}=\frac{[p]_{q} Q_{1}}{4 q^{p}}\left[c_{2}-\frac{1}{2}\left(1-\frac{Q_{2}}{Q_{1}}-\frac{[p]_{q}(1+q)-q^{p}(1-q)}{2 q^{p}} Q_{1}\right) c_{1}^{2}\right]
$$

Now, for any complex number μ, we have

$$
\begin{align*}
a_{p+2}-\mu a_{p+1}^{2}=\frac{[p]_{q} Q_{1}}{4 q^{p}}\left[c_{2}-\right. & \left.\frac{1}{2}\left(1-\frac{Q_{2}}{Q_{1}}-\frac{[p]_{q}(1+q)-q^{p}(1-q)}{2 q^{p}} Q_{1}\right) c_{1}^{2}\right] \\
& -\mu \frac{(1+q)^{2}[p]_{q}^{2} Q_{1}^{2} c_{1}^{2}}{16 q^{2 p}} . \tag{3.11}
\end{align*}
$$

Then (3.11) can be written as follows:

$$
\begin{equation*}
a_{p+2}-\mu a_{p+1}^{2}=\frac{[p]_{q} Q_{1}}{4 q^{p}}\left\{c_{2}-v c_{1}^{2}\right\}, \tag{3.12}
\end{equation*}
$$

where

$$
\begin{align*}
v=\frac{1}{2}\left[1-\frac{Q_{2}}{Q_{1}}-\right. & \frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}}{2 q^{p}} \\
& \left.\cdot\left(1-\mu \frac{(1+q)^{2}[p]_{q}}{[p]_{q}(1+q)-q^{p}(1-q)}\right)\right] \tag{3.13}
\end{align*}
$$

Finally, by taking the moduli on both sides and using Lemma 4, we obtain the required result. The sharpness of (3.8) follows from the sharpness of (2.5). Our demonstration of Theorem 6 is thus completed.

Similarly, we can prove the following theorem.

Theorem 7. Let the function $f \in k-\mathcal{U} \subset \mathcal{V}_{q, p}$ be of the form (1.1). Then, for a complex number μ,

$$
\begin{aligned}
&\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leqq \frac{[p]_{q}^{2} Q_{1}}{2 q^{p}[p+2]_{q}} \max \left\{1, \left\lvert\, \frac{Q_{2}}{Q_{1}}+\frac{\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}}{2 q^{p}}\right.\right. \\
&\left.\left.\cdot\left(1-\mu \frac{[p+2]_{q}(1+q)^{2}[p]_{q}^{2}}{\left((1+q)[p]_{q}-(1-q) q^{p}\right)[p+1]_{q}^{2}}\right) \right\rvert\,\right\} .
\end{aligned}
$$

The result is sharp.
Putting $p=1$ in Theorems 6 and 7, we obtain the following corollaries.
Corollary 9. Let the function $f \in k-\mathcal{S T}{ }_{q}$ be of the form (1.1) (with $p=1$). Then, for a complex number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq \frac{Q_{1}}{2 q} \max \left\{1,\left|\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{(1+q)^{2}}{1+q^{2}}\right)\right|\right\}
$$

The result is sharp.
Corollary 10. Let the function $f \in k-\mathcal{U C} \mathcal{V}_{q}$ be of the form (1.1) (with $p=1$). Then, for a complex number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq \frac{Q_{1}}{2 q[3]_{q}} \max \left\{1,\left|\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{[3]_{q}}{1+q^{2}}\right)\right|\right\}
$$

The result is sharp.
Theorem 8. Let

$$
\begin{aligned}
& \sigma_{1}=\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}^{2}+2 q^{p}\left(Q_{2}-Q_{1}\right)}{[p]_{q}(1+q)^{2} Q_{1}^{2}} \\
& \sigma_{2}=\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}^{2}+2 q^{p}\left(Q_{2}+Q_{1}\right)}{[p]_{q}(1+q)^{2} Q_{1}^{2}}
\end{aligned}
$$

and

$$
\sigma_{3}=\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}^{2}+2 q^{p} Q_{2}}{[p]_{q}(1+q)^{2} Q_{1}^{2}}
$$

If the function f given by (1.1) belongs to the class $k-\mathcal{S T}_{\text {q,p }}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right| \\
& \\
& \qquad \begin{cases}\frac{[p]_{q} Q_{1}}{2 q^{p}}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}}{2 q^{p}}\left(1-\mu \frac{(1+q)^{2}[p]_{q}}{[p]_{q}(1+q)-q^{p}(1-q)}\right)\right\} & \left(\mu \leqq \sigma_{1}\right) \\
\frac{[p]_{q} Q_{1}}{2 q^{p}} & \left(\sigma_{1} \leqq \mu \leqq \sigma_{2}\right), \\
-\frac{[p]_{q} Q_{1}}{2 q^{p}}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}}{2 q^{p}}\left(1-\mu \frac{(1+q)^{2}[p]_{q}}{[p]_{q}(1+q)-q^{p}(1-q)}\right)\right\} & \left(\mu \geqq \sigma_{2}\right) .\end{cases}
\end{aligned}
$$

Furthermore, if $\sigma_{1} \leqq \mu \leqq \sigma_{3}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right|+\frac{2 q^{p}}{(1+q)^{2}[p]_{q} Q_{1}}\left\{1-\frac{Q_{2}}{Q_{1}}-\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}}{2 q^{p}}\right. \\
& \left.\quad \cdot\left(1-\mu \frac{(1+q)^{2}[p]_{q}}{\left([p]_{q}(1+q)-q^{p}(1-q)\right)}\right)\right\}\left|a_{p+1}\right|^{2} \\
& \\
& \quad \leqq \frac{[p]_{q} Q_{1}}{2 q^{p}} .
\end{aligned}
$$

If $\sigma_{3} \leqq \mu \leqq \sigma_{2}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right|+\frac{2 q^{p}}{(1+q)^{2}[p]_{q} Q_{1}}\left\{1+\frac{Q_{2}}{Q_{1}}+\frac{\left([p]_{q}(1+q)-q^{p}(1-q)\right) Q_{1}}{2 q^{p}}\right. \\
& \left.\quad \cdot\left(1-\mu \frac{(1+q)^{2}[p]_{q}}{\left([p]_{q}(1+q)-q^{p}(1-q)\right)}\right)\right\}\left|a_{p+1}\right|^{2} \\
& \quad \leqq \frac{[p]_{q} Q_{1}}{2 q^{p}} .
\end{aligned}
$$

Proof. Applying Lemma 4 to (3.12) and (3.13), respectively, we can derive the results asserted by Theorem 8.

Putting $p=1$ in Theorem 8, we obtain the following result.
Corollary 11. Let

$$
\begin{aligned}
& \sigma_{4}=\frac{\left(1+q^{2}\right) Q_{1}^{2}+2 q\left(Q_{2}-Q_{1}\right)}{(1+q)^{2} Q_{1}^{2}}, \\
& \sigma_{5}=\frac{\left(1+q^{2}\right) Q_{1}^{2}+2 q\left(Q_{2}+Q_{1}\right)}{(1+q)^{2} Q_{1}^{2}}
\end{aligned}
$$

and

$$
\sigma_{6}=\frac{\left(1+q^{2}\right) Q_{1}^{2}+2 q Q_{2}}{(1+q)^{2} Q_{1}^{2}}
$$

If the function f given by (1.1) (with $p=1$) belongs to the class $k-\mathcal{S T} \mathcal{T}_{q}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq \begin{cases}\frac{Q_{1}}{2 q}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{(1+q)^{2}}{1+q^{2}}\right)\right\} & \left(\mu \leqq \sigma_{4}\right) \\ \frac{Q_{1}}{2 q} & \left(\sigma_{4} \leqq \mu \leqq \sigma_{5}\right) \\ -\frac{Q_{1}}{2 q}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{(1+q)^{2}}{1+q^{2}}\right)\right\} & \left(\mu \leqq \sigma_{5}\right) .\end{cases}
$$

Furthermore, if $\sigma_{4} \leqq \mu \leqq \sigma_{6}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2 q}{(1+q)^{2} Q_{1}}\left\{1-\frac{Q_{2}}{Q_{1}}-\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{(1+q)^{2}}{1+q^{2}}\right)\right\}\left|a_{2}\right|^{2} \leqq \frac{Q_{1}}{2 q} .
$$

If $\sigma_{3} \leqq \mu \leqq \sigma_{2}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2 q}{(1+q)^{2} Q_{1}}\left\{1+\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{(1+q)^{2}}{1+q^{2}}\right)\right\}\left|a_{2}\right|^{2} \leqq \frac{Q_{1}}{2 q} .
$$

Similarly, we can prove the following result.
Theorem 9. Let

$$
\begin{aligned}
& \eta_{1}=\frac{\left[\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}^{2}+2 q^{p}\left(Q_{2}-Q_{1}\right)\right][p+1]_{q}^{2}}{[p]_{q}^{2}[p+2]_{q}(1+q)^{2} Q_{1}^{2}}, \\
& \eta_{2}=\frac{\left[\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}^{2}+2 q^{p}\left(Q_{2}+Q_{1}\right)\right][p+1]_{q}^{2}}{[p]_{q}^{2}[p+2]_{q}(1+q)^{2} Q_{1}^{2}}
\end{aligned}
$$

and

$$
\eta_{3}=\frac{\left[\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}^{2}+2 q^{p} Q_{2}\right][p+1]_{q}^{2}}{[p]_{q}^{2}[p+2]_{q}(1+q)^{2} Q_{1}^{2}} .
$$

If the function f given by (1.1) belongs to the class $k-\mathcal{U C V} \mathcal{V}_{q, p}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right| \\
& \leqq \begin{cases}\frac{[p]_{q}^{2} Q_{1}}{2 q^{p}[p+2]_{q}}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}}{2 q^{p}}\left(1-\frac{[p+2]_{q}(1+q)^{2}[p]_{q}^{2} \mu}{\left((1+q)[p]_{q}-(1-q) q^{p}\right)[p+1]_{q}^{2}}\right)\right\} & \left(\mu \leqq \eta_{1}\right) \\
\frac{[p]_{q}^{2} Q_{1}}{2 q^{p}[p+2]_{q}} & \left(\eta_{1} \leqq \mu \leqq \eta_{2}\right) \\
-\frac{[p]_{q}^{2} Q_{1}}{2 q^{p}[p+2]_{q}}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}}{2 q^{p}}\left(1-\frac{[p+2]_{q}(1+q)^{2}[p]_{q}^{2} \mu}{\left.(1+q)[p]_{q}-(1-q) q^{p}\right)[p+1]_{q}^{2}}\right)\right\} & \left(\mu \geqq \eta_{2}\right) .\end{cases}
\end{aligned}
$$

Furthermore, if $\eta_{1} \leqq \mu \leqq \eta_{3}$, then

$$
\begin{aligned}
\left|a_{p+2}-\mu a_{p+1}^{2}\right| & +\frac{2 q^{p}[p+1]_{q}^{2} Q_{1}}{[p+2]_{q}(1+q)^{2}[p]_{q}^{2} Q_{1}^{2}}\left\{1-\frac{Q_{2}}{Q_{1}}-\frac{\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}}{2 q^{p}}\right. \\
& \left.\cdot\left(1-\mu \frac{[p+2]_{q}(1+q)^{2}[p]_{q}^{2}}{\left((1+q)[p]_{q}-(1-q) q^{p}\right)[p+1]_{q}^{2}}\right)\right\}\left|a_{p+1}\right|^{2}
\end{aligned}
$$

$$
\leqq \frac{[p]_{q}^{2} Q_{1}}{2 q^{p}[p+2]_{q}}
$$

If $\eta_{3} \leqq \mu \leqq \eta_{2}$, then

$$
\begin{aligned}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right|+\frac{2 q^{p}[p+1]_{q}^{2} Q_{1}}{[p+2]_{q}(1+q)^{2}[p]_{q}^{2} Q_{1}^{2}}\left\{1+\frac{Q_{2}}{Q_{1}}+\frac{\left((1+q)[p]_{q}-(1-q) q^{p}\right) Q_{1}}{2 q^{p}}\right. \\
& \left.\quad \cdot\left(1-\mu \frac{[p+2]_{q}(1+q)^{2}[p]_{q}^{2}}{\left((1+q)[p]_{q}-(1-q) q^{p}\right)[p+1]_{q}^{2}}\right)\right\}\left|a_{p+1}\right|^{2} \\
& \quad \leqq \frac{[p]_{q}^{2} Q_{1}}{2 q^{p}[p+2]_{q}} .
\end{aligned}
$$

Putting $p=1$ in Theorem 9, we obtain the following result.

Corollary 12. Let

$$
\begin{aligned}
& \eta_{4}=\frac{\left(1+q^{2}\right) Q_{1}^{2}+2 q\left(Q_{2}-Q_{1}\right)}{[3]_{q} Q_{1}^{2}}, \\
& \eta_{5}=\frac{\left(1+q^{2}\right) Q_{1}^{2}+2 q\left(Q_{2}+Q_{1}\right)}{[3]_{q} Q_{1}^{2}}
\end{aligned}
$$

and

$$
\eta_{6}=\frac{\left(1+q^{2}\right) Q_{1}^{2}+2 q Q_{2}}{[3]_{q} Q_{1}^{2}}
$$

If the function f given by (1.1) (with $p=1$) belongs to the class $k-\mathcal{U C} \mathcal{V}_{q}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leqq \begin{cases}\frac{Q_{1}}{2 q[3]_{q}}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{[3]_{q}}{1+q^{2}}\right)\right\} & \left(\mu \leqq \eta_{4}\right) \\ \frac{Q_{1}}{2 q[3]_{q}} & \left(\eta_{4} \leqq \mu \leqq \eta_{5}\right) \\ -\frac{Q_{1}}{2 q[3]_{q}}\left\{\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{[3]_{q}}{1+q^{2}}\right)\right\} & \left(\mu \geqq \eta_{5}\right) .\end{cases}
$$

Furthermore, if $\eta_{4} \leqq \mu \leqq \eta_{6}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2 q}{[3]_{q} Q_{1}}\left\{1-\frac{Q_{2}}{Q_{1}}-\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{[3]_{q}}{1+q^{2}}\right)\right\}\left|a_{2}\right|^{2} \leqq \frac{Q_{1}}{2 q[3]_{q}}
$$

If $\eta_{3} \leqq \mu \leqq \eta_{2}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2 q}{[3]_{q} Q_{1}}\left\{1+\frac{Q_{2}}{Q_{1}}+\frac{\left(1+q^{2}\right) Q_{1}}{2 q}\left(1-\mu \frac{[3]_{q}}{1+q^{2}}\right)\right\}\left|a_{2}\right|^{2} \leqq \frac{Q_{1}}{2 q[3]_{q}}
$$

4. Concluding remarks and observations

In our present investigation, we have applied the concept of the basic (or q-) calculus and a generalized conic domain, which was introduced and studied earlier by Srivastava et al. (see, for example, $[43,50]$). By using this concept, we have defined two subclasses of normalized multivalent functions which map the open unit disk:

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

onto this generalized conic domain. We have derived a number of useful properties including (for example) the coefficient estimates and the Fekete-Szegö inequalities for each of these multivalent function classes. Our results are connected with those in several earlier works which are related to this field of Geometric Function Theory of Complex Analysis.

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas [see, for example, [48, pp. 350-351]. Moreover, as we remarked in the introductory Section 1 above, in the recently-published survey-cum-expository review article by Srivastava [42], the so-called (p, q)-calculus was exposed to be a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [42, p. 340]). This observation by Srivastava [42] will indeed apply to any attempt to produce the rather straightforward (p, q)-variations of the results which we have presented in this paper.

In conclusion, with a view mainly to encouraging and motivating further researches on applications of the basic (or $q-$) analysis and the basic (or $q-$) calculus in Geometric Function Theory of Complex Analysis along the lines of our present investigation, we choose to cite a number of recently-published works (see, for details, [25,47,51,53,56] on the Fekete-Szegö problem; see also [20-24, 27, 28,35-37, $40,44,46,49,52,55,57]$ dealing with various aspects of the usages of the q-derivative operator and some other operators in Geometric Function Theory of Complex Analysis). Indeed, as it is expected, each of these publications contains references to many earlier works which would offer further incentive and motivation for considering some of these worthwhile lines of future researches.

Conflicts of interest:

The authors declare no conflicts of interest.

References

1. M. H. Annaby, Z. S. Mansour, q-Fractional calculus and equations, Springer-Verlag, Berlin, Heidelberg, 2012.
2. M. K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc., 25 (1988), 53-66.
3. M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci., 10 (1987), 733-744.
4. M. K. Aouf, H. E. Darwish, G. S. Sălăgean, On a generalization of starlike functions with negative coefficients, Mathematica (Cluj), 43 (2001), 3-10.
5. M. K. Aouf, H. M. Hossen, H. M. Srivastava, Some families of multivalent functions, Comput. Math. Appl., 39 (2000), 39-48.
6. M. K. Aouf, T. M. Seoudy, Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM), 113 (2019), 1279-1288.
7. M. K. Aouf, T. M. Seoudy, Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh operator, Constr. Math. Anal., 3 (2020), 3644.
8. T. Bulboacă, Differential subordinations and superordinations: Recent results, House of Scientific Book Publishers, Cluj-Napoca, 2005.
9. P. L. Duren, Univalent functions, Grundlehren der mathematischen wissenschaften, SpringerVerlag, New York, 1983.
10. G. Gasper, M. Rahman, Basic hypergeometric series, Second edition, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, London and New York, 2004.
11. S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Certain subclass of analytic functions related with conic domains and associated with q-differential operator, AIMS Mathematics, 2 (2017), 622-634.
12. M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84.
13. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
14. F. H. Jackson, q-Difference equations, Am. J. Math., 32 (1910), 305-314.
15. V. G. Kac, P. Cheung, Quantum calculus, Springer-Verlag, Berlin, Heidelberg, New York, 2002.
16. S. Kanas, Coefficient estimates in subclasses of the Carathéodory class related to conical domains, Acta Math. Univ. Comenian., 75 (2005), 149-161.
17. S. Kanas, H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., 9 (2000), 121-132.
18. S. Kanas, A. Wiśniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336.
19. S. Kanas, A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647-658.
20. B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-derivatives, Mathematics, 8 (2020), 1-12.
21. B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent q-starlike functions, Maejo Internat. J. Sci. Technol., 15 (2021)), 61-72.
22. B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 1-18.
23. B. Khan, H. M. Srivastava, M.Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Mathematicis, 6 (2021), 1110-1125.
24. Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
25. B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-toconvex functions with respect to convex functions, Publ. Inst. Math. (Beograd) (Nouvelle Sér.), 101 (2017), 143-149.
26. W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis (Tianjin, 19-23 June 1992) (Z. Li, F.-Y. Ren, L. Yang, S.-Y. Zhang, Editors), Conference Proceedings and Lecture Notes in Analysis, Vol. I, International Press, Cambridge, Massachusetts, 1994, 157-169.
27. S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative, J. Funct. Space., 2018 (2018), 1-13.
28. S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), 1-14.
29. M. S. Marouf, A subclass of multivalent uniformly convex functions associated with DziokSrivastava linear operator, Int.. J. Math. Analysis, 3 (2009), 1087-1100.
30. S. S. Miller, P. T. Mocanu, Differential subordination: Theory and applications, CRC Press, 2000.
31. K. I. Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629-635.
32. S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59 (1985), 385-402.
33. P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in q calculus, Appl. Anal. Discr. Math., 1 (2007), 311-323.
34. C. Ramachandran, T. Soupramanien, B. A. Frasin, New subclasses of analytic functions associated with q-difference operator, Eur. J. Pure Appl. Math., 10 (2017), 348-362.
35. M. Raza, H. M. Srivastava, M. Arif, K. Ahmad, Coefficient estimates for a certain family of analytic functions involving a q-derivative operator, Ramanujan J., 54 (2021), 501-519.
36. M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, J. Inequal. Appl., 2020 (2020), 1-17.
37. M. S. U. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions, AIMS Mathematics, 6 (2021), 1110-1125.
38. T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal., 2014 (2014), 1-7.
39. T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (2016), 135-145.
40. L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 1-12.
41. H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions, Fractional Calculus, and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989, 329-354.
42. H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344.
43. H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1-15.
44. H. M. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator, AIMS Mathematics, $\mathbf{6}$ (2021), 5869-5885.
45. H. M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012.
46. H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q convolution, AIMS Mathematics, 5 (2020), 7087-7106.
47. H. M. Srivastava, S. Hussain, A. Raziq, M. Raza, The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math., 34 (2018), 103-113.
48. H. M. Srivastava, P. W. Karlsson, Multiple gaussian hypergeometric series, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985.
49. H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511-526.
50. H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, Generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 23252346.
51. H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 1-18.
52. H. M. Srivastava, B. Khan, Nazar Khan, M. Tahir, S. Ahmad, Nasir Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., 167 (2021), 1-16.
53. H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-toconvex functions, Complex Variables Theory Appl., 44 (2001), 145-163.
54. H. M. Srivastava, A. O. Mostafa, M. K. Aouf, H. M. Zayed, Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489-509.
55. H. M. Srivastava, G. Murugusundaramoorthy, S. M. El-Deeb, Faber polynomial coefficient estmates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103-118.
56. H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM), 113 (2019), 3563-3584.
57. H. Tang, Q. Khan, M. Arif, M. Raza, G. Srivastava, S. U. Rehman, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
58. H. E. Ö. Uçar, Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276 (2016), 122-126.
59. H. M. Zayed, M. K. Aouf, Subclasses of analytic functions of complex order associated with q -Mittag-Leffler function, J. Egyptian Math. Soc., 26 (2018), 278-286.
60. X. L. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of q-starlike functions associated with generalized conic domain, AIMS Mathematics, 5 (2020), 4830-4848.

AIMS Press
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

