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1. Introduction

In [1], the authors introduced the following Stefan problem which is governed by a non-classical
and nonlinear heat equation with heat source F, thermal coefficients which depend on the temperature
and a convective boundary condition at fixed face x = 0 (see also [2–4]):

ρ(T )c(T )∂T
∂t = ∂

∂x

(
k(T )∂T

∂x

)
− F(Z(t), t), 0 < x < s(t), t > 0,

k (T (0, t)) ∂T (0,t)
∂x = h

√
t
(T (0, t) − T ∗) , h > 0,

T (s(t), t) = Tm,

k (T (s(t), t)) ∂T (s(t),t)
∂x = −ρ0ls′(t),
s(0) = 0,

(1.1)

where ρ(T ), c(T ) and k(T ) are the density of the material, its specific heat, and its thermal conductivity,
respectively; Tm is the phase-change temperature, ρ0 > 0 its the constant density of mass at the melting
temperature; l > 0 is the latent heat of fusion by unity of mass and s(t) is the position of phase change
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location. Also, F depends on the evolution of the heat flux at the boundary x = 0 and assumed that

F(Z(t), t) = F(Z(t), t) = F
(
∂T (0, t)
∂x

, t
)

=
λ
√

t

∂T (0, t)
∂x

, λ > 0. (1.2)

From the second equation in Pr.(1.1), we see that Tx(0, t) < 0. This can be physically justified since F
in this particular study represents a heat sink due to “melting ice/water phase change”.

To obtain a similarity solution, we introduce the new independent variable

ξ =
x

2
√
α0t

(1.3)

and the dimension-free dependent variable, defined by

f (ξ) =
T (x, t) − T ∗

Tm − T ∗
. (1.4)

In terms of these new variables, the problem takes the following nonlinear boundary value problem [1]
[
L( f (ξ)) f ′(ξ)

]′
+ 2ξN( f (ξ)) f ′(ξ) = A f ′(0), 0 < ξ < ξ0,

L( f (0)) f ′(0) = p f (0),
f (ξ0) = 1,

f ′(ξ0) = Mξ0,

(1.5)

where the nonlinear terms L( f (ξ)) and N( f (ξ)) are given by

L( f (ξ)) =
k ((Tm − T ∗) f (ξ) + T ∗)

k0
, N( f (ξ)) =

ρc ((Tm − T ∗) f (ξ) + T ∗)
ρ0c0

(1.6)

and

A =
2λ

ρ0c0k0
, p =

2
√
α0h0

k0
> 0, M =

2k0

kTmS te
(1.7)

with S te =
c(T ∗−Tm)

l > 0 (Stefan number) and the system parameters k0, ρ0, c0 and α0 = k0
ρ0c0

are the
reference thermal conductivity, density of mass, specific heat and thermal diffusivity, respectively.

Recently, the authors [1] proved the existence and uniqueness of the similarity solution of Pr.(1.1)
under the restrictive Lipschitz conditions on the parameters and using techniques of functional analysis.

In this paper, explicit solutions of Pr.(1.1) are obtained when the thermal conductivity and specific
heat are linear in temperature. Also, existence solutions of similarity-type are proved for this non-
classical Stefan problem with nonlinear thermal conductivity and specific heat by using a technique
based on lower and upper bounds of the solution. Our approach is simpler than the approach used
in [1] and is more accessible to readers since it doesn’t assume Lipschitz conditions on the parameters
and doesn’t involve tools of functional analysis.

2. Linear conductivity

We consider the case where thermal conductivity and specific heat are linear in temperature [2–4].
This case has been largely discussed in the literature since it provides a good approximation of the
actual values for some material such as water (see for example [5–9]). We also assume that T is
continuous differentiable, which is a natural assumption.
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2.1. Case 1

Let

L( f (ξ)) =
kT ∗

k0
+

k(Tm − T ∗)
k0

f (ξ), N( f (ξ)) =
ρcT ∗

ρ0c0
+
ρc(Tm − T ∗)

ρ0c0
f (ξ). (2.1)

Writing the nonlinear second-order ODE of Pr.(1.5) in a simple form

[
(α + δ f (ξ)) f ′(ξ)

]′
+ 2ξ(β + γ f (ξ)) f ′(ξ) = A f ′(0), 0 < ξ < ξ0, (2.2)

where α = kT ∗
k0
, β =

ρcT ∗

ρ0c0
, δ =

k(Tm−T ∗)
k0

and γ =
ρc(Tm−T ∗)

ρ0c0
.

Multiplying both sides of Eq (2.2) by δγ, we obtain

δ
[
(αγ + δγ f (ξ)) f ′(ξ)

]′
+ 2γξ(βδ + δγ f (ξ)) f ′(ξ) = A f ′(0)δγ, 0 < ξ < ξ0, (2.3)

or [
(αγ + δγ f (ξ)) f ′(ξ)

]′
+ 2

γ

δ
ξ(βδ + δγ f (ξ)) f ′(ξ) = A f ′(0)γ, 0 < ξ < ξ0. (2.4)

Since αγ = βδ = kT ∗
k0

ρc(Tm−T ∗)
ρ0c0

. Then Eq (2.4) can be written as

[
(a + b f (ξ)) f ′(ξ)

]′
+ 2

γ

δ
ξ(a + b f (ξ)) f ′(ξ) = A f ′(0)γ, 0 < ξ < ξ0, (2.5)

where a = αγ and b = δγ.

By the change of variable
z(ξ) = (a + b f (ξ)) f ′(ξ). (2.6)

Eq (2.5) becomes

z′(ξ) + 2
γ

δ
ξz(ξ) = A f ′(0)γ. (2.7)

The solution of this linear first-order equation is given by

z(ξ) = A f ′(0)γϕ(ξ) exp
(
−
γ

δ
ξ2

)
+ z(0) exp

(
−
γ

δ
ξ2

)
, (2.8)

where ϕ(ξ) is the imaginary error function, that is ϕ(ξ) =
∫ ξ

0
exp

(
γ

δ
t2
)

dt and z(0) can be determined by
using z(0) = (a + b f (0)) f ′(0) = γ(α + δ f (0)) f ′(0) and the first initial condition of Pr.(1.5) from which
we can readily obtain

z(0) = γp f (0). (2.9)

Hence

z(ξ) = A f ′(0)γϕ(ξ) exp
(
−
γ

δ
ξ2

)
+ γp f (0) exp

(
−
γ

δ
ξ2

)
. (2.10)

AIMS Mathematics Volume 6, Issue 6, 6569–6579.



6572

From Eq (2.6), we have

(a + b f (ξ))2 = 2b
∫ ξ

0
z(t)dt + (a + b f (0))2. (2.11)

Substituting z(ξ) into this equation, we obtain

a + b f (ξ) =

√√√
2bAγ f ′(0)

∫ ξ

0
ϕ(t) exp

(
−
γ

δ
t2
)

dt + 2bγp f (0)

√
δ

γ
erf

(√
γ

δ
ξ

)
+ (a + b f (0))2. (2.12)

Employing now the two boundary conditions of Pr.(1.5): f (ξ0) = 1 and f ′(ξ0) = Mξ0 to obtain

z(ξ0) = (a + b f (ξ0)) f ′(ξ0). (2.13)

Thus, the condition on ξ0 is given by

(a + b)Mξ0 =
[
Aγ f ′(0)ϕ(ξ0) + γp f (0)

]
exp

(
−
γ

δ
ξ2

0

)
. (2.14)

Thus

Theorem 2.1. The exact solution of Pr. (1.5) is given by

f (ξ; ξ0) =
1
b

√√√
2bAγ f ′(0)

∫ ξ

0
ϕ(t) exp

(
−
γ

δ
t2
)

dt + 2bγp f (0)

√
δ

γ
erf

(√
γ

δ
ξ

)
+ (a + b f (0))2 −

a
b
(2.15)

subject to the condition (2.14).

Remark 2.2. From f (ξ) =
T (x,t)−T ∗

Tm−T ∗ , it can be readily seen that 0 < f (0) < 1. Furthermore, for arbitrary
ε > 0, it can also be shown using classical chain rule on this relation with ξ = x

2
√
α0t that

f ′(ε) =
2
√
α0t

Tm − T ∗
Tx(2

√
α0tε, t) > 0. (2.16)

This gives 0 ≤ f ′(0) =
2
√
α0t

Tm−T ∗Tx(0, t). Using the second equation in Pr.(1.1) we obtain 0 ≤ f ′(0) <
2
√
α0h

k(T (0,t)) . Therefore, from (2.14) we conclude that ξ0 > 0.

Consequently,

Theorem 2.3. The exact solution of the original Pr.(1.1) is given by

T (x, t) = (Tm − T ∗) f (ξ; ξ0) + T ∗, ξ =
x

2
√
α0t

(2.17)

subject to the condition (2.14) and the free boundary is given by s(t) = 2ξ0
√
α0t.
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2.2. Case 2

Another important case is L( f (ξ)) = 1 + δ f (ξ) and N( f (ξ)) = 1 [1]. For this case Pr.(1.5) becomes
[
(1 + δ f (ξ)) f ′(ξ)

]′
+ 2ξ f ′(ξ) = A f ′(0), 0 < ξ < ξ0,

(1 + δ f (0)) f ′(0) = p f (0),
f (ξ0) = 1,

f ′(ξ0) =
2ξ0

(1+δ)S te .

(2.18)

A result on the existence and uniqueness of solution to the nonlinear boundary value problem Pr.(2.18)
when A = 0 was proved in [8], where the solution was treated as a Generalized Modified Error.

Writing the nonlinear ODE of Pr.(2.18) as(
(1 + δ f (ξ))(1 + δ f (ξ))′

)′
+ 2ξ(1 + δ f (ξ))′ = A f ′(0)δ, 0 < ξ < ξ0. (2.19)

The transformation u(ξ) = (1 + δ f (ξ))2 leads to

u′′ + 2ξ
u′
√

u
= 2A f ′(0)δ, 0 < ξ < ξ0 (2.20)

subject to the initial-boundary conditions
u′(0) = 2p(

√
u(0) − 1),

u(ξ0) = (1 + δ)2,

u′(ξ0) =
4ξ0δ

S te .

(2.21)

2.2.1. Solutions

In the special case A = 0, Eq (2.20) is transformed to a homogeneous equation

u′′ + 2ξ
u′
√

u
= 0, 0 < ξ < ξ0. (2.22)

Consider the following transformation [9]

v = ξ
u′

u
, w = −2

ξ2

√
u
. (2.23)

Hence
dw
dξ

=
dw
dv

dv
dξ

=
dw
dv

(
u′

u
+ x

u′′

u
− x(

u′

u
)2
)

and
dw
dξ

= −4
ξ
√

u
+ ξ2 u′

u
1
√

u
. (2.24)

The substitution of these into (2.22) gives

(w − v + 1)
dw
dv

=

(
2
v
−

1
2

)
w. (2.25)

The substitution χ = w − v + 1 brings also Eq (2.25) to the Abel equation of the second kind

χχv = Φ(v)χ + Ψ(v), (2.26)

where

Φ(v) =

(
2
v
−

3
2

)
and Ψ(v) =

(
3
2
−

v
2
−

2
v

)
, (2.27)

which is in general very difficult to handle. Since the explicit solution cannot be found, then we
estimate the solution by finding upper and lower bounds of u.
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2.2.2. Upper and lower bounds of the solution

If we assume that u′(ξ) ≥ 0 then

u(0) ≤ u(ξ) ≤ u(ξ0), ξ ∈ [0, ξ0]. (2.28)

So that

2ξu′(ξ)√
u(ξ0)

≤
2ξu′(ξ)√

u(ξ)
≤

2ξu′(ξ)
√

u(0)
. (2.29)

From (2.22), we have

2ξu′(ξ)√
u(ξ0)

≤ −u′′(ξ) ≤
2ξu′(ξ)
√

u(0)
. (2.30)

Thus

2ξ
√

u(0)
≤

u′′(ξ)
u′(ξ)

≤ −
2ξ√
u(ξ0)

. (2.31)

Integrating both sides of (2.31) from ξ to ξ0, we obtain

u′(ξ0)e
ξ20√
u(ξ0) e

−
ξ2
√

u(ξ0) ≤ u′(ξ) ≤ u′(ξ0)e
ξ20√
u(0) e−

ξ2
√

u(0) . (2.32)

Integrating again (2.32) from ξ to ξ0, we obtain

u(ξ0) − u′(ξ0)e
ξ20√
u(0)

∫ ξ0

ξ

e−
η2
√

u(0) dη ≤ u(ξ) ≤ u(ξ0) − u′(ξ0)e
ξ20√
u(ξ0)

∫ ξ0

ξ

e
−

η2
√

u(ξ0) dη, (2.33)

where u(ξ0) = (1 + δ)2 and u′(ξ0) =
4ξ0δ

S te .

The constants u(0) and u′(0) can be estimated from the mixed condition u′(0) = 2p(
√

u(0) − 1) and
(2.32) (or (2.33)) to find

4ξ0δ

S te
e

ξ20
1+δ ≤ u′(0) ≤

4ξ0δ

S te
e

ξ20√
u(0) . (2.34)

The case u′(ξ) ≤ 0 follows in a similar fashion.
Based on this, and in view of the condition u′(0) = 2p(

√
u(0) − 1), we have

Lemma 2.4. 1). If A = 0 and u′(ξ) ≥ 0, ξ ∈ [0, ξ0], then there is at least one solution u(ξ) of Pr.(2.20)
and (2.21) such that

(1 + δ)2 −
4ξ0δ

S te
e

ξ20√
u(0)

∫ ξ0

ξ

e−
η2
√

u(0) dη ≤ u(ξ) ≤ (1 + δ)2 −
4ξ0δ

S te
e

ξ20
1+δ

∫ ξ0

ξ

e−
η2

1+δ dη (2.35)

subject to the following conditions

u′(0) ≥
4ξ0δ

S te
e

ξ20
1+δ and u′(0)e

−
ξ20

u′(0)
2p +1
≤

4ξ0δ

S te
. (2.36)
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2). If A = 0 and u′(ξ) ≤ 0, ξ ∈ [0, ξ0], then there is at least one solution u(ξ) of Pr.(2.20) and (2.21)
such that

(1 + δ)2 −
4ξ0δ

S te
e

ξ20
1+δ

∫ ξ0

ξ

e−
η2

1+δ dη ≤ u(ξ) ≤ (1 + δ)2 −
4ξ0δ

S te
e

ξ20√
u(0)

∫ ξ0

ξ

e−
η2
√

u(0) dη (2.37)

subject to the following conditions

u′(0) ≤
4ξ0δ

S te
e

ξ20
1+δ and u′(0)e

−
ξ20

u′(0)
2p +1
≥

4ξ0δ

S te
. (2.38)

3. Nonlinear conductivity

Let the thermal conductivity k(θ) given by k(θ) =
ρ0c0

(a+bθ)2 (see [10]) for a list of references that
considered this case.
Thus

L( f (ξ)) =
k ( f (ξ))

k0
=

ρ0c0

k0(a + b f (ξ))2 , N( f (ξ)) = k∗, (3.1)

where a, b, k∗ are positive constants. Hence the nonlinear ODE of Pr.(1.5) can be written as(
ρ0c0

k0(a + b f (ξ))2 f ′(ξ)
)′

+ 2k∗ξ f ′(ξ) = A f ′(0), 0 < ξ < ξ0 (3.2)

or in the equivalent form

k1

(
(a + b f (ξ))′

(a + b f (ξ))2

)′
+ 2k2ξ(a + b f (ξ))′ = A f ′(0), 0 < ξ < ξ0, (3.3)

where k1 =
ρ0c0
k0b and k2 = k∗

b .

The change of variable z(ξ) = a + b f (ξ) leads to an equation of the form

k1

(
z′(ξ)
z2(ξ)

)′
+ 2k2ξz′(ξ) = A f ′(0), 0 < ξ < ξ0. (3.4)

In turn, Eq (3.4) can be reduced, by the introduction of the new independent variable u(ξ) = 1
z(ξ) , where

u′(ξ) = −
z′(ξ)
z2(ξ) and z′(ξ) = −

u′(ξ)
u2(ξ) to the following form

k1u′′(ξ) + 2k2ξ
u′(ξ)
u2(ξ)

= −A f ′(0), 0 < ξ < ξ0. (3.5)

The case A = 0, brings Eq (3.5) to the simpler form

u′′ + 2
k2

k1
ξ

u′

u2 = 0, 0 < ξ < ξ0. (3.6)
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3.1. Solutions

Consider now the following transformation

v = ξ
u′

u
, w = −2

ξ2

u2 . (3.7)

A simple computation leads to

dw
dξ

=
dw
dv

dv
dξ

=
dw
dv

(
u′

u
+ x

u′′

u
− x(

u′

u
)2
)

and
dw
dξ

= −4
ξ

u2 + 4ξ2 u′

u3 . (3.8)

The substitution of these into (3.6) gives

(k1(v − 1) − k2w)
dw
dv

+ 2k1w
(
1
v
− 1

)
= 0. (3.9)

The following transformation χ = w − v + 1 reduces Eq (3.9) into the known Abel equation of the
second kind (2.26), where Φ(v) = k1 − 2( 1

v − 1) and Ψ(v) = −2k2
1

(v−1)2

v , which is in general very difficult
to handle. So that, we will find the lower and upper bounds of the solution u(x).

3.2. Upper and lower bounds of the solution

Proceeding as before, we obtain

Lemma 3.1. 1). If u′(ξ) ≥ 0, ξ ∈ [0, ξ0] then there is at least one solution u(ξ)) of Eq (3.6) subject to
(2.21) such that

(1 + δ)2 −
4ξ0δ

S te
e

k2ξ
2
0

k1u2(0)

∫ ξ0

ξ

e
−

k2η
2

k1u2(0) dη ≤ u(ξ) ≤ (1 + δ)2 −
4ξ0δ

S te
e

k2ξ
2
0

k1(1+δ)4

∫ ξ0

ξ

e
−

k2η
2

k1(1+δ)4 dη (3.10)

subject to the following conditions

u′(0) ≥
4ξ0δ

S te
e

k2ξ
2
0

k1(1+δ)4 and u′(0)e
−

k2ξ
2
0

k1( u′(0)
2p +1)4

≤
4ξ0δ

S te
. (3.11)

2). If u′(ξ) ≤ 0, ξ ∈ [0, ξ0] then there is at least one solution u(ξ)) of Eq (3.6) subject to (2.21) such
that

(1 + δ)2 −
4ξ0δ

S te
e

k2ξ
2
0

k1(1+δ)4

∫ ξ0

ξ

e
−

k2η
2

k1(1+δ)4 dη ≤ u(ξ) ≤ (1 + δ)2 −
4ξ0δ

S te
e

k2ξ
2
0

k1u2(0)

∫ ξ0

ξ

e
−

k2η
2

k1u2(0) dη (3.12)

subject to the following conditions

u′(0) ≤
4ξ0δ

S te
e

k2ξ
2
0

k1(1+δ)4 and u′(0)e
−

k2ξ
2
0

k1( u′(0)
2p +1)4

≥
4ξ0δ

S te
. (3.13)
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4. The general case: L( f (ξ)) and N( f (ξ)) are nonlinear

Rewrite the general nonlinear equation[
L( f (ξ)) f ′(ξ)

]′
+ 2ξN( f (ξ)) f ′(ξ) = A f ′(0), 0 < ξ < ξ0 (4.1)

in the form [
L( f (ξ)) f ′(ξ)

]′
+ 2ξ

N( f (ξ))
L( f (ξ))

[
L( f (ξ)) f ′(ξ)

]
= A f ′(0), 0 < ξ < ξ0. (4.2)

Let F(ξ) = L( f (ξ)) f ′(ξ). Thus

F′(ξ) + 2ξ
N( f (ξ))
L( f (ξ))

F(ξ) = A f ′(0), 0 < ξ < ξ0. (4.3)

Multiplying both sides of Eq (4.3) by exp
(
2
∫ ξ

0
ηN( f (η))
L( f (η)) dη

)
, we obtain[

F(ξ) exp
(
2
∫ ξ

0

N( f (η))
L( f (η))

dη
)]′

= A f ′(0) exp
(
2
∫ ξ

0

ηN( f (η))
L( f (η))

dη
)
. (4.4)

Thus

F(ξ) exp
(
2
∫ ξ

0

ηN( f (η))
L( f (η))

dη
)

= A f ′(0)
∫ ξ

0
exp

(
2
∫ µ

0

ηN( f (η))
L( f (η))

dη
)

dµ + C, (4.5)

where C is a constant of integration and can be found from the condition F(0) = L( f (0)) f ′(0) = p f (0),
that is C = p f (0).

Hence f (ξ) can be immediately expressed by

f (ξ) = f (0) + p f (0)
∫ ξ

0

exp
(
−2

∫ µ

0
ηN( f (η))
L( f (η)) dη

)
L( f (µ))

dµ

+A f ′(0)
∫ ξ

0

exp
(
−2

∫ µ

0
ηN( f (η))
L( f (η)) dη

)
L( f (µ))

∫ µ

0
exp

(
2
∫ θ

0

θN( f (θ))
L( f (θ))

dθ
)

dµ. (4.6)

If we assume that

0 < Nm ≤ N( f (η)) ≤ NM and 0 < Lm ≤ L( f (η)) ≤ LM. (4.7)

Then a simple computation leads to

1
LM

∫ ξ

0
exp

(
−

NM

Lm
η2

)
dη ≤

∫ ξ

0

exp
(
−2

∫ µ

0
ηN( f (η))
L( f (η)) dη

)
L( f (µ))

dµ ≤
1

Lm

∫ ξ

0
exp

(
−

Nm

LM
η2

)
dη (4.8)

and ∫ µ

0
exp

(
Nm

LM
θ2

)
dθ ≤

∫ ξ

0
exp

(
2
∫ µ

0

θN( f (θ))
L( f (θ))

dθ
)

dθ ≤
∫ µ

0
exp

(
NM

Lm
θ2

)
dθ, (4.9)

where
∫ ξ

0
exp

(
−

Nm
LM
η2

)
dη =

√
πLM

2
√

Nm
erf

( √
Nm

Lm
√

LM
ξ
)
. Based on this and in view of the boundary conditions

f (ξ0) = 1 and f ′(ξ0) = Mξ0, we have
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Theorem 4.1. If the conditions (4.7) are satisfied, then there exists at least one solution f (ξ) of Pr.(1.5)
such that

f1(ξ) ≤ f (ξ) ≤ f2(ξ), 0 < ξ < ξ0, (4.10)

where

f2(ξ) = f (0) + p
f (0)
Lm

√
πLM

2
√

Nm
erf

( √
Nm
√

LM
ξ

)
+

A f ′(0)
Lm

∫ ξ

0
exp

(
−

Nm

LM
η2

) ∫ η

0
exp

(
NM

Lm
θ2

)
dθdη (4.11)

and

f1(ξ) = f (0) + p
f (0)
LM

√
πLm

2
√

NM
erf

( √
NM
√

Lm
ξ

)
+

A f ′(0)
LM

∫ ξ

0
exp

(
−

NM

Lm
η2

) ∫ η

0
exp

(
Nm

LM
θ2

)
dθdη (4.12)

subject to the following conditions

f1(ξ0) ≤ f (ξ0) = 1 ≤ f2(ξ0) (4.13)

and

f ′1(ξ0) ≤ f ′(ξ0) = Mξ0 ≤ f ′2(ξ0). (4.14)
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