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Abstract: In this paper, we study the Cauchy problem of the isothermal system in a general nozzle
with space-dependent friction a(x). First, by using the maximum principle, we obtain the uniform
bound p?*7 < M, [m**7| < M, independent of the time, of the viscosity-flux approximation solutions;
Second, by using the compensated compactness method coupled with the convergence framework
given in [5], we prove that the limit, (p, m) of (0*7, m**7), as &, 6, T go to zero, is a uniformly bounded
entropy solution.
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1. Introduction

The following isentropic gas dynamics system in a general nozzle with friction, whose physical
phenomena called “choking or choked flow”,

(1.1)

— _dW
i+ (pu)x = =25 pu,
(pu), + (pu? + P(p)), = =<2 pu? — a(x)pulul,
is of interest because resonance occurs. This means there is a coincidence of wave speeds from different

families of waves (see [2,4,6,7,16] and the references cited therein for the details). Here p is the density
of gas, u the velocity, P = P(p) the pressure, a(x) is a slowly variable cross section area at x in the
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nozzle and a(x) denotes a friction function. For the polytropic gas, P takes the special form P(p) = %py,
where y > 1 is the adiabatic exponent and for the isothermal gas, y = 1.
The Cauchy problem of system (1.1) with bounded initial data

((p(x,0), u(x, 0)) = (po(x), u(x)),  po(x) 20, (1.2)

in the simplest divergent nozzle (with respect to a’(x) > 0) was first obtained in [19] for the usual gases
I<y< %, and later, extended in [8] to the case of v > 1, provided that the initial data are bounded and
satisfy the very special condition z(py(x), up(x)) < 0.

When y = 1, the global existence of symmetrical weak solutions of the isothermal gas dynamics
system (1.1) without a friction (o = 0) in the Lagrangian coordinates was well studied in [12,13,20,21]
by using the Glimm scheme method [3, 15]; and in the Euler coordinates studied in [1, 9] by using the
compensated compactness theory [5, 14, 18]. The global existence of weak solutions of the isothermal
gas dynamics system (1.1) with a constant friction was studied in [10], where, the maximum principle
was used directly to obtain the a-priori dependent-time L™ estimate 0 < p < M(T), |u| < M(T) under
the conditions |A(x)| = % <M and a > 0.

In this paper, by carefully applying the maximum principle and the viscosity-flux approximation
method introduced in [11], under the more general conditions A(x) € L!, a(x) € L', we improve the
above time-dependent bound M(T) to a constant bound M, which ensures that the entropy solutions of
the Cauchy problem (1.1) and (1.2) we obtained are stable.

The main result is given in the following

Theorem 1.1. Let P(p) = p, 0 < a;, < a(x) < Ay for x in any compact set x € (—L, L), A(x) = —‘::((;))

L'(R) and a(x) € L'(R), where Ay, a; are positive constants, but could depend on L. Moreover; if

1 1
|A(X)|L1(R) < E, |CY(X)|L1(R) < E (1.3)

and the bounded initial data satisfy

(1.4)

In(po(x)a(x)) — ug(x) < M = 3(|A(X)| gy + (X)L ®)),
In(po(x)a(x)) + up(x) < M,

where M > 1 is a constant, then the Cauchy problem (1.1) and (1.2) have a bounded weak solution
(o, u), which has the following uniform bound

In(pa(x)) —u < M,
In(pa(x)) + u < M — 3(|AX)| 11 ®) + |@(X)|11®))s

and satisfies system (1.1) in the sense of distributions and the following Laxs entropy condition
f f (0, M)y + q(p, My + (A pu + (A)pu® + a(X)pulul)n,)pdxdt = 0, (1.5)
0 —00

where (1, q) is a pair of entropy-entropy flux of system (1.1), n is convex, and ¢ € C7(R X R* —{t = 0})
is a nonnegative function.
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2. Proof of Theorem 1.1

Let v = pa(x) and rewrite (1.1) as follows

{vt + (vu), =0, 2.1

(vu), + Vu* +v), + A(x)v + avulu| = 0.
The two eigenvalues of (2.1) are 4y = u — 1 and A, = u + 1, with corresponding Riemann invariants
z(v,m) = In(v) — m and w(v,m) = In(v) + ﬂ,
v v

where m = vu.
First, we add the viscosity parameter € > 0 and the flux-approximation parameter 6 > 0 to
system (2.1) to obtain the following parabolic system

Vi + (v =20)u), = evyy, (22)
), + (v = Ou? + v =28 In(v)), + AT(x)sgn(A(x))v + " (x)sgn(a(x))vulu| = (Vi) s ‘
with initial data
((x,0), u(x,0)) = (V(x), uj(x)), (2.3)

where
(V5 (x), uy(x)) = (a(x)po(x) + 26, up(x)) * G°, (A"(x), a"(x)) = (A, la(x)]) * G,

and G°, GT are two mollifiers and 7 > 0 is the regularity parameter. Then by the conditions given in
Theorem 1.1, we have

(5(x), u)(x)) € C*(R) x C*(R), vy (x) < 26, Vo (x) + |ud(x) < M

and
{O <A7(x) € C*(R) N L'(R), 0 <a’(x) e C*(R)N L'(R),

AT <M, |29 <M, jer @M, 7|2 <M.

Second, we multiply (2.2) by (w,, w,,) and (z,, z,»), respectively, to obtain

it /l(lszx - AT(X)Sgn(A(x)) - aT(x)Sgn(a(x))ulul = & — 8(Zvvv)25 + 2vavxmx + mem)zc)
2e ev? (2.4)
= EZxx T Vil — —
1% 1%
and

w; + /lgwx + AT(x)sgn(A(x)) + a’(x)sgn(a(x))ulu| = ew,, — s(wwvi + 2Wy Vi, + wmmmi)
2e ev? (2.5)

= EWyge + — VW — 5,
% v

where 1§ = u — 20 and A = u + =2,
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Let X(x) = 3(A™(x) + a"(x)), then | X(x)|.1g) < % by the condition (1.3). Making the transformations
of z=z; + B(x), w = w; + C(x), where

B(x) =M - fx X(s)ds > %, Cx)=M+ fx X(s)ds > %,

(9

for a positive constant M > 1, we have from (2.4) and (2.5) that

2+ 21 — B'(0)21 — B'(x)B(x) + B'(x) In(v)

-2
~ B>

— AT(0)sgn(A(x)) — " (x)sgn(a(x))ulul

2
EVY

FeB () + vz + 220 B ()
= &7 + EB(X) + —Vv, 25, + —V, B/ (x) - —=
71 ” 21 ; 2 (2.6)

2e Vy
= £215 + 6B (X) + —v,21, — 8(= = B'(x))” + £B”(x)
v v
2¢e
< €215 + EB7(X) + =21, + 8B (%)
1%
and

wi + Bwi + C()w; + C'(x)C(x) — C’'(x) In(v)

v—20

+ C'(x) + AT(x)sgn(A(x)) + a’(x)sgn(a(x))u|u|

v
2e e ev?
= ot eC”(X)+ —vwi + —v,C'(x) — —
ew eC"(x) ” VW " v,C'(x) 7 2.7)

2 .
= Wi + C7(x) + —gvxwlx - s(v— —C'(x)? + eC™*(x)
Y y

2g
< ewpgy + &C7(X) + =v,wi, + eC(X).
v

Clearly, we can choose a suitable small positive constant £; and € = o(g), T = o(g;) such that the
following terms in (2.6) and (2.7) satisfy

—&,B'(x)B(x) — eB”(x) — eB?*(x) = 1 X(x) + eX’'(x) — eX*(x)
> X(x) —etMX(x) —eMX(x) >0,
£1C"(x)C(x) — eC”(x) — eC™(x) = £, X(x) — €X' (x) — eX*(x)
> X(x)—etMX(x) —eMX(x) > 0.

(2.8)

Since the initial data v)(x) > 26, we may obtain the a priori estimate v**7(x) > 26 by applying the
maximum principle to the first equation in (2.2) (see the proof of Lemma 2.2 in [17]).
Now, under the conditions in Theorem 1.1, by using (2.6)—(2.8), we prove the following inequalities

(2.9)

21+ b1(x, D)z1x + bo(x, )71 + b3(x, )Wy < €21 4xs
wir + (s, Dwiyx + (L Dwr + e3(X, 021 < EWpyys

where b;(x, 1), ci(x, 1), i = 1,2, 3, are suitable functions satisfying the necessary conditions b3(x, f) < 0,
c3(x, 1) <0.
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Proof of (2.9). We prove (2.9) in several cases for two different groups of points (x, f), where
a(x) > 0ora(x) <O0.
We separate B'(x)B(x) = (1 — £1)B’(x)B(x) + £, B’(x)B(x) and let the following terms in (2.6)

y—20

I, ;= —(1 — &)B'(x)B(x) + B'(x)In(v) — B'(x) — AT(x)sgn(A(x)) — a" (x)sgn(a(x))ulu.

1%
Case 1. At the points (x, 7), where a(x) > 0, v(x,7) < 1 and wy + 2 f_ xoo X(s)ds < 0, we have

X

Il 2(1 - 81)X()C) (M - f

—00

X (s)ds)

- %X(x) - ia’(x) (wl —z1+2 f:m X(s)ds)

Wy — 24 +2f X(s)ds

o0

wy—21 + 2f X(s)ds

[ee)

o0

> - %QT(x) (w1 -71+ 2fx X(s)ds)

1
ZZaT(x)

wp —2z1 + 2f X(s)ds

(o)

21.

Case II. At the points (x, ), where a(x) > 0, v(x,7) < 1and w; +2 [~ X(s)ds > 0,

X

21

w1 — 24 +2f X(s)ds

(%)

I >(1-g)X(x) (M—f

—00

. . 1. ’ 2
- 7@ (x) (W1 + 2[00 X(s)ds) |z1] = 2 (x) (Wl + 2[00 X(s)ds) (2.10)

X X 2
=1 -g)X(x) (M - f X(s)ds) - %X(x) —a'(x) (f X(s)ds)

1 I .
X(s)ds) - §X(x) + Zcx (x)

(%) [Se]

+d(x, )z + e(x,H)w; = d(x, )71 + e(x, Hw,

where e(x, 1) = —%aT(x) (w1 +4 f_xoo X(s)ds) < 0, because

(o9 —00

X X 2
(1-¢e)X(x) (M - f X(s)ds) - %X(x) —a’(x) (f X(s)ds)

1 1
(1 -eDXx) - §X(x) - EX(x) > 0.

| =

=

Case III. At the points (x, 7), where a(x) > 0, v(x,¢) > 1 and w; + 2 f_); X(s)ds < 0, we have % >
1 —¢&, > 0forasmall & > 0, and B'(x) In(v) = —X(x) (%(wl +2z1) + M). Then,

X

L > -&)Xx) (M - f

—00

X(s)ds) - %(wl +z2)X(x) — MX(x) + (1 — &)X (x) — %X(x)

wp —z1 + 2f X(s)ds

(9]

7> —%(wl +2)X(x) + a'(x)

wy—z1 + 2f X(s)ds

(o)

+ a’(x) 21

AIMS Mathematics Volume 6, Issue 6, 6482-6489.



6487

because .
(1-eDX(x) (M - f X(s)ds) —MX(x)+ (1 —&)X(x)— %X(x)

[0e)

1 1
> X(x)(l—sz—slM—i—g)zo

for small &; and &,.
Case IV. At the points (x, ), where a(x) > 0, v(x,t) > 1 and w; + 2 f_ ; X(s)ds >0,

X

L > -&)X(x) (M—f

—00

X(s)ds) - %(wl +z2)X(x) = MX(x) + (1 — &)X(x) — %X(x)

. 2
—a"(x) (f X(s)ds) +d(x,0)z1 + e(x,HHw| > —%(wl + z2)X(x) + d(x,)z1 + e(x, Hwy,

o0

because

X

X 2
(I —g)X(x) (M - f X(s)ds) —MX(x)+ (1 —&)X(x) - %X(x) —a'(x) (f X(s)ds)

(%) (o)

1 1 1
> X(x)(l —&—-—&M-=-—-—--— —) >0,

where d(x, 1), e(x, t) are given in (2.10). Thus we obtain the proof of the first inequality in (2.9) at the
points (x, 1), where a(x) > 0.
Now we prove the second inequality in (2.9). Let the following terms in (2.7),

v—20

L= -&)C'(x)C(x)— C'(x)In(v) + C'(x) + AT(x) + " (x)ulul.

%
At the points (x, f), where a(x) > 0 and v(x, ¢) < 1, we have

X X

L > -g)Xx) (M + f X(s)ds) - %X(x) + %of(x) (wl -1+ 2f

—00 —00

X (s)ds)

wy—21+ Zf X(s)ds

(%)

1
ZZCI/T(X) w1 —21)

’

wy — 24 +2f X(s)ds

[Se]

at the points (x, f), where a(x) > 0 and v(x, 1) > 1,

X

L >0 -g)X(x) (M +f

—00

X(s)ds) - %(wl +z2)X(x) = MX(x) + (1 — &)X(x) — %X(x)

1 X
+ ZCYT(X) wy—z))wr—z1 + 2f X(s)ds

(%Y
X

> — %(wl +21)X(x) + %of(x) Wi —z)wi —z1 + 2f X(s)ds

—00

Thus we obtain the proof of (2.9) at the points (x, #), where a(x) > 0. Similarly, we may prove (2.9)
also at the points (x, ¢), where a(x) < 0.
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We now return to the proof of the theorem. Under the conditions given in (1.4), it is clear that
71(x,0) < 0, wi(x,0) < 0, so, we may apply the maximum principle to (2.9) to obtain the estimates
(see [9] for the details)

26 < VT < My, In(V*57) = My < u®*™ < M, — In(v>57), Im®=7| < M, (2.11)

where M;, i = 1,2, 3 are suitable positive constants, independent of &, 9, T and the time ¢.

By applying the general contracting mapping principle to an integral representation of (2.2), with
the help of the lower, positive estimate and the L™ estimates given in (2.11), we can obtain the existence
and uniqueness of smooth solution of the Cauchy problem (2.2) and (2.3). Applying the convergence
frame given in [5] we have the pointwise convergence

05 (x, 1), m**T(x, 1) > (W(x, 1), m(x, 1) a.e., as 6,70

or
(pé,e,‘r(x’ [), (pé,s,‘rué,e,‘r)(x’ t)) N (p(x, [), (pu)(x’ t)) a.e., as &, 5, T—-0.

Furthermore, in a similar way as given in [10], we may prove that the limit (o(x, 1), u(x, t)) satisfies
system (1.1) in the sense of distributions and the Lax entropy condition (1.5). So, we complete the
proof of Theorem 1.1.

3. Conclusions

In this paper, we only study the Cauchy problem of the isothermal system, which is corresponding
to the adiabatic exponent y = 1, in a general nozzle with space-dependent friction a(x). It is more
interesting and difficult to study the general adiabatic exponent y > 1. We will come back to this topic
in a coming article.
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