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1. Introduction

For notation and graph theory terminology, we in general follow [10] and [11]. Specifically, let D
be a finite and simple digraph with vertex set V(D) and arc set A(D). For two vertices x, y ∈ V(D), we
use (x, y) to denote the arc with direction from x to y, that is, x is incident to (x, y) and y is incident
from (x, y), and we also say x is an in-neighbor of y and y is an out-neighbor of x. For v ∈ V(D), the
out-neighborhood and in-neighborhood of v, denoted by N+

D(v) = N+(v) and N−D(v) = N−(v), are the
sets of out-neighbors and in-neighbors of v, respectively. Likewise, N+

D[v] = N+[v] = N+(v) ∪ {v} and
N−D[v] = N−[v] = N−(v)∪{v}. In general, for a set X ⊆ V(D), we denote N+

D(X) = N+(X) =
⋃

v∈X N+(v).
We write d+

D(v) = d+(v) = |N+(v)| for the out-degree of a vertex v and d−D(v) = d−(v) = |N−(v)| for its in-
degree. The maximum out-degree of D is denoted by ∆+(D) = ∆+. Let D1 = (V1, A1) and D2 = (V2, A2)
be two digraphs. The Cartesian product of D1 and D2 is the digraph D1�D2 with vertex set V1 × V2

and for (x1, y1), (x2, y2) ∈ V(D1�D2), ((x1, y1), (x2, y2)) ∈ A(D1�D2) if and only if either (x1, x2) ∈ A1

and y1 = y2, or x1 = x2 and (y1, y2) ∈ A2.
A directed star is a digraph of order n ≥ 2 with vertex set {u1, u2, . . . , un} and arc set {(u1, ui) : 2 ≤
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i ≤ n}. We call the center of a directed star to be a vertex of maximum out-degree. A leaf of a digraph
D is a vertex of out-degree 0 and in-degree 1. For a vertex v ∈ X ⊆ V(D), the private neighborhood
pn(v, X) of v is defined by pn(v, X) = N+(v)\N+(X\{v}). The complement of a digraph D denoted by D
is the digraph with vertex set V(D) defined by (u, v) ∈ A(D) if and only if (u, v) < A(D). An oriented
tree is a digraph that can be obtained from a tree by assigning a direction to (that is, orienting) each
edge of the tree. We write Cn for the directed cycle of length n, Pn for the directed path of order n. For
a real-valued function f : V(D) → R, the weight of f is ω( f ) =

∑
x∈V(D) f (x), and for X ⊆ V(D), we

define f (X) =
∑

x∈X f (x), and hence ω( f ) = f (V(D)).
Let G be a finite, simple and undirected graph with vertex set V(G) and edge set E(G). A function

f : V(G) → {0, 1, 2} is an Italian dominating function (IDF) on G if each vertex v ∈ V(G) assigned
0 under f satisfies

∑
x∈N(v) f (x) ≥ 2, where N(v) = {x ∈ V(G) : vx ∈ E(G)}. The minimum value of∑

x∈V(G) f (x) of an IDF f on G is called the Italian domination number of G. The Italian domination
was introduced in [2] and has been studied by several authors [1, 6, 7, 12–14, 17]. For more details on
Italian domination, we refer the reader to the recent book chapter [5] and survey paper [3].

A function f : V(D) → {0, 1, 2} is an Italian dominating function (IDF) on a digraph D if each
vertex v ∈ V(D) assigned 0 under f satisfies

∑
x∈N−(v) f (x) ≥ 2. The minimum weight of an IDF on D

is called the Italian domination number of D and is denoted by γI(D). And we say that a function f
is a γI(D)-function if it is an IDF with weight γI(D). Hao et al. [8] and Volkmann [18] independently
introduced the concept of Italian domination in digraphs. This parameter has been studied in [16, 19].
For more details on Roman domination parameters in digraphs, we refer the reader to [4].

Let G be the complement of an undirected graph G. A subset F of E(G) is an Italian reinforcement
set (IR-set) of G if γI(G + F) ≤ γI(G) − 1. The Italian reinforcement number of a graph G is the
minimum size of an IR-set of G. In [9], Hao et al. introduced this concept.

Following the ideas in [9], Kim [15] initiated the study of Italian reinforcement number in digraphs.
For a digraph D, a subset F of A(D) is an Italian reinforcement set (IR-set) of D if γI(D+F) ≤ γI(D)−1.
The Italian reinforcement number of a digraph D, denoted by rI(D), is the minimum size of an IR-set
of D. An rI(D)-set is an IR-set F of D with |F| = rI(D). It is clear that if 1 ≤ γI(D) ≤ 2, then
addition of arcs does not reduce the Italian domination number. Thus if 1 ≤ γI(D) ≤ 2, then the Italian
reinforcement number is defined to be 0. Consequently we always assume that when we discuss rI(D),
all digraphs involved satisfy γI(D) ≥ 3.

For an IDF f on D, let Vi = {v ∈ V(D) : f (v) = i} for i ∈ {0, 1, 2} and hence f can be represented by
the ordered triple (V0,V1,V2) (or (V f

0 ,V
f

1 ,V
f

2 ) to refer f ) of V(D) induced by f .
The aim of this paper is to continue the study of Italian reinforcement number in digraphs. We

establish some new sharp upper bounds on the Italian reinforcement number. Also, we determine the
exact values of rI(P2�Pn), rI(P3�Pn), rI(P3�Cn), rI(C3�Pn) and rI(C3�Cn).

2. Preliminaries

In this section, some fundamental results that are used in this paper are herein recalled. The reader
is referred to [15] for more information and details.

Proposition A. Let D be a digraph with γI(D) ≥ 3, F be an rI(D)-set and let f be a γI(D+F)-function.
Then

(a) For each arc (u, v) ∈ F, f (u) ∈ {1, 2} and f (v) = 0.
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(b) γI(D + F) = γI(D) − 1.

Proposition B. Let D be a digraph with γI(D) ≥ 3. Then rI(D) = 1 if and only if there exist a
γI(D)-function f = (V0,V1,V2) and a vertex v ∈ V1 such that one of the following conditions holds:

(a) f (N−D(v)) = 0, f (N−D(x)\{v}) ≥ 2 for each x ∈ N+
D(v) ∩ V0 and V2 , ∅.

(b) f (N−D(v)) = 1 and f (N−D(x)\{v}) ≥ 2 for each x ∈ N+
D(v) ∩ V0.

Proposition C. For any digraph D of order n with γI(D) ≥ 3,

rI(D) ≤ n − ∆+ − γI(D) + 2.

Proposition D. If D is a digraph of order n ≥ 3 with ∆+(D) ≥ 1 and γI(D) = n, then rI(D) = 1.

Hao et al. [8] showed that for any integer n ≥ 3, γI(Pn) = γI(Cn) = n, which, together with
Proposition D, would yield the following result directly.

Corollary 2.1. For any integer n ≥ 3, rI(Pn) = rI(Cn) = 1.

3. Upper bounds on rI(D)

Our aim in this section is to derive some sharp upper bounds for Italian reinforcement number in
digraphs.

Proposition 3.1. Let D be a digraph and let H be a subdigraph of D with γI(H) = γI(D) ≥ 3. Then
rI(D) ≤ rI(H).

Proof. Let F be an rI(H)-set. Since H + F is a subdigraph of D + (F\A(D)), we conclude from
Proposition A(b) that

γI(D + (F\A(D))) ≤ γI(H + F) < γI(H) = γI(D).

This implies that F\A(D) is an IR-set of D and so rI(D) ≤ |F\A(D)| ≤ |F| = rI(H), as desired. �

Note that Pn is a subdigraph of Cn and γI(Pn) = γI(Cn) = n for n ≥ 3. Moreover, it follows from
Corollary 2.1 that rI(Pn) = rI(Cn) = 1. This demonstrates the sharpness of Proposition 3.1.

Theorem 3.2. For any digraph D with γI(D) ≥ 3, let f = (V0,V1,V2) be a γI(D)-function. Then

(a) If v ∈ V1, then rI(D) ≤ |(N+(v)\pn(v,V1)) ∩ V0| + 2.
(b) If v ∈ V2, then rI(D) ≤ |pn(v,V2) ∩ V0|.

Proof. (a) Let v ∈ V1. First, assume that V2 , ∅. Let w ∈ V2 and let
F = ({(w, x) : x ∈ (N+(v)\pn(v,V1)) ∩ V0} ∪ {(w, v)})\A(D). Note that every vertex in pn(v,V1) ∩ V0

has at least one in-neighbor in V2. Thus the function h1 defined by h1(v) = 0 and h1(x) = f (x) for each
x ∈ V(D)\{v} is an IDF on D + F with ω(h1) = ω( f ) − 1 and hence F is an IR-set of D, implying that

rI(D) ≤ |F| ≤ |(N+(v)\pn(v,V1)) ∩ V0| + 1.

Second, assume that V2 = ∅. This forces pn(v,V1) ∩ V0 = ∅. Note that there must exist two distinct
vertices v1, v2 ∈ V1\{v} since γI(D) ≥ 3. Let U1 = N+(v) ∩ N+(v1) ∩ V0, U2 = (N+(v)\N+(v1)) ∩ V0 and
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let F = ({(v1, v), (v2, v)} ∪ {(v2, x) : x ∈ U1} ∪ {(v1, x) : x ∈ U2})\A(D). One can check that the function
h1 defined earlier is an IDF on D + F with ω(h1) = ω( f ) − 1 and hence F is an IR-set of D, implying
that

rI(D) ≤ |F|
≤ |{(v2, x) : x ∈ U1} ∪ {(v1, x) : x ∈ U2}| + 2
= |(N+(v) ∩ V0)| + 2
= |(N+(v)\pn(v,V1)) ∩ V0| + 2,

where the last ‘=’ holds since pn(v,V1) ∩ V0 = ∅.
As a result, (a) is true.
(b) Let v ∈ V2. Then there must exist a vertex w ∈ V1 ∪ V2 since γI(D) ≥ 3. Let F = {(w, x) : x ∈

pn(v,V2) ∩ V0}\A(D). It is obvious that the function h2 defined by h2(v) = 1 and h2(x) = f (x) for each
x ∈ V(D)\{v} is an IDF on D + F with ω(h2) = ω( f ) − 1 and hence F is an IR-set of D, implying that

rI(D) ≤ |F| ≤ |pn(v,V2) ∩ V0|,

as desired.
This completes the proof. �

Remark 1. The upper bounds in Theorem 3.2 are sharp. To see this, consider the following two
examples.

(a) Let D be the digraph with vertex set X ∪ Y , where X = {xi : 1 ≤ i ≤ 4} and Y = {yi :
1 ≤ i ≤ 4}, and arc set {(xi, x j), (yi, y j) : 1 ≤ i ≤ 2, 3 ≤ j ≤ 4}. One can check that the function
f = ({x3, x4, y3, y4}, {x1, x2, y1, y2}, ∅) is a γI(D)-function and hence γI(D) = 4.

We next prove that rI(D) ≥ 4. Let F be an rI(D)-set and let g be a γI(D + F)-function. We deduce
from Proposition A(b) that ω(g) = γI(D + F) = γI(D)− 1 = 3. If g(X) = 0 (resp., g(Y) = 0), then every
vertex of X (resp., Y) is incident from one arc in F and so |F| ≥ |X| = 4 (resp., |F| ≥ |Y | = 4). So in
the following we may assume that g(X) ≥ 1 and g(Y) ≥ 1. Recall that g(X) + g(Y) = ω(g) = 3. By
symmetry, assume that g(X) = 2 and g(Y) = 1.

First, assume that exactly one vertex of X is assigned 2 under g and the others are assigned 0 under
g. Without loss of generality, assume that g(x2) = 0. Since d−D(x2) = 0, x2 is incident from one arc in
F. Moreover, since g(Y) = 1, each of exactly three vertices of Y assigned 0 under g is incident from at
least one arc in F. As a result, we have |F| ≥ 4.

Second, assume that exactly two vertices of X are assigned 1 under g. This forces Vg
2 = ∅. Recall

that g(Y) = 1. If g(y1) = 1 (the case g(y2) = 1 is similar), then g(y2) = g(y3) = g(y4) = 0 and hence
y2 is incident from two arcs in F and each of y3 and y4 is incident from one arc in F, implying that
|F| ≥ 4. If g(y3) = 1 (the case g(y4) = 1 is similar), then g(y1) = g(y2) = 0 and hence each of y1 and y2

is incident from two arcs in F, implying that |F| ≥ 4.
Therefore, the above arguments mean that rI(D) = |F| ≥ 4. Now let F′ = {(x1, y2), (x2, y2),

(x1, y3), (x1, y4)}. It is not difficult to verify that the function h = ({x3, x4, y2, y3, y4}, {x1, x2, y1}, ∅) is an
IDF on D + F′ with ω(h) = 3 < γI(D) and hence F′ is an IR-set of D. Thus rI(D) ≤ |F′| = 4. As a
result, we obtain rI(D) = 4.

Note that f = ({x3, x4, y3, y4}, {x1, x2, y1, y2}, ∅) is a γI(D)-function. We have that for 1 ≤ i ≤ 2,

rI(D) = |(N+(xi)\pn(xi,V
f

1 )) ∩ V f
0 | + 2
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= |(N+(yi)\pn(yi,V
f

1 )) ∩ V f
0 | + 2

= 4.

(b) Let t ≥ s ≥ 3 and p ≥ 1 be arbitrary integers and let D be the digraph with vertex set {ui : 1 ≤
i ≤ s} ∪ {vi : 1 ≤ i ≤ t} ∪ {wi : 1 ≤ i ≤ p} and arc set {(u1, ui) : 2 ≤ i ≤ s} ∪ {(v1, vi) : 2 ≤ i ≤
t} ∪ {(u1,wi), (v1,wi) : 1 ≤ i ≤ p}.

Let g1 be a γI(D)-function. If there exists some vertex in {u2, u3, . . . , us} assigned 0 under g1, then
g1(u1) = 2 and if each vertex in {u2, u3, . . . , us} is assigned 1 or 2 under g1, then

∑s
i=2 g1(ui) ≥ s − 1.

In either case, we have
∑s

i=1 g1(ui) ≥ 2. Similarly, we have
∑t

i=1 g1(vi) ≥ 2. Therefore, γI(D) ≥ 4. On
the other hand, the function f = (V(D)\{u1, v1}, ∅, {u1, v1}) is an IDF on D and so γI(D) ≤ ω( f ) = 4.
Consequently, we have γI(D) = 4. This also implies that the function f is a γI(D)-function.

We next prove that rI(D) = s − 1. Let F′ = {(v1, ui) : 2 ≤ i ≤ s}. Then the function g2 defined
by g2(u1) = 1, g2(v1) = 2 and g2(x) = 0 otherwise, is an IDF on D + F′ with ω(g2) = 3 < γI(D),
and hence F′ is an IR-set of D. Thus rI(D) ≤ |F′| = s − 1. Therefore it is enough to prove that
rI(D) ≥ s − 1. Let F be an rI(D)-set and let h be a γI(D + F)-function. We conclude from Proposition
A(b) that ω(h) = γI(D + F) = γI(D) − 1 = 3. If

∑t
i=1 h(vi) ∈ {0, 1}, then at least t − 1 vertices in

{v1, v2, . . . , vt} is incident from an arc in F and hence |F| ≥ t − 1 ≥ s − 1. If
∑t

i=1 h(vi) ∈ {2, 3}, then this
forces

∑s
i=1 h(ui) ∈ {0, 1} and hence at least s− 1 vertices in {u1, u2, . . . , us} is incident from an arc in F,

implying that |F| ≥ s − 1. As a result, we obtain rI(D) = s − 1.
Note that the function f = (V(D)\{u1, v1}, ∅, {u1, v1}) is a γI(D)-function, |pn(u1,V

f
2 ) ∩ V f

0 | = s − 1
and |pn(v1,V

f
2 ) ∩ V f

0 | = t − 1. Thus if s = t, then

rI(D) = s − 1 = |pn(u1,V
f

2 ) ∩ V f
0 | = |pn(v1,V

f
2 ) ∩ V f

0 |.

As an immediate consequence of Theorem 3.2, we have the following result on the Italian
reinforcement number of a digraph in terms of its maximum out-degree.

Corollary 3.3. For any digraph D with γI(D) ≥ 3, rI(D) ≤ ∆+ + 2.

The example of (a) in Remark 1 demonstrates that Corollary 3.3 is sharp. Using Corollary 3.3 and
Proposition C, we obtain the following result.

Corollary 3.4. Let D be a digraph of order n with γI(D) ≥ 3. Then rI(D) ≤ dn/2e.

Proof. If ∆+ ≤ dn/2e − 2, then it follows from Corollary 3.3 that rI(D) ≤ ∆+ + 2 ≤ dn/2e. If ∆+ ≥

dn/2e − 1, then by Proposition C, we get

rI(D) ≤ n − ∆+ − γI(D) + 2
≤ n − (dn/2e − 1) − 3 + 2
= bn/2c,

which completes our proof. �

The upper bound of Corollary 3.4 is sharp. For example, let D be the digraph with vertex set
{ui, vi : 0 ≤ i ≤ 3} and arc set {(ui, vi), (ui, vi+1) : 0 ≤ i ≤ 3}, where the indices are taken modulo 4.
It is not difficult to check that the function f = ({vi : 0 ≤ i ≤ 3}, {ui : 0 ≤ i ≤ 3}, ∅) is the unique
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γI(D)-function, the set F = {(u0, u3), (u1, u3), (u0, v3), (u1, v0)} is an rI(D)-set and g = ({u3} ∪ {vi : 0 ≤
i ≤ 3}, {ui : 0 ≤ i ≤ 2}, ∅) is a γI(D + F)-function. Therefore rI(D) = |F| = 4.

The upper bound of Corollary 3.3 can be improved if we restrict our attention to any digraph D with
at least one leaf and γI(D) ≥ 3.

Theorem 3.5. For any digraph D with at least one leaf and γI(D) ≥ 3, rI(D) ≤ max{2,∆+}.

Proof. Let u be a leaf of D, v be the unique in-neighbor of u and let f be a γI(D)-function. Clearly
f (u) ≤ 1. If f (u) = 0, then this forces f (v) = 2 and it follows from Theorem 3.2(b) that

rI(D) ≤ |pn(v,V f
2 ) ∩ V f

0 | ≤ ∆+ ≤ max{2,∆+}.

So in the following we may assume that f (u) = 1. It is not different to verify that f (v) ≤ 1. Define the
function g by g(u) = 0 and g(x) = f (x) for each x ∈ V(D)\{u}.

Assume first that f (v) = 1. Since γI(D) ≥ 3, there exists some vertex w ∈ V(D)\{u, v} such that
f (w) ≥ 1 and hence the function g defined earlier is an IDF on D+{(w, u)}withω(g) = ω( f )−1 < γI(D),
and so {(w, u)} is an IR-set of D, implying that rI(D) = 1 < max{2,∆+}.

Assume next that f (v) = 0. Then f (N−(v)) ≥ 2. If there exists some vertex w ∈ N−(v) such that
f (w) = 2, then the function g defined earlier is an IDF on D + {(w, u)} with ω(g) = ω( f ) − 1 < γI(D),
and so {(w, u)} is an IR-set of D, implying that rI(D) = 1 < max{2,∆+}. If there exist two different
vertices w1,w2 ∈ N−(v) such that f (w1) = f (w2) = 1, then the function g defined earlier is an IDF on
D + {(w1, u), (w2, u)} with ω(g) = ω( f )− 1 < γI(D), and so {(w1, u), (w2, u)} is an IR-set of D, implying
that rI(D) ≤ 2 ≤ max{2,∆+}.

This completes the proof. �

It is worth pointing out that the upper bound of Theorem 3.5 is sharp. We shall construct infinitely
many digraphs T with rI(T ) = max{2,∆+(T )}. Let ∆ ≥ 2 be an arbitrary integer and let T denote an
oriented tree with 1 ≤ ∆+(T ) ≤ ∆. For any vertex u ∈ V(T ), let S u denote a directed star of order ∆

with center C(S u). Define T (∆,T ) to be the digraph obtained from T ∪ (
⋃

u∈V(T ) S u) by adding a new
arc (C(S u), u) for each u ∈ V(T ).

Proposition 3.6. For an arbitrary integer ∆ ≥ 2, let T be an oriented tree with 1 ≤ ∆+(T ) ≤ ∆ and let
T = T (∆,T ). Then rI(T ) = max{2,∆+(T )}.

Proof. We now claim that γI(T ) = 2|V(T )|. It is easy to see that the function h1 defined by h1(C(S u)) =

2 for each u ∈ V(T ) and h1(x) = 0 otherwise, is an IDF on T and hence γI(T ) ≤ ω(h1) = 2|V(T )|. Thus
it is enough for us to prove that γI(T ) ≥ 2|V(T )|. Let h2 be a γI(T )-function. Noting that d−

T
(C(S u)) = 0

for each u ∈ V(T ), we have h2(C(S u)) ≥ 1 and hence if there exists a leaf x of S u such that h2(x) ≥ 1,
then h2(V(S u)) ≥ h2(C(S u)) + h2(x) ≥ 2 and if there exists a leaf x of S u such that h2(x) = 0, then
h2(V(S u)) ≥ h2(C(S u)) = 2. Consequently, we get

γI(T ) = ω(h2) ≥
∑

u∈V(T )

h2(V(S u)) ≥ 2|V(T )|.

We next prove that rI(T ) = max{2,∆+(T )}. It follows from Theorem 3.5 that
rI(T ) ≤ max{2,∆+(T )}. Note that max{2,∆+(T )} = ∆. Thus it is enough for us to prove that
rI(T ) ≥ ∆. Let F be an rI(T )-set and f be a γI(T + F)-function.
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Claim 3.7. For any vertex u ∈ V(T ) with f (V(S u)) ≤ 1, there must exist a vertex in V(S u) incident
from an arc in F.

Proof of Claim 3.7. Let u be any vertex of V(T ) with f (V(S u)) ≤ 1. Note that f (C(S u)) ≤ f (V(S u)) ≤ 1.
If f (C(S u)) = 0, then C(S u) is incident from an arc in F since d−

T
(C(S u)) = 0, and if f (C(S u)) = 1,

then f (V(S u)\{C(S u)}) = 0 and hence each vertex of V(S u)\{C(S u)} is incident from an arc in F. Thus
Claim 3.7 is true.

Claim 3.8. For any vertex u ∈ V(T ) with f (V(S u) ∪ {u}) ≤ 1,

(a) There exist ∆ − 1 vertices in V(S u) ∪ {u} incident from an arc in F.
(b) If the number of vertices in V(S u)∪ {u} incident from an arc in F is ∆ − 1, then f (V(S u)) = 1 and

u is not adjacent from an arc in F.

Proof of Claim 3.8. Let u be any vertex of V(T ) with f (V(S u)∪{u}) ≤ 1. It is obvious that f (V(S u)) ≤ 1.
If f (V(S u)) = 0, then each vertex of S u is adjacent from an arc in F, and if f (V(S u)) = 1, then each of
exactly ∆ − 1 vertices of S u assigned 0 under f is adjacent from an arc in F. Thus Claim 3.8 is also
true.

We deduce from Proposition A(b) that γI(T + F) = γI(T ) − 1 = 2|V(T )| − 1 and hence there exists
a vertex u ∈ V(T ) satisfying f (V(S u) ∪ {u}) ≤ 1. Moreover, if there exists a vertex v ∈ V(T )\{u}
satisfying f (V(S v) ∪ {v}) ≤ 1, then we conclude from Claim 3.8(a) that |F| ≥ 2(∆ − 1) ≥ ∆. So in the
following we may assume that u is the unique vertex satisfying f (V(S u) ∪ {u}) ≤ 1. This implies that
f (V(S w) ∪ {w}) ≥ 2 for each w ∈ V(T )\{u}.

If f (V(S u)) = 0 or u is incident from an arc in F, then we deduce from Claim 3.8 that rI(T ) = |F| ≥
∆. Suppose, next, that f (V(S u)) = 1 and u is not incident from an arc in F. This forces f (V(S u)∪{u}) =

1 and f (u) = 0. Furthermore, since ω( f ) = γI(T + F) = 2|V(T )| − 1 and f (V(S w) ∪ {w}) ≥ 2 for each
w ∈ V(T )\{u}, one can verify that f (V(S w) ∪ {w}) = 2. Since f (V(S u)) = 1, f (u) = 0 and u is not
incident from an arc in F, there must exist an in-neighbor, say v, of u in T with f (v) ≥ 1. Moreover, it is
clear that f (V(S v)∪{v}) = 2 since v ∈ V(T )\{u} and hence f (V(S v)) = f (V(S v)∪{v})− f (v) ≤ 1. Thus it
follows from Claim 3.7 that there must exist a vertex of V(S v) incident from an arc in F. Furthermore,
since f (V(S u)∪{u}) = 1, Claim 3.8(a) yields that there exist ∆−1 vertices in V(S u)∪{u} incident from
an arc in F. Therefore, we get rI(T ) = |F| ≥ ∆.

This completes the proof. �

Let r be a positive integer and let n = 2r + 1. We define the circulant tournament CT (n) of order n
with vertex set {u0, u1, . . . , un−1} as follows. For each i ∈ {0, 1, . . . , n − 1}, the arcs are going from ui to
the vertices ui+1, ui+2, . . . , ui+r, where the indices are taken modulo n. For Italian domination number,
Hao et al. [8] showed the following result.

Proposition E. ( [8]) Let r be a positive integer and let n = 2r + 1. Then

γI(CT(n)) =

{
3, if r = 1,
4, if r ≥ 2.

The following result, which can be deduced from Propositions C and E, indicates that the upper
bound in Proposition C is sharp.
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Proposition 3.9. Let r be a positive integer and let n = 2r + 1. Then

rI(CT(n)) =

{
1, if r = 1,
r − 1, if r ≥ 2.

Proof. If r = 1, that is, if CT (n) is a directed cycle of length 3, then Corollary 2.1 yields rI(CT (n)) = 1.
So in the following we may assume that r ≥ 2. By Propositions C and E, we have

rI(CT (n)) ≤ n − ∆+(CT (n)) − γI(CT (n)) + 2 = r − 1.

Hence it suffices to prove that rI(CT (n)) ≥ r − 1. Let F be an rI(CT (n))-set and let f = (V0,V1,V2) be
a γI(CT (n) + F)-function. Then by Propositions A(b) and E, we have

|V1| + 2|V2| = ω( f ) = γI(CT (n) + F) = γI(CT (n)) − 1 = 3.

This implies that |V1| = |V2| = 1, or |V1| = 3 and |V2| = 0.
Suppose now that |V1| = |V2| = 1. Without loss of generality, assume that u0 ∈ V2 and ui0 ∈ V1 for

some i0 ∈ {1, 2, . . . , 2r}. Then for each j ∈ {r + 1, r + 2, . . . , 2r}\{i0}, u j < N+
CT (n)(u0) and hence by the

definition of γI(CT (n) + F)-function, we have u j is adjacent from one arc in F. Thus rI(CT (n)) = |F| ≥
r − 1. Suppose next that |V1| = 3 and |V2| = 0. Without loss of generality, assume that u0, uk, ul ∈ V1

for 0 < k < l ≤ 2r.
First, assume that l − k < r, where k, l ∈ {1, 2, . . . , r}. Then N−CT (n)(u j) ∩ {u0, uk, ul} = {u0} for each

j ∈ {1, 2, . . . , k − 1}, N−CT (n)(u j) ∩ {u0, uk, ul} = {ul} for each j ∈ {k + r + 1, k + r + 2, . . . , l + r} and
N−CT (n)(u j)∩ {u0, uk, ul} = ∅ for each j ∈ {l + r + 1, l + r + 2, . . . , 2r}. This implies that rI(CT (n)) = |F| ≥
r − 1.

Second, assume that l − k < r, where k ∈ {2, 3, . . . , r} and l ∈ {r + 1, r + 2, . . . , 2r − 1}. Clearly
N−CT (n)(u j) ∩ {u0, uk, ul} = {u0} for each j ∈ {l − r, l − r + 1, . . . , k − 1}, N−CT (n)(u j) ∩ {u0, uk, ul} = {uk} for
each j ∈ {r +1, r +2, . . . , l−1} and N−CT (n)(u j)∩{u0, uk, ul} = {ul} for each j ∈ {k+r +1, k+r +2, . . . , 2r}.
This implies that rI(CT (n)) = |F| ≥ r − 1.

Third, assume that l− k < r, where k, l ∈ {r + 1, r + 2, . . . , 2r}. Clearly N−CT (n)(u j)∩ {u0, uk, ul} = {u0}

for each j ∈ {l − r, l − r + 1, . . . , r}, N−CT (n)(u j) ∩ {u0, uk, ul} = ∅ for each j ∈ {r + 1, r + 2, . . . , k − 1} and
N−CT (n)(u j)∩{u0, uk, ul} = {uk} for each j ∈ {k+1, k+2, . . . , l−1}. This implies that rI(CT (n)) = |F| ≥ r−1.

Finally assume that l − k ≥ r. Then 1 ≤ k ≤ r and r + 1 ≤ l ≤ 2r. It is clear that N−CT (n)(u j) ∩
{u0, uk, ul} = {uk} for each j ∈ {r + 1, r + 2, . . . , k + r}\{l}, N−CT (n)(u j) ∩ {u0, uk, ul} = ∅ for each j ∈
{k + r + 1, k + r + 2, . . . , l − 1} and N−CT (n)(u j) ∩ {u0, uk, ul} = {ul} for each j ∈ {l + 1, l + 2, . . . , 2r}. This
implies that rI(CT (n)) = |F| ≥ r − 1.

This completes the proof. �

4. Exact values

In this section, we first determine the exact values of γI(P2�Pn), γI(P3�Pn), γI(P3�Cn) and
γI(C3�Pn), based on which we further determine the exact values of Italian reinforcement number of
some classes of cartesian products.

Let m ∈ {2, 3} and n ≥ m be an integer. We emphasize that V(Pm�Pn) = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤
n} and A(Pm�Pn) = {((i, j), (i + 1, j)) : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n} ∪ {((i, j), (i, j + 1)) : 1 ≤ i ≤ m, 1 ≤
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j ≤ n − 1}. For notational convenience, if f is an IDF on Pm�Pn, then we denote a j =
∑m

i=1 f ((i, j)) for
each 1 ≤ j ≤ n.

Now we consider the exact value of Italian domination number of P2�Pn. We begin with the
following lemma.

Lemma 4.1. Let n ≥ 2 be an integer and let f be a γI(P2�Pn)-function. Then a1 ≥ 2 and a j ≥ 1 for
each j ∈ {2, 3, . . . , n}.

Proof. Since d−((1, 1)) = 0, we have f ((1, 1)) ≥ 1. If f ((1, 1)) = 2, then a1 ≥ f ((1, 1)) = 2. If
f ((1, 1)) = 1, then clearly f ((2, 1)) ≥ 1 since (1, 1) is the unique in-neighbor of (2, 1) and so a1 =

f ((1, 1)) + f ((2, 1)) ≥ 2. We next show that a j ≥ 1 for each j ∈ {2, 3, . . . , n}. Suppose, to the
contrary, that there exists some j ∈ {2, 3, . . . , n} such that a j = f ((1, j)) + f ((2, j)) = 0. Then by
the definition of γI(P2�Pn)-function, we have f ((1, j − 1)) = f ((2, j − 1)) = 2. One can check that
the function g defined by g((2, j − 1)) = 0, g((2, j)) = 1 and g(x) = f (x) otherwise, is an IDF on
P2�Pn with ω(g) = ω( f ) − 1 < γI(P2�Pn), a contradiction. As a result, we obtain a j ≥ 1 for each
j ∈ {2, 3, . . . , n}. �

Theorem 4.2. For any integer n ≥ 2, γI(P2�Pn) =
⌈

4n
3

⌉
.

Proof. Let f be a γI(P2�Pn)-function, a j = f ((1, j)) + f ((2, j)) for each j ∈ {1, 2, . . . , n} and let
b j = a j−2 + a j−1 + a j for each j ∈ {3, 4, . . . , n}.

Claim 4.3. For each j ∈ {3, 4, . . . , n}, b j ≥ 4.

Proof of Claim 4.3. Suppose, to the contrary, that there exists some j0 ∈ {3, 4, . . . , n} such that b j0 ≤ 3.
Note that for each j ∈ {1, 2, . . . , n}, a j ≥ 1 by Lemma 4.1. Therefore, we have b j0 = a j0−2 +a j0−1 +a j0 ≥

3. This forces a j0−2 = a j0−1 = a j0 = 1.
Assume first that f ((2, j0)) = 1. This implies that f ((1, j0)) = a j0 − f ((2, j0)) = 0. Since (1, j0 − 1)

is the unique in-neighbor of (1, j0), we have f ((1, j0 − 1)) = 2, a contradiction to the fact that f ((1, j0 −

1)) ≤ a j0−1 = 1.
Assume second that f ((2, j0)) = 0. This implies that f ((1, j0)) = a j0 − f ((2, j0)) = 1. Since f

is a γI(P2�Pn)-function, f ((2, j0 − 1)) ≥ 1. Moreover, since f ((2, j0 − 1)) ≤ a j0−1 = 1, we have
f ((2, j0−1)) = 1 and so f ((1, j0−1)) = 0. Noting that (1, j0−2) is the unique in-neighbor of (1, j0−1),
we obtain f ((1, j0 − 2)) = 2, a contradiction to the fact that f ((1, j0 − 2)) ≤ a j0−2 = 1.

So, this claim is true.
Therefore, by Lemma 4.1 and Claim 4.3, we have that if n ≡ 0 (mod 3), then

γI(P2�Pn) =

n
3∑

k=1

b3k ≥
4n
3

=

⌈
4n
3

⌉
,

if n ≡ 1 (mod 3), then

γI(P2�Pn) = a1 +

n−1
3∑

k=1

b3k+1 ≥ 2 +
4(n − 1)

3
=

⌈
4n
3

⌉
,
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and if n ≡ 2 (mod 3), then

γI(P2�Pn) = a1 + a2 +

n−2
3∑

k=1

b3k+2 ≥ 3 +
4(n − 2)

3
=

⌈
4n
3

⌉
.

On the other hand, the function g defined by

g((i, j)) =


1, if i = 1 and j ≡ 0 (mod 3),

or i = 2 and j ≡ 2 (mod 3),
2, if i = 1 and j ≡ 1 (mod 3),
0, otherwise,

is an IDF on P2�Pn and hence

γI(P2�Pn) ≤ ω(g) =

⌊n
3

⌋
+

⌈
n − 1

3

⌉
+ 2 ×

⌈n
3

⌉
=

⌈
4n
3

⌉
,

which completes our proof. �

We shall give the exact value of the Italian reinforcement number of P2�Pn. To our aim, the
following lemmas are essential.

Lemma 4.4. Let n ≥ 2 be any positive integer and let f be an IDF on P2�Pn. If there exists some
k ∈ {1, 2, . . . , n − 1} such that f ((1, k)) = 1 and f ((2, k)) = 0, then the restriction f ∗ of f on {(i, j) : 1 ≤
i ≤ 2, k + 1 ≤ j ≤ n} is an IDF on P2�Pn−k.

Proof. Let f ∗ be the restriction of f on {(i, j) : 1 ≤ i ≤ 2, k + 1 ≤ j ≤ n}. Since f ((1, k)) = 1 and
(1, k) is the unique in-neighbor of (1, k + 1), we have f ((1, k + 1)) ≥ 1. If f ((1, k + 1)) = 2, then clearly
f ∗ is an IDF on P2�Pn−k. And if f ((1, k + 1)) = 1, then we conclude from f ((2, k)) = 0 and the fact
(2, k + 1) has exactly two in-neighbors (2, k) and (1, k + 1), that f ((2, k + 1)) ≥ 1 and hence f ∗ is an IDF
on P2�Pn−k. �

Lemma 4.5. Let n ≡ 0 (mod 3) be any positive integer and let f be an IDF on P2�Pn. If an ≥ 2, then
ω( f ) ≥ 4n

3 + 1.

Proof. It is easy to check that the restriction f ∗ of f on {(i, j) : 1 ≤ i ≤ 2, 1 ≤ j ≤ n − 1} is an IDF on
P2�Pn−1 and hence by Theorem 4.2, ω( f ∗) ≥

⌈
4(n−1)

3

⌉
. Therefore, we obtain

ω( f ) = ω( f ∗) + an ≥

⌈
4(n − 1)

3

⌉
+ 2 =

4n
3

+ 1,

as desired. �

Lemma 4.6. Let n ≡ 0 (mod 3) be any positive integer and let f be an IDF on P2�Pn. If there exists
some k ∈ {1, 2, . . . , n − 1} such that f ((1, k)) = f ((2, k)) = 1 and ak+1 ≥ 2, then ω( f ) ≥ 4n

3 + 1.

AIMS Mathematics Volume 6, Issue 6, 6490–6505.



6500

Proof. Observe that the restriction f ∗1 of f on {(i, j) : 1 ≤ i ≤ 2, 1 ≤ j ≤ k − 1} is an IDF on P2�Pk−1

and hence by Theorem 4.2, ω( f ∗1 ) ≥
⌈

4(k−1)
3

⌉
. Let f ∗2 be the restriction of f on {(i, j) : 1 ≤ i ≤ 2, k + 1 ≤

j ≤ n}. Since (1, k) is the unique in-neighbor of (1, k + 1) and f ((1, k)) = 1, we have f ((1, k + 1)) ≥ 1.
If f ((1, k + 1)) = 1, then f ((2, k + 1)) ≥ 1 since ak+1 ≥ 2 and hence f ∗2 is an IDF on P2�Pn−k and
if f ((1, k + 1)) = 2, then clearly f ∗2 is also an IDF on P2�Pn−k. In either case, we conclude from
Theorem 4.2 that ω( f ∗2 ) ≥

⌈
4(n−k)

3

⌉
. Therefore, we obtain

ω( f ) = ω( f ∗1 ) + ω( f ∗2 ) + ak

≥

⌈
4(k − 1)

3

⌉
+

⌈
4(n − k)

3

⌉
+ 2

≥
4n
3

+ 1,

as desired. �

Lemma 4.7. Let n ≡ 0 (mod 3) be any positive integer, f be an IDF on P2�Pn and let k ∈ {2, 3, . . . , n}
such that ak−1 + ak ≥ 3. If n = k, or n > k and the restriction f ∗ of f on {(i, j) : 1 ≤ i ≤ 2, k + 1 ≤ j ≤ n}
is an IDF on P2�Pn−k, then ω( f ) ≥ 4n

3 + 1.

Proof. Observe that the restriction f ∗1 of f on {(i, j) : 1 ≤ i ≤ 2, 1 ≤ j ≤ k − 2} is an IDF on P2�Pk−2

and hence by Theorem 4.2, ω( f ∗1 ) ≥
⌈

4(k−2)
3

⌉
. Consequently, if n = k, then

ω( f ) = ω( f ∗1 ) + an−1 + an ≥

⌈
4(k − 2)

3

⌉
+ 3 =

4n
3

+ 1.

So in the following we may assume that n > k. Since the restriction f ∗ of f on {(i, j) : 1 ≤ i ≤ 2, k+1 ≤
j ≤ n} is an IDF on P2�Pn−k by our assumption, Theorem 4.2 yields ω( f ∗) ≥

⌈
4(n−k)

3

⌉
. Therefore, we

obtain

ω( f ) = ω( f ∗1 ) + ω( f ∗) + ak−1 + ak

≥

⌈
4(k − 2)

3

⌉
+

⌈
4(n − k)

3

⌉
+ 3

=
4n
3

+ 1,

as desired. �

In the next, we shall determine the Italian reinforcement number of P2�Pn.

Theorem 4.8. For any integer n ≥ 2,

rI(P2�Pn) =

{
2, if n ≡ 0 (mod 3),
1, otherwise.

Proof. If n ≡ 1 (mod 3), then the function h1 defined by

h1((i, j)) =



1, if i = 1 and j ≡ 0 (mod 3),
or i = 1 and j = n,
or i = 2 and j ≡ 2 (mod 3),

2, if i = 1, j ≡ 1 (mod 3) and j < n,
0, otherwise,
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is an IDF on P2�Pn + {((1, 1), (2, n))} and so ω(h1) =
⌈

4n
3

⌉
− 1 < γI(P2�Pn) by Theorem 4.2, implying

that the set {((1, 1), (2, n))} is an IR-set of P2�Pn and hence rI(P2�Pn) = 1. If n ≡ 2 (mod 3), then the
function h2 defined by

h2((i, j)) =


1, if i = 1 and j ≡ 0 (mod 3),

or i = 2, j ≡ 2 (mod 3) and j < n,
2, if i = 1 and j ≡ 1 (mod 3),
0, otherwise,

is an IDF on P2�Pn + {((1, 1), (2, n))} and so ω(h2) =
⌈

4n
3

⌉
− 1 < γI(P2�Pn) by Theorem 4.2, implying

that the set {((1, 1), (2, n))} is an IR-set of P2�Pn and hence rI(P2�Pn) = 1. If n ≡ 0 (mod 3), then the
function h3 defined by

h3((i, j)) =


1, if i = 1, j ≡ 0 (mod 3) and j < n,

or i = 2 and j ≡ 2 (mod 3),
2, if i = 1 and j ≡ 1 (mod 3),
0, otherwise,

is an IDF on P2�Pn +{((1, 1), (1, n)), ((1, 1), (2, n))} and so ω(h3) = 4n
3 −1 < γI(P2�Pn) by Theorem 4.2,

implying that the set {((1, 1), (1, n)), ((1, 1), (2, n))} is an IR-set of P2�Pn and hence rI(P2�Pn) ≤ 2.
It remains to prove that if n ≡ 0 (mod 3), then rI(P2�Pn) ≥ 2. For the sake of contradiction, we may

assume that rI(P2�Pn) = 1. Using Proposition B, there exists a γI(P2�Pn)-function f = (V0,V1,V2)
and a vertex v ∈ V1 such that one of the conditions (a) and (b) in Proposition B is true.

Suppose that (a) is true. Then V2 , ∅ and there exists some integer k ∈ {1, 2, . . . , n} such that one of
the following holds:

(I) f ((1, k)) = 1, f ((1, k − 1)) = f ((2, k)) = 0, f ((2, k − 1)) = 2 and if n > k, then f ((1, k + 1)) ≥ 1,
where v = (1, k).

(II) f ((1, k)) = 1, f ((1, k − 1)) = 0, f ((2, k)) ≥ 1 and if n > k, then f ((1, k + 1)) ≥ 1, where v = (1, k).
(III) f ((2, k)) = 1, f ((2, k− 1)) = f ((1, k)) = 0 and if n > k, then f ((1, k + 1)) = 2 and f ((2, k + 1)) = 0,

where v = (2, k).
(IV) f ((2, k)) = 1, f ((2, k − 1)) = f ((1, k)) = 0 and if n > k, then f ((2, k + 1)) ≥ 1, where v = (2, k).

First, assume that (I) holds. Notice that ak−1 + ak = 3. Thus if n = k, then by Lemma 4.7,
ω( f ) ≥ 4n

3 + 1, a contradiction to Theorem 4.2. And if n > k, then we deduce from Lemma 4.4 that the
restriction f ∗ of f on {(i, j) : 1 ≤ i ≤ 2, k + 1 ≤ j ≤ n} is an IDF on P2�Pn−k and hence Lemma 4.7
yields ω( f ) ≥ 4n

3 + 1, a contradiction to Theorem 4.2.
Second, assume that (II) holds. Since (1, k − 2) is the unique in-neighbor of (1, k − 1) and f ((1, k −

1)) = 0, we have ak−2 ≥ f ((1, k − 2)) = 2. And by Lemma 4.1, ak−1 ≥ 1 and so ak−2 + ak−1 ≥ 3.
Moreover, since f ((1, k)) = 1 and f ((2, k)) ≥ 1, the restriction f ∗ of f on {(i, j) : 1 ≤ i ≤ 2, k ≤ j ≤ n}
is an IDF on P2�Pn−k+1 and hence Lemma 4.7 yields ω( f ) ≥ 4n

3 + 1, a contradiction to Theorem 4.2.
Finally, assume that (III) or (IV) holds. Since (1, k − 1) is the unique in-neighbor of (1, k) and

f ((1, k)) = 0, we have f ((1, k − 1)) = 2 and hence ak−1 + ak = 3. Therefore, if n = k, then by Lemma
4.7, ω( f ) ≥ 4n

3 +1, a contradiction to Theorem 4.2. Suppose next that n > k. Let f ∗ be the restriction of
f on {(i, j) : 1 ≤ i ≤ 2, k +1 ≤ j ≤ n}. If (III) is true, then clearly f ∗ is an IDF on P2�Pn−k and hence by
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Lemma 4.7, ω( f ) ≥ 4n
3 + 1, a contradiction to Theorem 4.2. Assume now that (IV) is true. Since (1, k)

is the unique in-neighbor of (1, k + 1) and f ((1, k)) = 0, we have f ((1, k + 1)) ≥ 1. Moreover, since
f ((2, k + 1)) ≥ 1, f ∗ is an IDF on P2�Pn−k. Thus again by Lemma 4.7, ω( f ) ≥ 4n

3 + 1, a contradiction
to Theorem 4.2.

Suppose, next, that (b) is true. Then there exists some integer k ∈ {1, 2, . . . , n} such that one of the
following holds:

(V) f ((1, k − 1)) = f ((1, k)) = 1, f ((2, k − 1)) = 2, f ((2, k)) = 0 and if n > k, then f ((1, k + 1)) ≥ 1,
where v = (1, k).

(VI) f ((1, k − 1)) = f ((1, k)) = 1, f ((2, k)) ≥ 1 and if n > k, then f ((1, k + 1)) ≥ 1, where v = (1, k).
(VII) f ((1, k)) = 0, f ((2, k− 1)) = f ((2, k)) = 1 and if n > k, then f ((1, k + 1)) = 2 and f ((2, k + 1)) = 0,

where v = (2, k).
(VIII) f ((1, k)) = 0, f ((2, k − 1)) = f ((2, k)) = 1 and if n > k, then f ((2, k + 1)) ≥ 1, where v = (2, k).

(IX) f ((1, k)) = f ((2, k)) = 1, f ((2, k− 1)) = 0 and if n > k, then f ((1, k + 1)) = 2 and f ((2, k + 1)) = 0,
where v = (2, k).

(X) f ((1, k)) = f ((2, k)) = 1, f ((2, k − 1)) = 0 and if n > k, then f ((2, k + 1)) ≥ 1, where v = (2, k).

First, assume that (V) holds. One can check that the function g1 defined by g1((2, k − 1)) = 1 and
g1(x) = f (x) otherwise, is an IDF on P2�Pn and hence ω(g1) = ω( f )− 1 < γI(P2�Pn), a contradiction.

Second, assume that (VI) holds. If n = k, then an ≥ 2 and hence by Lemma 4.5, ω( f ) ≥ 4n
3 + 1, a

contradiction to Theorem 4.2. Hence we may assume that n > k. Since f ((1, k + 1)) ≥ 1, we have that
if f ((2, k)) = 2, then the function g2 defined by g2((2, k)) = 1 and g2(x) = f (x) otherwise, is an IDF on
P2�Pn and hence ω(g2) = ω( f ) − 1 < γI(P2�Pn), a contradiction. As a result, we have f ((2, k)) ≤ 1.
Moreover, since f ((2, k)) ≥ 1, f ((2, k)) = 1. If ak+1 ≥ 2, then by Lemma 4.6, ω( f ) ≥ 4n

3 + 1, a
contradiction to Theorem 4.2. Thus ak+1 ≤ 1. Moreover, since ak+1 ≥ f ((1, k + 1)) ≥ 1, we have
ak+1 = 1. This implies that f ((1, k + 1)) = 1 and f ((2, k + 1)) = 0. If n = k + 1, then an−1 + an = 3
and so by Lemma 4.7, ω( f ) ≥ 4n

3 + 1, a contradiction to Theorem 4.2. Suppose, next, that n > k + 1.
Then Lemma 4.4 yields that the restriction f ∗ of f on {(i, j) : 1 ≤ i ≤ 2, k + 2 ≤ j ≤ n} is an IDF
on P2�Pn−k−1. Recall that ak + ak+1 = 3. Then by Lemma 4.7, ω( f ) ≥ 4n

3 + 1, a contradiction to
Theorem 4.2.

Third, assume that (VII) or (VIII) holds. Since (1, k − 1) is the unique in-neighbor of (1, k) and
f ((1, k)) = 0, this forces f ((1, k−1)) = 2. One can check that the function g3 defined by g3((2, k−1)) =

0 and g3(x) = f (x) otherwise, is an IDF on P2�Pn and hence ω(g3) = ω( f ) − 1 < γI(P2�Pn), a
contradiction.

Finally, assume that (IX) or (X) holds. If n = k, then Lemma 4.5 yields ω( f ) ≥ 4n
3 + 1 since an = 2,

a contradiction to Theorem 4.2. Hence we may assume that n > k. Note that f ((1, k)) = f ((2, k)) = 1.
If (IX) holds, then ak+1 = 2 and so we conclude from Lemma 4.6 that ω( f ) ≥ 4n

3 + 1, a contradiction
to Theorem 4.2. Assume, next, that (X) holds. Since (1, k) is the unique in-neighbor of (1, k + 1) and
f ((1, k)) = 1, we have f ((1, k + 1)) ≥ 1 and hence ak+1 = f ((1, k + 1)) + f ((2, k + 1)) ≥ 2. Moreover,
since f ((1, k)) = f ((2, k)) = 1, we have ω( f ) ≥ 4n

3 + 1 by Lemma 4.6, a contradiction to Theorem 4.2.
The proof is completed. �

Next we determine the exact value of γI(P3�Pn). We begin with the following lemmas. Analogous
to Lemma 4.1, we first obtain the following result.

AIMS Mathematics Volume 6, Issue 6, 6490–6505.



6503

Lemma 4.9. Let n ≥ 3 be an integer and let f be a γI(P3�Pn)-function. Then a1 ≥ 3 and a j ≥ 1 for
each j ∈ {2, 3, . . . , n}.

Lemma 4.10. Let n ≥ 3 be an integer and let f be a γI(P3�Pn)-function. If a j = 1 for some j ∈
{2, 3, . . . , n}, then a j−1 ≥ 3.

Proof. Suppose that there exists some j ∈ {2, 3, . . . , n} such that a j = 1. Then f ((1, j)) + f ((2, j)) +

f ((3, j)) = 1. If f ((1, j)) = 1, then f ((2, j)) = f ((3, j)) = 0. This forces f ((2, j − 1)) ≥ 1 and
f ((3, j − 1)) = 2, implying that a j−1 ≥ 3. If f ((2, j)) = 1, then f ((1, j)) = f ((3, j)) = 0. This forces
f ((1, j − 1)) = 2 and f ((3, j − 1)) ≥ 1, implying that a j−1 ≥ 3. If f ((3, j)) = 1, then f ((1, j)) =

f ((2, j)) = 0. This forces f ((1, j− 1)) = f ((2, j− 1)) = 2, implying that a j−1 ≥ 4, which completes our
proof. �

Theorem 4.11. For any integer n ≥ 3, γI(P3�Pn) = 2n.

Proof. Let f be a γI(P3�Pn)-function. By Lemmas 4.9 and 4.10, we obtain γI(P3�Pn) = ω( f ) =∑n
j=1 a j ≥ 2n. Hence it suffices for us to prove that γI(P3�Pn) ≤ 2n. If n ≡ 1(mod3), then the function

g1 defined by

g1((i, j)) =



2, if i = 1 and j = 3k − 2 for 1 ≤ k ≤ (n − 1)/3,
1, if i ∈ {1, 2} and j = n,

or i ∈ {1, 3} and j = 3k for 1 ≤ k ≤ (n − 1)/3,
or i = 2 and j = 3k − 1 for 1 ≤ k ≤ (n − 1)/3,
or i = 3 and j = 3k − 2 for 1 ≤ k ≤ (n − 1)/3,

0, otherwise,

is an IDF on P3�Pn and hence

γI(P3�Pn) ≤ ω(g1) = 2 × (n − 1)/3 + 2 + 4 × (n − 1)/3 = 2n.

If n . 1(mod3), then the function g2 defined by

g2((i, j)) =



2, if i = 1 and j = 3k − 2 for 1 ≤ k ≤ dn/3e,
1, or i ∈ {1, 3} and j = 3k for 1 ≤ k ≤ bn/3c,

or i = 2 and j = 3k − 1 for 1 ≤ k ≤ dn/3e,
or i = 3 and j = 3k − 2 for 1 ≤ k ≤ dn/3e,

0, otherwise,

is an IDF on P2�Pn and hence

γI(P3�Pn) ≤ ω(g2) = 4 × dn/3e + 2 × bn/3c = 2n,

which completes our proof. �

Kim [16] determined the exact value of the cartesian product of two directed cycles C3 and Cn as
follows.

Proposition F. For any integer n ≥ 3, γI(C3�Cn) = 2n.
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As a consequence of Theorem 4.11 and Proposition F, we have the following result.

Corollary 4.12. For any integer n ≥ 3, γI(P3�Cn) = γI(C3�Pn) = 2n.

Proof. Since P3�Pn is a subdigraph of P3�Cn and P3�Cn is a subdigraph of C3�Cn, we deduce from
Theorem 4.11 and Proposition F that

2n = γI(P3�Pn) ≥ γI(P3�Cn) ≥ γI(C3�Cn) = 2n.

This implies that γI(P3�Cn) = 2n. Similarly, we have γI(C3�Pn) = 2n. �

Theorem 4.13. For any integer n ≥ 3,

rI(P3�Pn) = rI(P3�Cn) = rI(C3�Pn) = rI(C3�Cn) = 1.

Proof. By Theorem 4.11, Proposition F and Corollary 4.12, we have
γI(P3�Pn) = γI(P3�Cn) = γI(C3�Pn) = γI(C3�Cn) = 2n. Moreover, we note that P3�Pn is a
subdigraph of P3�Cn, C3�Pn and C3�Cn. Thus by Proposition 3.1, it is enough to prove
rI(P3�Pn) = 1. One can check that if n ≡ 1 (mod 3) (resp., n . 1 (mod 3)), then the function g1

(resp., g2) defined as in Theorem 4.11 is a γI(P3�Pn)-function, and g1 (resp., g2) and the vertex (3, 3)
satisfy the condition (a) of Proposition B. Thus by Proposition B, rI(P3�Pn) = 1, as desired. �

5. Conclusions

The main objective of this paper is to study the Italian reinforcement number of a digraph D defined
to be the minimum number of arcs which must be added to D in order to decrease the Italian domination
number of D. We first establish some new sharp upper bounds on the Italian reinforcement number
and then we determine the exact values of rI(P2�Pn), rI(P3�Pn), rI(P3�Cn), rI(C3�Pn) and rI(C3�Cn).
Analogous work can be carried out for other digraph parameters such as double Italian domination.
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