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1. Introduction

In this paper, we present a hybrid nonlinear conjugate gradient (CG) method for solving
unconstrained optimization problems:

min
x∈Rn

f (x), (1.1)

where f : Rn → R is continuously differentiable and its gradient g(x) = ∇ f (x) is Lipschitz continuous.
CG methods are among the most prefered iterative methods for solving large-scale problems because
of their simplicity in implementation, Hessian free and less storage requirements [14]. In view of these
advantages, an encouraging number of CG methods were proposed (see, for example, [1, 5, 10, 12, 13,
31]).

The conjugate gradient method for solving (1.1) generates a sequence {xk} via the iterative formula

xk+1 = xk + sk, sk = αkdk, k = 0, 1, . . . , (1.2)

where dk is the search direction defined by

dk :=

−gk, if k = 0,
−gk + βkdk−1, if k > 0,

(1.3)

and for descent methods, dk is usually required to satisfy the sufficient descent property, if there exists
a constant c > 0 such that for all k

gT
k dk ≤ −c‖gk‖

2. (1.4)

The scalar αk > 0 is the step-size determined by a suitable line search rule, and βk is the conjugate
gradient parameter that characterizes different type of conjugate gradient methods based on the global
convergence properties and numerical performance. Some of the well-known nonlinear conjugate
gradient parameters are the Fetcher-Reeves (FR) [9], Polak-Ribiére-Polyak (PRP) [25, 26], Hestenes-
Stiefel (HS) [15], conjugate descent (CD) [8], Liu-Storey (LS) [22] and Dai-Yuan (DY) [6]. These
prameters are given by the following formulae:

βFR
k =

‖gk‖
2

‖gk−1‖
2 , βCD

k =
‖gk‖

2

−dT
k−1gk−1

, βDY
k =

‖gk‖
2

dT
k−1yk−1

, (1.5)

βHS
k =

gT
k yk−1

dT
k−1yk−1

, βPRP
k =

gT
k yk−1

‖gk−1‖
2 , βLS

k =
gT

k yk−1

−gT
k−1dk−1

, (1.6)

where gk = g(xk), yk−1 = gk − gk−1 and ‖ · ‖ is the Euclidean norm.
In order to have some of the classical CG methods possess a descent direction and trust region as

well as improving their numerical efficiency, the three-term CG and hybrid CG methods were
introduced for solving (1.1). For instance, Mo et al. [23] proposed two hybrid methods for solving
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unconstrained optimization problems. The methods are based on the Touati-Ahmed and Storey [30]
and the DY methods. Under the strong Wolfe condition, the global convergence was proved. Andrei
in [2] proposed a simple three-term CG method obtained by modifying the
Broyden-Fletcher-Goldferb-Shanno (BFGS) updating formula of the inverse approximation of the
Hessian. The search direction satisfies both the descent and conjugacy conditions. Numerical results
were given to support the theoretical results. Also in [3], Andrei proposed an eliptic CG method for
solving (1.1). The search direction is the sum of the negative gradient and a vector obtained by
minimizing the quadratic approximation of the objective function. In addition, the search direction
satisfies both Dai-Liao (DL) cojugacy and descent conditions. Eigenvalue analysis was carried out to
determine parameter which the search direction depends on. In comparison with the well-known
CG DESCENT method, the proposed method was more efficient. Liu and Li [21] proposed a new
hybrid CG with it’s search direction satisfying the DL conjugacy condition and the Newton direction
independent of the line search. As usual the global convergence was established under the strong
Wolfe line search. In [16], Jian et al. proposed a new hybrid CG method based on previous classical
methods. At every iteration, the method produces a descent direction independent of the line search.
Global convergence was proved and numerical experiments on medium-scale problems was
conducted and the results reported. By applying a mild modification on the HS method, Dong et al.
proposed a new approach that generates a descent direction. Also, the approach satisfies an adaptive
conjugacy condition and has a self-restarting property. The global convergence was proved for
general functions and the efficiency of the approach was shown via numerical experiments on some
large-scale problems. Min Li [19] developed a three-term PRP CG method with the search direction
close to the direction of the memoryless BFGS quasi-Newton method. The method collapses to the
standard PRP method when an exact line search is considered. Independent of any line search, the
method satisfies the descent condition. The global convergence of the method was established using
an appropriate line search. Numerical results show that the method is efficient for the standard
unconstrained problems in the CUTEr library. Again, Li [18] proposed a nonlinear CG method which
generates a search direction that is close to that of the memoryless BFGS quasi-Newton method.
Moreover, the search direction satisfies the descent condition. Global convergence for strongly convex
functions and nonconvex functions was established under the strong Wolfe line search. Furthermore,
an efficient spectral CG method that combine the spectral parameter and a three-term PRP method
was proposed by Li et al. [20]. The method is based on the quasi-Newton direction and quasi-Newton
equation. Numerical experiments reported show the superiority of the method over the three-term
PRP method.

Motivated by the works of Li [18,19] which originated from [17,27] , we propose a new hybrid CG
method for solving (1.1). The hybrid direction is a combination of the FR and DY directions that are
both close to the direction of the memoryless BFGS quasi-Newton method. Interestingly, the hybrid
direction satisfies the descent condition and is bounded independent of any line search procedure. We
prove the global convergence under both the Wolfe-type and Armijo-type line searches. Numerical
results are also provided to show the efficiency of the new hybrid method. Finally, application of the
method in optimizing risk in portfolio selection is also considered. The remainder of this paper is
organized as follows. In the next section, the hybrid method is derived together with it’s convergence.
In Section 3, we provide some numerical experimental results.
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2. Algorithm and theoretical results

We begin this section by recalling a three-term CG method for solving (1.1). From an initial guess
x0, the method compute the search direction as follows:

d0 := −g0, dk := −gk + βkdk−1 + γkgk, k ≥ 1, (2.1)

where βk, γk are parameters. Distict choices of the parameters βk and γk correspond to distinct three-
term CG methods. It is clear that, the three-term CG methods collapses to the classical ones when
γk = 0.
Next, we will recall the memoryless BFGS method proposed by Nocedal [17] and Shanno [27], where
the search direction can be written as

dBFGS
k := −Qkgk,

Qk = −

(
I −

sk−1yT
k−1

sT
k−1yk−1

−
yk−1sT

k−1

sT
k−1yk−1

+
sk−1yT

k−1yk−1sT
k−1

sT
k−1yk−1

+
sk−1sT

k−1

sT
k−1yk−1

)
,

sk−1 = xk − xk−1 = αk−1dk−1 and I is the identity matrix. After simplification, dLBFGS
k can be rewritten as

dBFGS
k := −gk +

(
βHS

k −
‖yk−1‖

2gT
k dk−1

(dT
k−1yk−1)2

)
dk−1 +

gT
k dk−1

dT
k−1yk−1

(yk−1 − sk−1). (2.2)

Replacing βHS
k with βFR

k and ‖yk−1‖
2gT

k dk−1

(dT
k−1yk−1)2 with ‖gk‖

2gT
k dk−1

‖gk−1‖4
in (2.2), we define a three-term search

direction as

dTT FR
k := −gk +

(
βFR

k −
‖gk‖

2gT
k dk−1

‖gk−1‖
4

)
dk−1 − tk

gT
k dk−1

‖gk−1‖
2 gk. (2.3)

Again, replacing βHS
k with βDY

k and ‖yk−1‖
2gT

k dk−1

(dT
k−1yk−1)2 with ‖gk‖

2gT
k dk−1

(dT
k−1yk−1)2 in (2.2), we define another three-term

search direction as

dTT DY
k := −gk +

(
βDY

k −
‖gk‖

2gT
k dk−1

(dT
k−1yk−1)2

)
dk−1 − tk

gT
k dk−1

dT
k−1yk−1

gk. (2.4)

To find the parameter tk, we require the solution of the univariate minimal problem

min
t∈R
‖(yk−1 − sk−1) − t.gk‖

2.

Let Ek = (yk−1 − sk−1) − t.gk, then

EkET
k = [(yk−1 − sk−1) − t.gk][(yk−1 − sk−1) − t.gk]T

= [(yk−1 − sk−1) − t.gk][(yk−1 − sk−1)T − t.gT
k ]

= t2gkgT
k − t[(yk−1 − sk−1)gT

k + gk(yk−1 − sk−1)T ] + (yk−1 − sk−1)(yk−1 − sk−1)T .

Letting Ak = yk−1 − sk−1, then

EkET
k = t2gkgT

k − t[AkgT
k + gkAT

k ] + AkAT
k

AIMS Mathematics Volume 6, Issue 6, 6506–6527.



6510

and

tr(EkET
k ) = t2‖gk‖

2 − t[tr(AkgT
k ) + tr(gkAT

k )] + ‖Ak‖
2

= t2‖gk‖
2 − 2tgT

k Ak + ‖Ak‖
2.

Differentiating the above with respect to t and equating to zero, we have

2t‖gk‖
2 − 2gT

k Ak = 0,

which implies

t =
gT

k (yk−1 − sk−1)
‖gk‖

2 . (2.5)

Hence, we select tk as

tk := min
{

t̄,max
{

0,
gT

k (yk−1 − sk−1)
‖gk‖

2

}}
, (2.6)

which implies 0 ≤ tk ≤ t̄ < 1.
Motivated by the three-term CG directions defined in (2.3) and (2.4), we propose a hybrid three-term
CG based algorithm for solving (1.1), where the search direction is defined as

d0 := −g0, dk := −gk + βHTT
k dk−1 + γkgk, k ≥ 1, (2.7)

where

βHTT
k :=

‖gk‖
2

wk
−
‖gk‖

2gT
k dk−1

w2
k

, γk := −tk
gT

k dk−1

wk
(2.8)

and
wk := max{λ‖dk−1‖‖gk‖, dT

k−1yk−1, ‖gk−1‖
2}, λ > 0. (2.9)

Remark 2.1. Observe that, because of the way wk is defined, the parameter βHTT
k is a hybrid of βFR

k −
‖gk‖

2gT
k dk−1

‖gk−1‖4
and βDY

k −
‖gk‖

2gT
k dk−1

(dT
k−1yk−1)2 in (2.3) and (2.4), respectively. Also, the parameter γk defined by (2.8) is

a hybrid of −tk
gT

k dk−1

‖gk−1‖2
and −tk

gT
k dk−1

dT
k−1yk−1

in (2.3) and (2.4), respectively. Finally, the search direction given

by (2.7) is close to that of the memoryless BFGS method when tk =
gT

k (yk−1−sk−1)
‖gk‖2

.

Remark 2.2. Note that, relation (2.9) is carefully defined such that the search direction possess a trust
region (see Lemma 2.7) independent of the line search.

Lemma 2.3. The search direction dk defined by (2.7) satisfy (1.4) with c = 3
4 .

Proof. Multiplying both sides of (2.7) with gT
k , we have

gT
k dk = −‖gk‖

2 +
‖gk‖

2

wk
gT

k dk−1 −
‖gk‖

2

w2
k

(gT
k dk−1)2 − tk

‖gk‖
2

wk
gT

k dk−1

≤ −‖gk‖
2 + (1 − tk)

‖gk‖
2

wk
gT

k dk−1 −
‖gk‖

2

w2
k

(gT
k dk−1)2

= −‖gk‖
2 + 2

(
(1 − tk)

2
gT

k

)
gk

wk
gT

k dk−1 −
‖gk‖

2

w2
k

(gT
k dk−1)2
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≤ −‖gk‖
2 +

(1 − tk)2

4
‖gk‖

2 +
‖gk‖

2

w2
k

(gT
k dk−1)2 −

‖gk‖
2

w2
k

(gT
k dk−1)2

= −‖gk‖
2 +

(1 − tk)2

4
‖gk‖

2

= −

(
1 −

(1 − tk)2

4

)
‖gk‖

2

≤ −
3
4
‖gk‖

2.

�

Next, we will turn our attention to establishing the convergence of the proposed scheme by first
considering the standard Wolfe line search conditions [29],

f (xk + αkdk) − f (xk) ≤ ϑαkgT
k dk, (2.10)

g(xk + αkdk)T dk ≥ σgT
k dk (2.11)

where 0 < ϑ < σ < 1. In addition, we will assume that

Assumption 2.4. The level setH = {x : f (x) ≤ f (x0)} is bounded.

Assumption 2.5. SupposeH is some neighborhood of L, then f is continuously differentiable and its
gradient Lipschitz continuous onH . That is, we can find L > 0 such that for all x

‖g(x) − g(x̄)‖ ≤ L‖x − x̄‖, x̄ ∈ H . (2.12)

From Assumption 2.4 and 2.5, we can deduce that for all x ∈ L there exist b1, b2 > 0 for which

• ‖x‖ ≤ b1.
• ‖g(x)‖ ≤ b2.

Furthermore, the sequence {xk} ∈ L because { f (xk)} is decreasing. Henceforth, we will suppose that
Assumption 2.4–2.5 hold and that the objective function is bounded below. We will now prove the
convergence result.

Theorem 2.6. Let conditions (2.10) and (2.11) be fulfilled. If

∞∑
k=0

1
‖dk‖

2 = +∞, (2.13)

then
lim inf

k→∞
‖gk‖ = 0. (2.14)

Proof. Suppose by contradiction that Eq (2.14) does not hold, then there exists a nonnegative scalar ε
such that

‖gk‖ ≥ ε for all k ∈ N. (2.15)

From Lemma 2.3 and (2.10),

f (xk+1) ≤ f (xk) + ϑαkgT
k dk ≤ f (xk) − ϑαk‖gk‖

2 ≤ f (xk) ≤ f (xk−1) ≤ . . . ≤ f (x0).
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Likewise, by Lemma 2.3, condition (2.11) and Assumption 2.5, we have

−(1 − σ)gT
k dk ≤ (gk+1 − gk)T dk ≤ ‖gk+1 − gk‖‖dk‖ ≤ αkL‖dk‖

2.

Combining the above inequality with (2.10), we obtain

ϑ(1 − σ)
L

(gT
k dk)2

‖dk‖
2 ≤ f (xk) − f (xk+1)

and
ϑ(1 − σ)

L

∞∑
k=0

(gT
k dk)2

‖dk‖
2 ≤ ( f (x0) − f (x1)) + ( f (x1) − f (x2)) + . . . ≤ f (x0) < +∞,

since { f (xk)} is bounded. The above implies that

∞∑
k=0

(gT
k dk)2

‖dk‖
2 < +∞. (2.16)

Now, inequality (2.15) with (1.4) implies that

gT
k dk ≤ −

3
4
‖gk‖

2

≤ −
3
4
ε2. (2.17)

Squaring both sides and dividing by ‖dk‖
2 , 0 of (2.17), yields

∞∑
k=0

(gT
k dk)2

‖dk‖
2 ≥

9
16

∞∑
k=0

ε4

‖dk‖
2 = +∞ (2.18)

This contradicts (2.16). Therefore, the conclusion of the theorem hold. �

Next, we will establish the convergence of the proposed method under the Armijo-type backtracking
line search procedure. The procedure was first introduced by Grippo and Lucidi [11], where the step
size αk is determined as follows: ρ, ϑ ∈ (0, 1), αk = ρi, where i is the smallest nonnegative integer for
which the relation

f (xk + αkdk) ≤ f (xk) − ϑα2
k‖dk‖

2 (2.19)

hold.
From (2.19) and the fact that { f (xk)} is decreasing, we can deduce that

∞∑
k=0

α2
k‖dk‖

2 < +∞,

which further implies that
lim
k→∞

αk‖dk‖ = 0. (2.20)

Lemma 2.7. If {dk} is defined by (2.7) , then there is N1 > 0 for which ‖dk‖ ≤ N1.
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6513

Proof. From (2.8),

|βHTT
k | =

∣∣∣∣∣∣‖gk‖
2

wk
−
‖gk‖

2gT
k dk−1

w2
k

∣∣∣∣∣∣
≤

‖gk‖
2

λ‖dk−1‖‖gk‖
−
‖gk‖

3‖dk−1‖

(λ‖dk−1‖‖gk‖)2

=

(
1
λ

+
1
λ2

)
‖gk‖

‖dk−1‖
. (2.21)

Also,

|γk| =

∣∣∣∣∣∣−tk
gT

k dk−1

wk

∣∣∣∣∣∣
= tk

∣∣∣∣∣∣gT
k dk−1

wk

∣∣∣∣∣∣
≤ t̄
‖gk‖‖dk−1‖

wk

≤ t̄
‖gk‖‖dk−1‖

λ‖dk−1‖‖gk‖

=
t̄
λ
. (2.22)

Therefore, from (2.7), (2.21) and (2.22), we have

‖dk‖ =
∥∥∥−gk + βHTT

k dk−1 + γkgk

∥∥∥
≤ ‖gk‖ + |βHTT

k |‖dk−1‖ + |γk|‖gk‖

≤ ‖gk‖ +

(
1
λ

+
1
λ2

)
‖gk‖

‖dk−1‖
‖dk−1‖ +

t̄
λ
‖gk‖

=

(
1 +

1 + t̄
λ

+
1
λ2

)
‖gk‖ (2.23)

=

(
1 +

1 + t̄
λ

+
1
λ2

)
b2. (2.24)

Letting N1 =
(
1 + 1+t̄

λ
+ 1

λ2

)
b2, we have

‖dk‖ ≤ N1. (2.25)

�

Theorem 2.8. If the step size αk is obtained via relation (2.19), then

lim inf
k→∞

‖gk‖ = 0. (2.26)

Proof. Suppose by contradiction equation (2.26) is not true. Then for all k, we can find an r > 0 for
which

‖gk‖ ≥ r. (2.27)

AIMS Mathematics Volume 6, Issue 6, 6506–6527.
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Let αk = ρ−1αk, then αk does not satisfy (2.19). That is

f (xk + ρ−1αkdk) > f (xk) − ϑρ−2α2
k‖dk‖

2. (2.28)

Applying the mean value theorem together with Lemma 2.7, (1.4) and (2.12), there exist an lk ∈ (0, 1)
such that

f (xk + ρ−1αkdk) − f (xk) = ρ−1αkg(xk + lkρ
−1αkdk)

= ρ−1αkgT
k dk + ρ−1αk(g(xk + lkρ

−1αkdk) − gk)T dk

≤ ρ−1αkgT
k dk + Lρ−2α2

k‖dk‖
2.

Inserting the above relation in (2.28), together with (2.25) and (2.27) we have

αk ≥
ρ‖gk‖

2

(L + ϑ)‖dk‖
2 ≥

ρr2

(L + ϑ)N2
1

> 0.

This and (2.20) gives
lim
k→∞
‖dk‖ = 0. (2.29)

On the other hand, applying backward Cauchy-Schwartz inequality on (1.4) gives

‖dk‖ ≥
3
4
‖gk‖.

Thus, we have lim
k→∞
‖gk‖ = 0. This is a contradiction and therefore (2.26) holds. �

3. Numerical experiments

This section discusses the computational efficiency of the proposed method, namely HTT method.
One way to measure the efficienecy of a method is to use the test function. An important test function
is used to validate and compare among optimization methods, especially newly developed methods.
We selected 34 test functions and initial points as in Table 1 mostly considered by Andrei [4]. For
each function we have taken five numerical experiments with a dimension of which is among n = 10,
50, 80, 100, 200, 400, 300, 500, 600, 1000, 3000, 5000, 10,000, 15,000, 20,000. However, we
often use dimensions that are greater than 1000. The executed methods are coded in Matlab 2019a
and compiled using personal laptop; Intel Core i7 processor, 16 GB RAM, 64 bit Windows 10 Pro
operating system.

As a good comparison, for NHS+ and NPRP+ all parameters are maintained according to their
articles in [18] and [19], i.e, ϑ = 0.1, σ = 0.9. Specially, for HTT, we set the value of parameters
ϑ = 0.0001, σ = 0.009. For all methods, we use the parameter value t̄ = 0.3, λ = 0.01 and the
step-size αk is calculated by standard Wolfe line search. The numerical results are compared based on
number of iterations (NOI), number of function evaluations (NOF), and CPU time in seconds (CPU). In
this experiment, we consider a stopping condition that many researchers suggest (see [16, 18, 21, 23]),
namely that the algorithm will stop when ‖gk‖ ≤ 10−6.
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In Table 5 we list the numerical results obtained by compiling each method for completing each test
function with different dimension sizes. If the number of iterations of the method exceeds 10, 000 or it
never reaches the optimal value, the algorithm stops and we write it as ‘FAIL’.

To compare the performance between methods, we use the performance profiles of Dolan and Moré
[7] with rule as follows. Let S is the set of methods and P is set of the test problems with np, ns are the
number of test problems and the number of methods, respectively.

Table 1. List of test functions and initial points.

Number Functions Initial Points
F1 Extended White & Holst (-1.2, 1, ..., -1.2, 1)
F2 Extended Rosenbrock (-1.2, 1, ..., -1.2, 1)
F3 Extended Freudenstein & Roth (0.5, -2, ..., 0.5, -2)
F4 Extended Beale (1, 0.8, ..., 1, 0.8)
F5 Raydan 1 (1, 1, ..., 1)
F6 Extended Tridiagonal 1 (2, 2, ..., 2)
F7 Diagonal 4 (1, 1, ..., 1)
F8 Extended Himmelblau (1, 1, ..., 1)
F9 FLETCHCR (0.5, 0,5, ..., 0.5)

F10 Extended Powel (1, 1, ..., 1)
F11 NONSCOMP (3, 3, ..., 3)
F12 DENSCHNB (10, 10, ..., 10)
F13 Extended Penalty Function U52 (1/100, 2/100, ..., n/100)
F14 Hager (1, 1, ..., 1)
F15 Shallow (2, 2, ..., 2)
F16 Quadratic QF2 (0.5, 0,5, ..., 0.5)
F17 Generalized Tridiagonal 1 (2, 2, ..., 2)
F18 Generalized Tridiagonal 2 (1, 1, ..., 1)
F19 POWER (1, 1, ..., 1)
F20 Quadratic QF1 (1, 1, ..., 1)
F21 QP2 Extended Quadratic Penalty (2, 2, ..., 2)
F22 QP1 Extended Quadratic Penalty (1, 1, ..., 1)
F23 Sphere (1, 1, ..., 1)
F24 Sum Squares (0.1, 0,1, ..., 0.1)
F25 DENSCHNA (7, 7, ..., 7)
F26 DENSCHNC (100, -1, -1, ..., -1, -1)
F27 DENSCHNF (100, -100, ..., 100, -100)
F28 Extended Block-Diagonal BD1 (1, 1, ..., 1)
F29 HIMMELBH (0.8, 0,8, ..., 0.8)
F30 Extended Hiebert (5.001, 5.001, ..., 5.001, 5.001)
F31 ENGVAL1 (2, 2, ..., 2)
F32 ENGVAL8 (0, 0, ..., 0)
F33 Linear Perturbed (0, 0, ..., 0)
F34 QUARTICM (2, 2, ..., 2)
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The performance profile ω : R → [0, 1] is for each s ∈ S and p ∈ P defined that ap,s > 0 is NOI or
NOF or CPU time required to solve problems p by method s. Furthermore, the performance profile is
obtained by:

ωs(τ) =
1
np

size{p ∈ P : log2 rp,s ≤ τ},

where τ > 0, size B is the number of the elements in the set B, and rp,s is performance ratio defined as:

rp,s =
ap,s

min{ap,s : p ∈ P and s ∈ S }
.

In general, the method whose performance profile plot is on the top right will win the rest of the
methods or represents the best method.

From Table 5, all the methods failed to solve the Raydan 1 and NONSCOMP with
n = 1, 000, 5, 000, 10, 000, 15, 000, 20, 000, the NHS+ and NPRP+ methods failed to solve Extended
Powel, Hager, Generalized Tridiagonal 1, Generalized Tridiagonal 2, QP2 Extended Quadratic
Penalty, DENSCHNA, Extended Block-Diagonal BD1, ENGVAL1, and ENGVAL8 for all of
dimension given, and NPRP+ method has more failures for the given problem compared to other
methods. So, based on the numerical results in Table 5, we can say that the HTT method has the best
performance. Meanwhile, from the result in performance profile in Figures 1–3 show that the HTT
method profile is always on the top right curve, whether it’s based on NOI, NOF or CPU time. The
final conclusion is that the HTT method has the best performance compared the NHS+ and NPRP+

methods under the test functions given.
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Figure 1. Performance profile using wolfe line search of all methods based on NOI.
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Figure 2. Performance profile using wolfe line search of all methods based on NOF.
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Figure 3. Performance profile using wolfe line search of all methods based on CPU time.

4. Application in portfolio selection

Investment is a commitment to invest several funds carried out at this time to obtain many benefits
in the future. One investment that is quite attractive is a stock investment. An investor can invest in
more than one stock. Of course, the thing to consider is whether the investment can be profitable or
not. One theory that discusses investment in several assets is portfolio theory. A stock portfolio is a
collection of stocks owned by an investor [24].

In this section, we present the problem of risk management in a portfolio of stocks. The main issue
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is how to balance a portfolio, that is, how to choose the percentage of each stock in the portfolio to
minimize the risk [28]. In investing, investors expect to get a large return by choosing the smallest
possible risk. Return is the income received by an investor from stocks traded on the capital market.
There are several ways to calculate returns, one of which is to use arithmetic returns which can be
calculated as follows:

Rt =
Pt − Pt−1

Pt−1
,

where Pt is the stock prices at time t and Pt−1 is the stock prices at time t − 1. Furthermore, we may
consider the mean of return, the expected value, and the variance of the return. The mean of return of
a stock i is denoted by

r̄i =
1
n

n∑
t=1

rit,

where n is number of returns on a stock and rit is return at time t on stock i. The expected return of
stock i

µi = E(Ri).

The variance of return of stock i

σ2
i = Var(Ri)

is called the risk of stock i [28]. One thing that needs to be considered is the relationship between
stocks, so we must also pay attention to how stocks interact, i.e, by using the covariance of individual
risk. Covariance measures the directional relationship between the returns on two stocks. If positive
covariance then that stock returns move together while a negative covariance means they move
inversely. Usually the covariance of return between two stocks Ri,R j is denoted as Cov(Ri,R j) [28].

For our cases, we consider the seven blue chip stocks in Indonesia, namely, PT Bank Rakyat
Indonesia (Persero) Tbk (BBRI), PT Unilever Indonesia Tbk (UNVR), PT Telekomunikasi Indonesia
Tbk (TLKM), PT Indofood CBP Sukses Makmur Tbk (ICBP), PT Bank Mandiri (Persero) Tbk
(BMRI), PT Perusahaan Gas Negara Tbk (PGAS), and PT Astra International Tbk (ASII). The stock
price used is the weekly closing price which data history is taken from from the database
http://finance.yahoo.com, over a period of 3 years (Jan 1, 2018 – Dec 31, 2020). Based on this data,
we may see the movement of the closing price of each stock in Figure 4.

Figure 4. Weekly closing price of all stocks in IDR (Jan 1, 2018 – Dec 31, 2020).
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So that the portfolio returns for the seven stocks are defined as the weighted amount of returns for
each stocks

R =

7∑
i=1

wiRi,

where wi is the percentage of the value of the stock contained in the portfolio. Thus, we may define
the expected return and risk on our portfolio (see [28]). The expected return µ on our portfolio is the
expected value of the portfolio’s return as follows:

µ = E

 7∑
i=1

wiRi

 =

7∑
i=1

wiµi, (4.1)

and the risk of our portfolio is the variance of the portfolio’s return as follows,

σ2 = Var

 7∑
i=1

wiRi

 =

7∑
i=1

7∑
j=1

wiw jCov(Ri,R j). (4.2)

Since our main objective is to determine the optimal portfolio by minimizing the risk of returns,
then our problem model isminimize : σ2 = Var

(∑7
i=1 wiRi

)
=

∑7
i=1

∑7
j=1 wiw jCov(Ri,R j),

subject to :
∑7

j=1 w j = 1.
(4.3)

The next step changes the problem (4.3) to unconstrained optimization model, i.e, considering w7 =

1 − w1 − w2 − w3 − w4 − w5 − w6, then the problem (4.3) changes into an unconstrained optimization
model as follows:

min
w∈R7

7∑
i=1

7∑
j=1

wiw jCov(Ri,R j), (4.4)

where w = (w1, w2, w3, w4, w5, w6, 1 − w1 − w2 − w3 − w4 − w5 − w6).
The following table shows the mean, variance, and covariance values of the returns of UNVR,

BBRI, TLKM, ICBP, BMRI, PGAS, and ASII stocks.

Table 2. Mean and variance of return for Seven Stocks.

Stocks Mean Variance

UNVR 0.00311 0.00127

BBRI 0.00033 0.00273

TLKM 0.00247 0.00166

ICBP 0.00047 0.00142

BMRI 0.00277 0.00309

PGAS 0.00359 0.00667

ASII 0.00321 0.00238
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Table 3. Covariance of return for seven stocks.

Stocks UNVR BBRI TLKM ICBP BMRI PGAS ASII

UNVR 0.00127 0.00058 0.00053 0.00062 0.000906 0.00105 0.000744

BBRI 0.00058 0.00273 0.00091 0.00059 0.00235 0.002341 0.001844

TLKM 0.00053 0.00091 0.00166 0.00048 0.001101 0.001579 0.00089

ICBP 0.00062 0.00059 0.00048 0.00142 0.000807 0.000858 0.000538

BMRI 0.00091 0.00235 0.00110 0.00081 0.00309 0.002771 0.001888

PGAS 0.00105 0.00234 0.00158 0.00086 0.002771 0.00667 0.002288

ASII 0.00074 0.00184 0.00089 0.00189 0.001888 0.002288 0.00238

Table 4. Test result of NHS+, NPRP+, and HTT methods for solving problem (4.4).

Initial Points NHS+ NPRP+ HTT

NOI NOF CPU NOI NOF CPU NOI NOF CPU
(0.1, 0,2, ..., 0.6) 62 496 0.00680 61 497 0.00610 7 83 0.00110

(0.1, ..., 0.1) 62 491 0.00690 60 490 0.00610 12 126 0.00150
(0.6, 0.5, ..., 0.1) 57 448 0.00420 57 455 0.00590 11 123 0.00130

(0.3, ..., 0.3) 58 463 0.00680 58 472 0.00610 6 71 0.00097
(1, ..., 1) 61 476 0.00700 62 490 0.00430 12 127 0.00140

(-0.1, ..., -0.1) 64 502 0.00630 64 515 0.00690 14 144 0.00200
(1.2, 1, ..., 1.2, 1) 63 490 0.00670 64 506 0.00650 6 71 0.00140
(1.001, ..., 1.001) 61 476 0.01100 62 490 0.00470 12 127 0.00094

(0.5, ..., 0.5) 59 464 0.00310 60 481 0.00570 11 118 0.00210
(7, ..., 7) 80 642 0.00510 80 649 0.00870 13 143 0.00230

According to Tables 2 and 3, we may execute the problem (4.4) by choosing some random initial
points and still maintaining the same parameter values according to each method. The results obtained
are stated in Table 4.

From Table 4, it is clear that the HTT method more efficient than NHS+ and NPRP+ methods based
on NOI, NOF, and CPU time for solving the problem (4.4). Meanwhile, the algorithm executed from
each method give the same result for the value of w, i.e, w1 = 0.3877, w2 = 0.3220, w3 = 0.2878, w4 =

0.4179, w5 = −0.1642, w6 = −0.0465, and w7 = −0.2047. By using the value of w, (4.1), and (4.2),
we obtain µ = 0.00094 and σ2 = 0.00074. Finally, the selection of stock portfolios for our case with a
minimum risk can be done by allocating each stock in the following proportions, i.e, UNVR 38.77%,
BBRI 32.22%, TLKM 28.78%, ICBP 41.79%, BMRI −16.42%, PGAS −4.65%, and ASII −20.47%
with the expected return is 0.00094 and the portfolio risk value is 0.00074. A negative sign in the
proportion indicates that investor is short selling.
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5. Conclusions

In this work, we presented a new hybrid CG method that guarantees sufficient descent direction and
boundedness of the direction independent of the line search. In addition, the gloabal convergence result
is established under both the Wolfe and Armijo line searches. Based on the numerical results, it can be
observed that the new hybrid method is more efficient and robust than other methods, providing faster
and more stable convergence in most of the problems considered. These can be seen more clearly
from Figures 1–3. Finally, the practical applicability of the hybrid method is also explored in risk
optimization. It’s efficiency in solving portfolio selection problem was outstanding as it solves the
problem with less iteration, function evaluations and CPU time compared with others.
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Appendix

Table 5. The numerical results of all methods using standard wolfe line search.

Function Dim NHS+ NPRP+ HTT

NOI NOF CPU NOI NOF CPU NOI NOF CPU
F1 1000 FAIL FAIL FAIL FAIL FAIL FAIL 48 211 0.1035

5000 29 144 0.3053 FAIL FAIL FAIL 45 205 0.4427
10,000 FAIL FAIL FAIL 28 133 0.5752 49 214 0.8004
15,000 FAIL FAIL FAIL FAIL FAIL FAIL 45 205 1.0857
20,000 29 144 1.0183 31 143 1.0605 45 205 1.4329

F2 1000 32 168 0.049 FAIL FAIL FAIL 82 613 0.1332
5000 32 168 0.1757 FAIL FAIL FAIL 59 496 0.3751

10,000 35 176 0.354 39 185 0.3593 87 628 1.0267
15,000 FAIL FAIL FAIL 45 201 0.6693 59 496 1.1967
20,000 32 168 0.56 38 182 0.6532 59 496 1.4625

F3 1000 13 67 0.0401 FAIL FAIL FAIL 27 96 0.0456
5000 FAIL FAIL FAIL FAIL FAIL FAIL 27 96 0.1473

10,000 FAIL FAIL FAIL FAIL FAIL FAIL 27 96 0.5049
15,000 13 67 0.2733 FAIL FAIL FAIL 28 99 0.6252
20,000 FAIL FAIL FAIL FAIL FAIL FAIL 28 99 0.6011

F4 1000 20 66 0.3053 FAIL FAIL FAIL 80 257 1.0738
5000 20 66 0.1586 FAIL FAIL FAIL 80 257 0.5459

10,000 20 66 0.3257 FAIL FAIL FAIL 80 257 1.1544
15,000 20 66 0.4333 FAIL FAIL FAIL 81 260 1.5616
20,000 20 66 0.5468 36 113 0.9527 85 272 2.1239

F5 1000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
5000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

10,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
15,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
20,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

F6 1000 7 30 0.0239 FAIL FAIL FAIL 61 206 0.0917
5000 FAIL FAIL FAIL FAIL FAIL FAIL 74 255 0.5254

10,000 FAIL FAIL FAIL FAIL FAIL FAIL 62 224 0.9381
Continued on next page
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Table 5. The numerical results of all methods using standard wolfe line search.
Function Dim NHS+ NPRP+ HTT

NOI NOF CPU NOI NOF CPU NOI NOF CPU
15,000 FAIL FAIL FAIL FAIL FAIL FAIL 93 327 1.9179
20,000 FAIL FAIL FAIL FAIL FAIL FAIL 80 271 2.0203

F7 1000 6 16 0.0081 6 16 0.0059 14 39 0.0141
5000 6 16 0.0447 6 16 0.0284 14 39 0.0546

10,000 6 16 0.0508 6 16 0.059 14 39 0.1035
15,000 8 22 0.0846 8 22 0.0859 14 39 0.1331
20,000 9 25 0.1302 8 22 0.1107 14 39 0.1755

F8 1000 8 28 0.0268 8 28 0.0132 15 54 0.0125
5000 9 31 0.0587 8 28 0.0347 16 57 0.0585

10,000 9 31 0.0915 8 28 0.0769 16 57 0.1157
15,000 9 31 0.1094 8 28 0.0962 16 57 0.1837
20,000 9 31 0.135 8 28 0.1227 16 57 0.21

F9 1000 23 101 0.0668 24 104 0.0324 22 99 0.0418
5000 30 147 0.1632 28 137 0.134 21 96 0.0972

10,000 FAIL FAIL FAIL FAIL FAIL FAIL 21 96 0.2199
15,000 FAIL FAIL FAIL FAIL FAIL FAIL 21 97 0.278
20,000 FAIL FAIL FAIL FAIL FAIL FAIL 21 97 0.3312

F10 1000 FAIL FAIL FAIL FAIL FAIL FAIL 6566 19749 10.365
5000 FAIL FAIL FAIL FAIL FAIL FAIL 9027 27132 59.7488

10,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
15,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
20,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

F11 1000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
5000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

10,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
15,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
20,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

F12 1000 10 42 0.0375 11 45 0.0198 19 71 0.0153
5000 10 42 0.0717 11 45 0.0536 20 74 0.0798

10,000 10 42 0.0953 11 45 0.1071 20 74 0.1711
15,000 10 42 0.1423 11 45 0.1519 20 74 0.2083
20,000 10 42 0.1598 11 45 0.1659 21 77 0.2929

F13 1000 FAIL FAIL FAIL 32 159 0.0477 59 1847 0.3214
5000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

10,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
15,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
20,000 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

F14 50 FAIL FAIL FAIL FAIL FAIL FAIL 20 73 0.0071
100 FAIL FAIL FAIL FAIL FAIL FAIL 24 110 0.013

Continued on next page
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Table 5. The numerical results of all methods using standard wolfe line search.
Function Dim NHS+ NPRP+ HTT

NOI NOF CPU NOI NOF CPU NOI NOF CPU
200 FAIL FAIL FAIL FAIL FAIL FAIL 31 171 0.031
300 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
500 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL

F15 1000 23 64 0.0224 FAIL FAIL FAIL 24 75 0.0274
5000 27 74 0.0825 FAIL FAIL FAIL 26 80 0.0886

10,000 FAIL FAIL FAIL FAIL FAIL FAIL 27 83 0.2039
15,000 FAIL FAIL FAIL FAIL FAIL FAIL 27 83 0.2489
20,000 FAIL FAIL FAIL FAIL FAIL FAIL 29 88 0.3151

F16 50 65 214 0.0109 62 251 0.011 112 382 0.014
100 94 361 0.0339 FAIL FAIL FAIL 155 534 0.0319
200 141 518 0.0552 141 519 0.0489 222 777 0.074
300 FAIL FAIL FAIL 178 600 0.0793 260 924 0.1116
500 228 818 0.1383 243 812 0.1226 317 1151 0.1591

F17 50 FAIL FAIL FAIL FAIL FAIL FAIL 26 84 0.0086
100 FAIL FAIL FAIL FAIL FAIL FAIL 26 84 0.009
200 FAIL FAIL FAIL FAIL FAIL FAIL 26 84 0.0244
300 FAIL FAIL FAIL FAIL FAIL FAIL 26 87 0.0216
500 FAIL FAIL FAIL FAIL FAIL FAIL 2443 125676 15.9497

F18 50 FAIL FAIL FAIL FAIL FAIL FAIL 31 93 0.0206
100 FAIL FAIL FAIL FAIL FAIL FAIL 32 112 0.0126
200 FAIL FAIL FAIL FAIL FAIL FAIL 32 117 0.0197
300 FAIL FAIL FAIL FAIL FAIL FAIL 39 499 0.0556
500 FAIL FAIL FAIL FAIL FAIL FAIL 32 97 0.0349

F19 50 66 198 0.0098 65 195 8.40E-03 66 198 7.30E-03
100 141 423 0.035 140 420 2.98E-02 141 423 3.58E-02
200 297 891 0.0839 296 888 7.57E-02 297 891 7.60E-02
300 453 1359 0.1582 454 1362 0.1759 455 1365 0.1431
500 768 2304 0.3216 770 2310 0.2792 3022 9066 1.0477

F20 50 38 114 0.0068 38 114 0.0108 38 114 0.0307
100 56 168 0.0174 56 168 0.0223 56 168 0.0247
200 81 243 0.0373 81 243 0.0368 81 243 0.0373
300 101 303 0.0464 101 303 0.0435 101 303 0.0523
500 131 393 0.0706 131 393 0.0693 131 393 0.0693

F21 100 27 243 0.0411 47 317 0.028 208 2671 0.1393
500 FAIL FAIL FAIL FAIL FAIL FAIL 431 4682 0.6918
1000 FAIL FAIL FAIL FAIL FAIL FAIL 742 5992 1.5017
3000 FAIL FAIL FAIL FAIL FAIL FAIL 2402 12075 7.9879
5000 FAIL FAIL FAIL FAIL FAIL FAIL 4345 21114 20.7249

F22 10 11 41 0.2096 10 38 0.0237 18 64 0.0022
Continued on next page
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Table 5. The numerical results of all methods using standard wolfe line search.
Function Dim NHS+ NPRP+ HTT

NOI NOF CPU NOI NOF CPU NOI NOF CPU
50 12 49 0.0115 11 45 0.009 35 383 0.2059
80 FAIL FAIL FAIL FAIL FAIL FAIL 18 72 0.0054

100 11 45 0.004 FAIL FAIL FAIL 57 1635 0.0704
300 FAIL FAIL FAIL FAIL FAIL FAIL 35 485 0.2809

F23 1000 1 3 0.0127 1 3 0.0027 1 3 1.60E-03
5000 1 3 0.0168 1 3 0.0089 1 3 0.0061

10,000 1 3 0.0165 1 3 0.0134 1 3 0.0129
15,000 1 3 0.0217 1 3 0.0198 1 3 0.0183
20,000 1 3 0.028 1 3 0.0296 1 3 0.0219

F24 1000 136 408 0.0978 136 408 0.0969 136 408 0.0976
5000 311 933 0.7694 311 933 0.7563 406 1218 0.975

10,000 443 1329 2.4757 443 1329 2.3572 443 1329 2.3631
15,000 544 1632 4.6718 544 1632 4.4034 544 1632 4.264
20,000 630 1890 6.8562 630 1890 8.618 630 1890 6.5118

F25 1000 FAIL FAIL FAIL FAIL FAIL FAIL 21 77 0.0481
5000 FAIL FAIL FAIL FAIL FAIL FAIL 21 77 0.1557

10,000 FAIL FAIL FAIL FAIL FAIL FAIL 23 82 0.3301
15,000 FAIL FAIL FAIL FAIL FAIL FAIL 23 82 0.4332
20,000 FAIL FAIL FAIL FAIL FAIL FAIL 23 82 0.5819

F26 1000 3 155 0.0804 FAIL FAIL FAIL FAIL FAIL FAIL
5000 3 155 0.3545 FAIL FAIL FAIL FAIL FAIL FAIL

10,000 3 155 0.6368 FAIL FAIL FAIL FAIL FAIL FAIL
15,000 3 155 0.8296 FAIL FAIL FAIL FAIL FAIL FAIL
20,000 3 155 1.0828 FAIL FAIL FAIL FAIL FAIL FAIL

F27 1000 14 91 0.0472 14 94 0.0324 12 87 0.0278
5000 16 97 0.3356 14 94 0.0844 13 90 0.0859

10,000 14 91 0.2063 14 94 0.205 13 90 0.1935
15,000 FAIL FAIL FAIL 14 94 0.2503 13 90 0.2522
20,000 FAIL FAIL FAIL 14 94 0.3559 13 90 0.2913

F28 1000 FAIL FAIL FAIL FAIL FAIL FAIL 11 163 0.05
5000 FAIL FAIL FAIL FAIL FAIL FAIL 11 164 0.1523

10,000 FAIL FAIL FAIL FAIL FAIL FAIL 12 173 0.3325
15,000 FAIL FAIL FAIL FAIL FAIL FAIL 12 166 0.4909
20,000 FAIL FAIL FAIL FAIL FAIL FAIL 14 228 0.7552

F29 200 FAIL FAIL FAIL FAIL FAIL FAIL 7 31 0.2276
400 FAIL FAIL FAIL FAIL FAIL FAIL 7 23 0.0132
600 FAIL FAIL FAIL FAIL FAIL FAIL 7 21 0.008
800 5 15 0.0083 5 15 0.0272 7 26 0.0115
1000 FAIL FAIL FAIL FAIL FAIL FAIL 7 36 0.2199

Continued on next page
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Table 5. The numerical results of all methods using standard wolfe line search.
Function Dim NHS+ NPRP+ HTT

NOI NOF CPU NOI NOF CPU NOI NOF CPU
F30 1000 35 199 0.2817 FAIL FAIL FAIL 78 376 0.1087

5000 35 199 0.1804 FAIL FAIL FAIL 85 397 0.404
10,000 37 205 0.3754 FAIL FAIL FAIL 85 397 0.6769
15,000 FAIL FAIL FAIL FAIL FAIL FAIL 85 397 1.0886
20,000 FAIL FAIL FAIL FAIL FAIL FAIL 85 397 1.3642

F31 50 FAIL FAIL FAIL FAIL FAIL FAIL 25 404 0.0131
100 FAIL FAIL FAIL FAIL FAIL FAIL 24 408 0.0248
200 FAIL FAIL FAIL FAIL FAIL FAIL 776 39378 2.1743
300 FAIL FAIL FAIL FAIL FAIL FAIL 56 1903 0.156
500 FAIL FAIL FAIL FAIL FAIL FAIL 1236 63303 6.2995

F32 50 FAIL FAIL FAIL FAIL FAIL FAIL 14 49 0.0224
100 FAIL FAIL FAIL FAIL FAIL FAIL 14 69 0.0112
200 FAIL FAIL FAIL FAIL FAIL FAIL 19 277 0.027
300 FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
500 FAIL FAIL FAIL FAIL FAIL FAIL 168 7913 1.0719

F33 1000 140 420 0.1027 140 420 0.0965 140 420 0.0993
5000 320 960 0.8334 320 960 0.7689 320 960 0.8576

10,000 456 1368 2.5879 456 1358 2.6651 456 1358 2.5723
15,000 562 1686 4.4691 562 1686 6.0655 561 1683 4.3236
20,000 651 1953 6.6436 651 1953 13.6986 650 1950 7.2173

F34 1000 76 625 0.2802 76 625 0.2711 3 27 0.0206
5000 81 695 1.645 81 695 1.5016 3 27 0.0844

10,000 83 724 2.8429 83 724 2.9767 3 27 0.1274
15,000 84 739 4.2936 84 739 5.8732 3 27 0.2009
20,000 85 754 6.1778 85 754 10.2159 3 27 0.2372
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