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1. Introduction

Complex networks have been observed in a wide range of application domains, such as neural
networks [1], social interacting species [2], multi-agent systems [3], and so forth. Since the nodes in a
complex network are interconnected, communicating and interacting with each other, it is not
surprisingly that the collective behavior (e.g., synchronization and consensus) widely exists in
complex networks [4–6]. During the past decades, the studies of synchronization have been
extensively explored, and many types of synchronization phenomena have been proposed such as
complete synchronization [7], partial synchronization [8–10], lag synchronization [11, 12],
exponential synchronization [13, 14]. Recently the studies of consensus dynamics with additive
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stochastic disturbances have attracted increasing attention where the consensus (named as network
coherence) was characterized by the spectra of Laplacian matrix [15, 16]. It has been already shown
that the coupling needed to realize complete synchronization is inversely proportional to the nonzero
eigenvalue of the coupling graph [17]. And synchronization patterns can be easily detected based on
the eigenvalues of the original networks in networks of chaotic systems with time-delayed
couplings [18].

In this paper, we consider partial synchronization of linearly coupled complex networks, which is
also called cluster synchronization [9, 10]. Roughly speaking, partial synchronization is the
phenomenon in which the nodes split into several communities, where the nodes synchronize with
each other in the same community, however synchronization doesn’t occur among different
communities. Partial synchronization widely exists in biological systems, cyber physical systems,
social Systems, and so on. On the one hand, it is obvious that there is a close interplay between partial
synchronization and network topologies. Therefore, various control schemes depending heavily on
community structures of the network topologies were proposed to realize partial synchronization.
However, partial synchronization is also observed in real networks without cluster structures, and
many researches have been carried out to study this topic [19]. Recently, an effective adaptive
aperiodically intermittent pinning control scheme was developed to realize partial synchronization for
colored community networks [20].

Recent studies have shown that partial synchronization can be realized via two schemes. The first
scheme is partial synchronization induced by the intrinsic structure and mutual couplings of the
network. Ma et al. observed that the nodes in the same community only have cooperative
connections [21]. Later, Wu and Chen showed geometrically that partial synchronization amounts to
the global attractiveness of the corresponding invariant synchronization manifold, and they obtained
several meaningful criteria through a series of topological analysis on the invariant synchronization
manifold [10]. Stuer et al. have shown that certain symmetries of network topology could identify
partial synchronization manifolds, and sufficient conditions for its asymptotically stability were also
given in networks consisting of diffusive time-delay coupled oscillatory units [22]. By developing a
modified model with inter-cluster co-competition balance, Zhang et al. have obtained a criterion for
partial synchronization, and proved that the corresponding cluster synchronous pattern formation is
robust [8]. Note that partial synchronization can be realized in case that the coupling matrix is
constructed reasonably and effectively.

For the second scheme, a recent research realized partial synchronization in a linearly coupled
network via a generalized pinning control strategy [23]. Later, it was proposed and rigorously proved
that partial synchronization can also be realized by adding some external controllers on just partial
clusters [24]. By using an adaptive pinning-control scheme including adaptive strategy on both
coupling strengths and feedback gains, it was shown that a network can realize partial synchronization
under weak coupling strengths and small feedback gains [25]. Recently, the partial synchronization
induced external control has attracted increasing attention [26–28].

Motivated by the above discussions, this paper further focuses on partial synchronization induced
by the intrinsic structure and mutual couplings of the network. To the best of our knowledge, the
global information of the network topology is a necessary condition in past studies on partial
synchronization. In the coming era of big data, complex networks in reality are composed of massive
nodes and edges. The global data of the network topology is usually very large, which brings about
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great difficulties in data analysis. In order to simplify the criterion on partial synchronization of
complex networks, we decompose the whole network into several communities, and establish a brief
criterion by neglecting the inter-community couplings. By employing Lyapunov stability theory and
linear matrix inequalities, we prove that appropriate intra-community couplings are also sufficient to
realize partial synchronization. The novel criterion doesn’t depend on the inter-community couplings,
which greatly reduces the amount of calculation for the data analysis. Furthermore, we also make a
comparison with one of previous classical criteria through rigorous theoretical analysis. As the result
of neglecting the inter-community couplings, the obtained threshold is larger than or equal to that
obtained by the classical criterion. However, the obtained criterion drastically reduces the matrix of
network topology. It should be flexible, convenient and efficient in practice, especially for large-scale
networks with a mass of nodes.

The outline of this paper is as follows. In Section 2, we provide some preliminary definitions,
assumptions, and existing theoretical results on partial synchronization. In Section 3, we give a series
of stability analysis on the partial synchronization manifold, and make some rigorous theoretical
comparisons with the previous classical criteria. In Section 4, some numerical examples are presented
to verify our theoretical results. Finally, Section 5 concludes the paper.

2. Preliminaries

In this section, we introduce some basic concepts and some theoretical results on partial
synchronization.

Suppose a general network consisting of N dynamical nodes labeled as 1, . . . ,N, which are divided
into n communities of various sizes G1 = {1, . . . ,N1},G2 = {N1+1, . . . ,N2}, · · · ,Gn = {Nn−1+1, . . . ,N}.
For convenience, we denote N0 = 0, Nn = N, np = Np − Np−1, n = {1, . . . , n}, and N = {1, . . . ,N}.
Then, the community Gp = {Np−1 + 1, . . . ,Np} contains np nodes for any p ∈ n.

Consider the following dynamical network, which is composed of ordinary differential equations
coupled linearly and symmetrically,

ẋi(t) = f (xi(t), t) + ε

n∑
p=1

∑
j∈Gp

ci jΓx j(t), (2.1)

where xi(t) = (x1
i (t), . . . , xm

i (t))> is the state vector of the node i, m is the dimension of xi(t), f :
Rm× [0,+∞)→ Rm is a continuous function, ε > 0 is the coupling strength, C = (ci j)N×N is the network
adjacency matrix with ci j = c ji ≥ 0 for i , j,

∑N
j=1 ci j = 0, and Γ = diag(γ1, . . . , γm) is a nonzero matrix

with γk ≥ 0, i, j ∈ N, k ∈ m = {1, . . . ,m}. Here, the symmetric matrix C represents the topological
structure of the network, and the diagonal matrix Γ represents the inner coupling components of each
node.

It has been shown that the partial synchronization of the network (2.1) is equivalent to the global
attractiveness of the corresponding invariant manifold corresponding to the partition G = {G1, . . . ,Gn}

of the dynamical network (2.1).

Definition 2.1. The set

S =

{
(x>1 , . . . , x

>
N)> ∈ RmN

∣∣∣∣ xi = x j, i, j ∈ Gp, p ∈ n
}
.

is called the partial synchronization manifold correspond to the partition G = {G1, . . . ,Gn}.
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Definition 2.2. The partial synchronization manifold S is globally attractive for the system (2.1), or,
partial synchronization corresponding to the partition G = {G1, . . . ,Gn} occurs, if

lim
t→+∞

||xi(t) − x j(t)|| = 0

holds for arbitrary initial values and for all i, j ∈ Gp, p ∈ n.

Here, as a generalization of the global network synchronization, it is not specifically required the
states in different communities to be eventually separated from each other, namely, ||xi(t) − x j(t)|| ≥ 0
as t → +∞ for any xi ∈ Gp and x j ∈ Gq with p , q.

For convenience, we rewrite the coupling weight matrix C to be in a block form based on the
partition G as follows

C =


C11 C12 · · · C1n

C21 C22 · · · C2n

· · · · · · · · · · · ·

Cn1 Cn2 · · · Cnn

 . (2.2)

It has been shown that the partial synchronous manifold S of the network (2.1) is invariant if and
only if every sub-matrix Cpq in the form (2.2) has equal row-sums for all p, q ∈ n [10]. In the study
of partial synchronization of complex networks, it is always supposed that the corresponding partial
synchronization manifolds are invariant manifolds. Therefore, the following hypotheses were usually
supposed to hold in previous works.

(H1) The partial synchronization manifold S is an invariant manifold of the dynamical network (2.1).
(H2) Let P = diag(p1, . . . , pm) be a positive definite diagonal matrix, ∆ = diag(δ1, . . . , δm) be a diagonal

matrix, and EN ∈ RN×N be the identity matrix. There exists a constant ε > 0 such that the
inequality

(u − v)>P{[ f (u, t) − f (v, t)] − ∆(u − v)} ≤ −ε(u − v)>(u − v)

holds for any u, v ∈ Rm and t ≥ 0.

With the help of the preliminaries mentioned above, a recent research proposed the following valuable
criterion about the occurrence of partial synchronization with increasing coupling strength.

Lemma 2.3. [10, Theorem 2] Let hypotheses (H1) and (H2) be satisfied. Assume that dynamical
network (2.1) satisfies

(H3) the inequality
εγkλ

S̄
max(C) + δk ≤ 0, k ∈ m, (2.3)

holds, where λS̄max(C) = max{λ ∈ σ(C) : ΞC(λ) * S}, σ(C) is the set of all eigenvalues of C, and
ΞC(λ) is the eigenspace of C corresponding to eigenvalue λ.

Then the synchronization manifold S is globally attractive for dynamical network (2.1).

This criterion investigated the relationship between the partial synchronization problem and the
coupling matrix of the whole network, which implies that partial synchronization can be realized by
increasing coupling strength. However, it is very difficult to calculate the eigenvalue of the whole
network matrix λS̄max(C), especially the eigenspace ΞC(λ) corresponding to each eigenvalue. In the next
section, we carry out another criterion to simplify the complicated calculation questions, which may
have certain theoretical value and practical significance.
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3. Main results

3.1. A brief criterion on partial synchronization

The results in Lemma 2.3 focused on the topology of the whole network, the size of which may
be very large and it is tedious to obtain the parameter λS̄max(C). In this section, we point out that the
results on partial synchronization can be ensured merely by the intra-community connections. That is
to say, it is irrelevant to the inter-community couplings. Therefore, great amounts of calculations on
the topology of the whole network could be avoided, and a brief criterion is obtained as follows.

Theorem 3.1. Let hypotheses (H1) and (H2) hold. Suppose that dynamical network (2.1) satisfies

(H′3) the inequality
εγkλ2(C̃p) + δk ≤ 0, k ∈ m (3.1)

holds for any given p ∈ n, where C̃p = (c̃i j)np×np , i, j ∈ Gp,

c̃i j =

{
ci j, i , j,
−

∑
k∈Gp,k,i cik, i = j,

and λ2(C̃p) is the second-largest eigenvalue of the matrix C̃p.

Then the synchronization manifold S is globally attractive for dynamical network (2.1).

Similar to the proof of Lemma 2.3, we can prove Theorem 3.1 based on the geometrical analysis
of the partial synchronization manifold. Different slightly from the proof of Lemma 2.3, we should
selectively analyze the intra-community connections and neglect the analysis on the inter-community
couplings. Notice that the parameter λS̄max(C) represents the adjacency matrix of the whole network, the
parameters λ2(C̃p), p ∈ n, should be easier to calculate. Therefore, Theorem 3.1 is more convenient in
practical applications, especially for networks consisting of a great mount of nodes.
Remark. In the coming era of big data, the global information of the network topology is usually
very large, which is a necessary condition in the previous results on partial synchronization. In order
to explore a more concise and more convenient criterion, Theorem 3.1 builds a novel criterion
independent of the inter-community connections. This criterion has shown that partial
synchronization can be ensured only by the intra-community connections, and the information of
inter-community connections is not necessary. Therefore, it may provide more convenience in
reducing network sizes in practice, especially for networks consisting of a great amount of nodes.

3.2. Comparisons between Lemma 2.3 and Theorem 3.1

It is noted that Theorem 3.1 provides us a novel index of partial synchronizability by ignoring inter-
community connections, and Lemma 2.3 was derived based on the analysis of the adjacency matrix
of the whole network. In this subsection, a rigorous theoretical proof is carried out to show that the
threshold obtained by Lemma 2.3 is more accurate than the one obtained by Theorem 3.1, and the
conditions of Theorem 3.1 are much weaker than that of Lemma 2.3.

Theorem 3.2. Assume that hypotheses (H1) and (H2) are satisfied. Then the following conclusions
hold.
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(i) If hypothesis (H′3) holds, then hypothesis (H3) is satisfied.
(ii) Denote the threshold for dynamical network (2.1) to realize partial synchronization derived from

Lemma 2.3 as

ε0 =
max{δk/γk : k ∈ m}

|λS̄max(C)|
, (3.2)

and denote the one derived from Theorem 3.1 as

ε′0 =
max{δk/γk : k ∈ m}

min{|λ2(C̃p)| : p ∈ n}
. (3.3)

Then ε0 ≤ ε
′
0.

Proof. (i) Notice that inequality (3.1) holds, it is easy to see that for any up ∈ Rnp satisfying up ,

(α, α, . . . , α)> ∈ Rnp , α ∈ R, there holds

u>p (εγkC̃p + δkEnp)up ≤ 0, k ∈ m, p ∈ n,

or ∑
i∈Gp

u>i
[
εγk

∑
j∈Gp

c̃i ju j + δkui

]
≤ 0, k ∈ m, p ∈ n. (3.4)

Therefore, we conclude that for any z = (z1, . . . , zN) < S, k ∈ m, there holds

z>(εγkC + δkEN)z

= z>(εγk

N∑
j=1

c1 jz j + δkz1, · · · , εγk

N∑
j=1

cN jz j + δkzN)>

=
N∑

i=1
z>i

[
εγk

N∑
j=1

ci jz j + δkzi

]
=

n∑
p=1

∑
i∈Gp

z>i
[
εγk

n∑
q=1

∑
j∈Gq

ci jz j + δkzi

]
=

n∑
p=1

∑
i∈Gp

z>i
[
εγk

∑
j∈Gp

ci jz j + δkzi + εγk

n∑
q=1,q,p

∑
j∈Gq

ci jz j

]
.

Based on the relationship between ci j and c̃i j defined in hypothesis (H′3), we have

z>(εγkC + δkEN)z

=
n∑

p=1

∑
i∈Gp

z>i
[
εγk

∑
j∈Gp

c̃i jz j + δkzi

]
+ εγk

n∑
p=1

∑
i∈Gp

n∑
q=1,q,p

∑
j∈Gq

ci jz>i (z j − zi),

where z = (z1, . . . , zN) < S, k ∈ m. Taking into account that inequality (3.4) and z = (z1, . . . , zN) < S,
we obtain

z>(εγkC + δkEN)z

≤ εγk

n∑
p=1

∑
i∈Gp

n∑
q=1,q,p

∑
j∈Gq

ci jz>i (z j − zi)

= εγk

n−1∑
p=1

n∑
q=p+1

∑
i∈Gp

∑
j∈Gq

ci jz>i (z j − zi) + εγk

n−1∑
q=1

n∑
p=q+1

∑
i∈Gp

∑
j∈Gq

ci jz>i (z j − zi).

AIMS Mathematics Volume 6, Issue 6, 6542–6554.



6548

Renaming in the second term p by q, i by j and vice versa, and utilizing the symmetry of ci j, one gets

z>(εγkC + δkEN)z

= εγk

n−1∑
p=1

n∑
q=p+1

∑
i∈Gp

∑
j∈Gq

ci jz>i (z j − zi) + εγk

n−1∑
p=1

n∑
q=p+1

∑
j∈Gq

∑
i∈Gp

c jiz>j (zi − z j)

= −εγk

n−1∑
p=1

n∑
q=p+1

∑
i∈Gp

∑
j∈Gq

ci j(z j − zi)>(z j − zi)

≤ 0.

Thus, one has z>(εγkC + δkEN)z ≤ 0 for any z = (z1, . . . , zN) < S. Therefore,

εγkλ
S̄
max(C) + δk ≤ 0, j ∈ m, p ∈ n.

(ii) Since the coupling weight matrix satisfies ci j = c ji ≥ 0 for i , j and
∑N

j=1 ci j = 0, it is not difficult
to see that all eigenvalues of the matrix C (or C̃p, p ∈ n) are negative except that the biggest eigenvalue
equals to zero. Combining the property with the statement (i) proved above, we can conclude that the
statement (ii) is proved. �

Theorem 3.2 gives a comparison of Lemma 2.3 and Theorem 3.1. It can be seen that no extra
conditions should be satisfied for the inter- or intra-community connections for Theorem 3.1. Because
the inter-community connections are ignored, our threshold is rougher than that of Lemma 2.3. That
is to say, our result requires higher coupling strength to realize partial synchronization. This is the
disadvantage of our result. But in many common cases, our threshold is equal to that of Lemma 2.3.
Then, the superiority of our results is shown.

As a direct conclusion of the statement (ii), it is straightforward to prove that
λS̄max(C) ≤ max{λ2(C̃p) : p ∈ n}. Then a question arises naturally: under what conditions the
parameters satisfy that λS̄max(C) = max{λ2(C̃p) : p ∈ n}? In order to answer the question mentioned
above, we carry out the next subsection.

3.3. Partial synchronization of networks consisting of identical communities

In this subsection, we will first introduce a lemma for the eigenvalues of a class of matrices with
special structures. Based on the two criteria mentioned in Lemma 2.3 and Theorem 3.1, the thresholds
for a class of networks with special structures to realize partial synchronization are deduced and
compared.

Corollary 3.3. For any matrix C,Ci ∈ Rd×d, d = N/n, define C̄i =
∑n

p=1,p,i Cp, C̄0 =
∑n

p=1 Cp, i ∈ n,
and the matrix

C =


C − C̄1 C2 · · · Cn

C1 C − C̄2 · · · Cn

· · · · · · · · · · · ·

C1 C2 · · · C − C̄n

 . (3.5)

Then the following conclusions hold.

(i) The matrix C has simple eigenvalues λ1 = 0, λ2, · · · , λd, and (n − 1)-multiple eigenvalues
λd+1, λd+2, · · · , λ2d, where λi, i = 1, 2, . . . , d, are eigenvalues of the matrix C, λd+i, i = 1, 2, . . . , d,
are eigenvalues of the matrix C − C̄0.
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(ii) In particular, if Ci = θiEd, i ∈ n, then the matrix C has simple eigenvalues λ1 = 0, λ2, · · · , λd, and
(n − 1)-multiple eigenvalues λi −

∑n
p=1 θp, i = 1, 2, . . . , d.

Proof. (i) It is direct to obtain the eigenpolynomial of the coupling matrix C, that is,

|C − λEN |

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ed C1 C2 · · · Cn

0 C − C̄1 − λEd C2 · · · Cn

0 C1 C − C̄2 − λEd · · · Cn

· · · · · · · · · · · · · · ·

0 C1 C2 · · · C − C̄n − λEd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Ed +

n∑
q=1
Cq[C − C̄0 − λEd]−1 0 · · · 0

−Ed C − C̄0 − λEd · · · 0
· · · · · · · · · · · ·

−Ed 0 · · · C − C̄0 − λEd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |C − λEd|

∣∣∣C − C̄0 − λEd

∣∣∣n−1

Therefore, the matrix C has simple eigenvalues λi and (n−1)-multiple eigenvalues λd+i, i = 1, 2, . . . , d.
(ii) In particular, if Cp = θpEd, p ∈ n, then C̄0 =

∑n
p=1 θpEd and the matrix C − C̄0 has simple

eigenvalues λd+i = λi−
∑n

p=1 θp, i ∈ n. Based on the item (i), the validity of the item (ii) is confirmed. �

The coupling weight matrix of many complex networks in real world can be rewritten as the form
of the matrix (3.5), which implies that all communities consisted in the network have the same
community sizes and the same coupling topologies. For instance, the student network in a school
consists of many identical classes, the size of each class is identical and all the students in the same
class are coupled globally. Therefore, partial synchronization of networks consisting of identical
communities is worth studying, and there may be some potential applications. Now, we consider the
problem of partial synchronization in a network with the coupling matrix (3.5). Here, we take the
intra-community connection matrix Ci = Ed, i ∈ n as a special case, which implies that the nodes in
any two different communities are one-to-one coupled, then we obtain the following theorem with the
help of Corollary 3.3.

Corollary 3.4. Consider dynamical network (2.1) with the coupling matrix (3.5), where Cp = Ed,
p ∈ n, and suppose that hypotheses (H1) and (H2) are satisfied. Then the following conclusions hold.

(i) λS̄max = max{λ2(C̃p) : p ∈ n} < 0.
(ii) Hypothesis (H′3) holds if and only if hypothesis (H3) is satisfied.

(iii) Dynamical network (2.1) realizes partial synchronization if ε ≥ ε0 = ε′0.

The proof of this theorem is not particularly difficult, and so is omitted.

4. Numerical examples

In this section, we provide several numerical examples to verify the obtained theoretical results for
partial synchronization.
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4.1. Partial synchronization in a network with different communities

Consider a complex network consisting of 9 nodes with three different communities, which is shown
in Figure 1. The network adjacency matrix is

C =



−β − 1 1 0 β 0 0 0 0 0
1 −β − 2 1 0 β 0 0 0 0
0 1 −β − 1 0 0 β 0 0 0
β 0 0 −2β − 2 1 1 β 0 0
0 β 0 1 −2β − 2 1 0 β 0
0 0 β 1 1 −2β − 2 0 0 β

0 0 0 β 0 0 −β − 1 1 0
0 0 0 0 β 0 1 −β − 2 1
0 0 0 0 0 β 0 1 −β − 1


,

where β is a nonnegative constant.

1

2

3

4

5

6

7

8

9

c
ij
=c

ji
=1 c

ij
=c

ji
=β

Figure 1. Topology structure of a complex network consisting of 9 nodes with three different
communities.

By further calculations, one obtains that the eigenvalue of the topology matrix mentioned in Lemma
2.3 is as follows

λS̄max(C) = −(3β + 4 −
√

9β2 + 4β + 4)/2 ≤ −1,

and the eigenvalue mentioned in Theorem 3.1 is max{λ2(C̃p), p = 1, 2, 3} = −1. Therefore, Theorem
3.2 holds for any β ≥ 0.

We choose the node dynamics of the network as the well-known neural networks

ẋi = −Dxi + Tg(xi) + ε

m∑
j=1

ci jHx j, i = 1, . . . ,m, (4.1)

where xi ∈ R3,D = H = E3, g(xi) = (g(x1
i ), g(x2

i ), g(x3
i ))>, g(s) = (|s + 1| − |s − 1|)/2, and

T =


1.25 −3.2 −3.2
−3.2 1.1 −4.4
−3.2 −4.4 1.0

 .
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By using Matlab LMI Control Toolbox, one derives that the matrix ∆ = 5.5685E3 satisfies condition
(H2). Taking Γ = E3 and β = 0.5, the network with randomly chosen initial conditions reaches partial
synchronization. Denote the complete synchronization error e1 = 1

9

∑9
p=1 ‖x j − x1‖ and the partial

synchronization error e2 = 1
9

∑9
p=1 ‖x j − x ĵ‖, where 1̂ = 2̂ = 3̂ = 1, 4̂ = 5̂ = 6̂ = 4 and 7̂ = 8̂ = 9̂ = 7.

The performance is shown in Figure 2, which indicates the variation of synchronization errors with
respect to the coupling strength. Based on Theorem 3.2, we calculate the coupling strength threshold
for partial synchronization ε′0 = 5.5685. By Lemma 2.3, the coupling strength threshold should be
ε0 = 4.2259.

As Figure 2 shows, the blue line denoting the errors between nodes in a same community tends to
zero when the coupling strength ε > 2. The red line denoting the errors of the whole network also tends
to zero when the coupling strength ε > 8. The evolution trends of the two lines implies that both partial
synchronization and complete synchronization are achieved. However, there is no contradiction. Based
on the definition of partial synchronization in page 3, if the network realizes complete synchronization,
the network is also considered to realize partial synchronization as a special case. Therefore, Figure 2
verifies the validity of Theorem 3.1.
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Figure 2. The variation of synchronization errors with respect to the coupling strength. The
dashed line represents the complete synchronization errors, and the solid line represents the
partial synchronization errors.

4.2. Partial synchronization in a network with identical communities

This subsection considers a complex network consisting of 9 nodes with three identical
communities, the topological structure of which is shown in Figure 3. The network adjacency matrix
is

C =



−2β − 1 1 0 β 0 0 β 0 0
1 −2β − 2 1 0 β 0 0 β 0
0 1 −2β − 1 0 0 β 0 0 β

β 0 0 −2β − 1 1 0 β 0 0
0 β 0 1 −2β − 2 1 0 β 0
0 0 β 0 1 −2β − 1 0 0 β

β 0 0 β 0 0 −2β − 1 1 0
0 β 0 0 β 0 1 −2β − 2 1
0 0 β 0 0 β 0 1 −2β − 1


,
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where β is a nonnegative constant.
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ij
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ji
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Figure 3. Topology structure of a complex network consisting of 9 nodes with three identical
communities.

It is easy to obtain that the eigenvalues of the topology matrix are listed as
λ1 = 0, λ2 = −1, λ3 = −3, λ4,5 = −3β, λ6,7 = −1 − 3β, λ8,9 = −3 − 3β. Note that the eigenvectors of
λ4,5 = −3β are (0, 0, 0,−1,−1,−1, 1, 1, 1)> and (1, 1, 1,−1,−1,−1, 0, 0, 0)>, one has
λS̄max = −1 = max{λ2(C̃p) : p ∈ n}. Time evolutions of the errors between nodes in a same community
are shown in Figure 4. It can be seen that all the nodes in the same community behave in the same
synchronous fashion. Thus, the numerical example confirms the effectiveness of corollaries 3.3 and
3.4.

0 1 2 3 4 5
−1

0

1

2

3

e i(t
)

t: 0 → 5

e1(t)
e2(t)
e3(t)

Figure 4. Time evolutions of the errors between nodes in a same community, where e1 =
1
2

∑
j=2,3
|x j − x1|,e2 = 1

2

∑
j=5,6
|x j − x4|,e3 = 1

2

∑
j=8,9
|x j − x7|.

5. Conclusions

This paper provides a new perspective to study partial synchronization of a generalized linearly
coupled network. Compared to previous results, the obtained criteria show that partial
synchronization is ensured by intra-community connections, which is in agreement with the definition
of partial synchronization intuitively. With the view of practical application, new criteria need just the
topology information of the intra-community structure, a great deal of information on the
inter-community connections has been streamlined. It is shown that new criteria could provide the

AIMS Mathematics Volume 6, Issue 6, 6542–6554.
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same threshold for partial synchronization as the previous results under certain circumstances.
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