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1. Introduction

During the past few decades, singular differential equations have been widely investigated by many
scholars. Singular differential equations appear in many problems of applications such as the Kepler
system describing the motion of planets around stars in celestial mechanics [12], nonlinear elasticity
[10] and Brillouin focusing systems [2]. We refer to the classical monograph [31] for more information
about the application of singular differential equations in science. Owing to the extensive applications
in many branches of science and industry, singular differential equations have gradually become one
of the most active research topics in the theory of ordinary differential equations. Up to this time, some
necessary work has been done by scholars, including Torres [31, 33], Mawhin [17], O’Regan [29],
Ambrosetti [1], Fonda [12, 13], Chu [5, 8] and Zhang [36, 37], etc.

In the current literature on singular differential equations, the problem on the existence and
multiplicity of periodic solutions is one of the hot topics. Lazer and Solimini [25] first applied
topological degree theory to study the periodic solutions of singular differential equations, the results
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also reveal that there are essential differences between repulsive singularity and attractive singularity.
In order to avoid the collision between periodic orbit and singularity in the case of repulsive
singularity, a strong force condition was first introduced by Gordon [16]. After that, various
variational methods and topological methods based on topological degree theory have been widely
used, including the method of upper and lower solutions [9, 18–20], fixed point theorems [7],
continuation theory of coincidence degree [21, 24, 26], and nonlinear Leray-schauder alternative
principle [5, 6, 8]. From present literature, the existence periodic solutions are convenient to prove if
the singular term satisfies the strong force condition. It is worth noting that Torres obtained existence
results of periodic solutions in the case of a weak singularity condition of the singular term, see the
reference [32] for details. Until now, the work on the existence of periodic solutions with weak
conditions is much less than the work with strong force conditions, see [22, 27, 32].

Because of singular Rayleigh equations are widely applied in many fields, such as engineering
technique, physics and mechanics fields [14, 30]. Singular Rayleigh equations usually have multiple
regulations and local periodic vibration phenomena. Hence, periodic solutions of singular Rayleigh
equation becomes one key issue of singular Rayleigh equations. However, most of the results in the
references [3,4,15,23,34,35] are concerned about one solution, while fewer works are concerned about
multiple periodic solutions. Therefore, it is valuable to investigate the existence of multiple periodic
solutions for singular Rayleigh equations in both theory and practice.

Motivated by the above literature, the main purpose of this paper is to verify the existence and
multiplicity of periodic solutions of the following singular Rayleigh equation

x′′+ f (x′)+g(x) = e(t), (1.1)

where f ∈C(R,R), e ∈C(R/TZ,R), and g ∈C((0,+∞),R) may be singular at the origin. We discuss
both repulsive and attractive singularity with some weak conditions for the term g. It is said that Eq
(1.1) has a repulsive singularity at the origin if

lim
x→0+

g(x) =−∞

and has an attractive singularity at the origin if

lim
x→0+

g(x) = +∞.

The proof of the main results in this study is based on Mawhin’s coincidence degree and the
method of upper and lower solutions. Compared to the existing results about periodic problems of
singular Rayleigh equations, the novelties lie in two aspects: (1) the singular term g has a weaker
force condition; (2) the existence of arbitrarily many periodic solutions are concerned.

The rest of this paper is organized as follows. Some preliminary results are presented in Section 2.
The main results will be presented and proved in Section 3. Finally, in Section 4, some examples and
numerical solutions are expressed to illustrate the application of our results.

2. Preliminaries

In this section, we first recall some basic results on the continuation theorem of coincidence degree
theory [28].
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Let X and Y be two real Banach spaces. A linear operator

L : Dom(L)⊂ X → Y

is called a Fredholm operator of index zero if

(i) ImL is a closed subset of Y ,

(ii) dim KerL = codim ImL < ∞.

If L is a Fredholm operator of index zero, then there exist continuous projectors

P : X → X , Q : Y → Y

such that
ImP = KerL, ImL = KerQ = Im(I−Q).

It follows that
L|DomL∩KerP : (I−P)X → ImL

is invertible and its inverse is denoted by KP.
If Ω is a bounded open subset of X , the continuous operator

N : Ω⊂ X → Y

is said to be L-compact in Ω̄ if

(iii) KP(I−Q)N(Ω̄) is a relative compact set of X ,

(iv) QN(Ω̄) is a bounded set of Y .

Lemma 2.1. [28] Let Ω be an open and bounded set of X, L : D(L)⊂ X →Y be a Fredholm operator
of index zero and the continuous operator N : Ω̄ ⊂ X → Y be L-compact on Ω̄. In addition, if the
following conditions hold:

(A1) Lx , λNx,∀(x,λ ) ∈ ∂Ω× (0,1),

(A2) QNx , 0,∀x ∈ KerL∩∂Ω,

(A3) deg{JQN,Ω∩KerL,0} , 0,

where J : ImQ→ KerL is an homeomorphism map. Then Lx = Nx has at least one solution in Ω̄.

In order to apply Lemma 2.1 to Eq (1.1), let X =C1
T , Y =CT , where

C1
T = {x|x ∈C1(R,R),x(t +T ) = x(t)},

CT = {x|x ∈C(R,R),x(t +T ) = x(t)}.

Define

‖x‖= max{‖x‖∞,‖x′‖∞}, ‖x‖∞ = max
t∈[0,T ]

|x(t)|.
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Clearly, X , Y are two Banach spaces with norms ‖ · ‖ and ‖ · ‖∞. Meanwhile, let

L : DomL = {x : x ∈C2(R,R)∩C1
T} ⊂ X → Y, Lx = x′′.

Then

KerL = R, ImL = {x : x ∈ Y,
∫ T

0
x(t)dt = 0},

hence, L is a Fredholm operator of index zero. Define the projects P and Q by

P : X → X , [Px](t) = x(0) = x(T ),

Q : Y → Y, [Qx](t) =
1
T

∫ T

0
x(t)dt.

Obviously,
ImP = KerL, KerQ = ImL.

Let Lp = L|DomL
⋂

KerP, then Lp is invertible and its inverse is denoted by Kp : ImL→ DomL,

[Kpx](t) =− t
T

∫ T

0
(T − s)x(s)ds+

∫ t

0
(t− s)x(s)ds,

Let N : X → Y , such that
[Nx](t) =−[ f (x′(t))+g(x(t))]+ e(t).

It is easy to show that QN and KP(I−Q)N are continuous by the Lebesgue convergence theorem.
By Arzela-Ascoli theorem, we get that QN(Ω) and Kp(I−Q)N(Ω) are compact for any open bounded
set Ω in X . Therefore, N is L-compact on Ω.

3. Main results

For the sake of convenience, we denote

min
t∈[0,T ]

e(t) = e∗, max
t∈[0,T ]

e(t) = e∗, ω = T
1
q
(‖e‖q

c

) 1
p−1 .

Moreover, we list the following condition

(H0) There exist two constants c > 0 and p≥ 1, such that

f (x) · x≥ c|x|p, ∀(t,x) ∈ R2.

Obviously, we have f (0) = 0.

Lemma 3.1. Assume that x is a T -periodic solution of Eq (1.1). Then the following inequalities hold

g(x(s1))≥ e(s1)≥ e∗, g(x(t1))≤ e(t1)≤ e∗,

where s1 and t1 be the maximum point and the minimum point of x(t) on [0,T ].
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Proof. Obviously,
x′(s1) = x′(t1) = 0, x′′(s1)≤ 0 and x′′(t1)≥ 0.

Combining these with Eq (1.1), we get

g(x(s1))− e(s1)≥ 0, g(x(t1))− e(t1)≤ 0.

Then we have
g(x(s1))≥ e(s1)≥ e∗, g(x(t1))≤ e(t1)≤ e∗.

�

3.1. Repulsive singular case

Theorem 3.2. Assume that (H0) holds and Eq (1.1) has a repulsive singularity at the origin. Suppose
further that

(H1) There exist only two positive constants ξ1 and η1 with η1 > ξ1 > ω , such that

g(ξ1) = e∗, g(η1) = e∗.

Then Eq (1.1) has a positive T -periodic solution x1 satisfies

ξ1−ω ≤ x1(t)≤ η1 +ω, min
t∈R

x1(t)≤ η1, ∀t ∈ R. (3.1)

Proof. Since Eq (1.1) can be written as an operator equation Lx = Nx, so we consider an auxiliary
equation Lx = λNx,

x′′(t)+λ [ f (x′(t)+g(x(t))] = λe(t), λ ∈ (0,1). (3.2)

Suppose that x ∈ X is a periodic solution of the above equation. Multiplying both sides of Eq (3.2)
by x′(t) and integrating on the interval [0,T ], then we have∫ T

0
f (x′(t))x′(t)dt =

∫ T

0
e(t)x′(t)dt.

By using the Hölder’s inequality, it follows from (H0) and the above equality that

c‖x′‖p
p ≤

∫ T

0
f (x′(t))x′(t)dt

=
∫ T

0
e(t)x′(t)dt

≤ ‖e‖q‖x′‖p,

where 1
q +

1
p = 1. Then we can obtain from the above inequality that

‖x′‖p ≤ (
‖e‖q

c
)

1
p−1 . (3.3)

By Lemma 3.1 and (H1), we can deduce that

x(s1)≥ ξ1, x(t1)≤ η1. (3.4)
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Then, by (3.3) and (3.4), we have

|x(t)|=
∣∣∣x(t1)+∫ t

t1
x′(s)ds

∣∣∣
≤ |x(t1)|+

∫ T

0
|x′(s)|ds

≤ |x(t1)|+(
∫ T

0
ds)

1
q · (
∫ T

0
|x′(s)|pds)

1
p

≤ |x(t1)|+T
1
q‖x′‖P

≤ η1 +T
1
q (
‖e‖q

c
)

1
p−1

= η1 +ω

(3.5)

and

|x(t)|=
∣∣∣x(s1)+

∫ t

s1

x′(s)ds
∣∣∣

≥ |x(s1)|−
∫ T

0
|x′(s)|ds

≥ |x(s1)|− (
∫ T

0
ds)

1
q · (
∫ T

0
|x′(s)|pds)

1
p

≥ |x(s1)|−T
1
q‖x′‖P

≥ ξ1−T
1
q (
‖e‖q

c
)

1
p−1

= ξ1−ω.

(3.6)

Combining with the above two inequalities, we get

ξ1−ω ≤ x(t)≤ η1 +ω, ∀t ∈ [0,T ]. (3.7)

By (H0) and the continuity of f , it is immediate to see that

f (x)≥ 0, if x≥ 0 and f (x)≤ 0, if x < 0.

Therefore, let us define two sets
I1 = {t ∈ [0,T ]|x′(t)≥ 0}

and
I2 = {t ∈ [0,T ]|x′(t)< 0}.

Integrating the Eq (3.2) over the sets I1, I2, we get∫
I1

f (x′(t))dt +
∫

I1

g(x(t))dt =
∫

I1

e(t)dt

and ∫
I2

f (x′(t))dt +
∫

I2

g(x(t))dt =
∫

I2

e(t)dt,
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which imply that ∫ T

0
| f (x′(t))|dt ≤

∫ T

0
|g(x(t))|dt +

∫ T

0
|e(t)|dt. (3.8)

Then by (3.2), (3.7) and (3.8), we obtain

|x′(t)| =
∣∣∣∫ t

t1
x′′(s)ds

∣∣∣
≤

∫ T

0
|x′′(t)|dt

≤ λ
(∫ T

0
| f (x′(t))|dt +

∫ T

0
|g(x(t))|dt +

∫ T

0
|e(t)|dt

)
< 2

(∫ T

0
|g(x(t))|dt +

∫ T

0
|e(t)|dt

)
≤ 2T (gω + |e|) := M1, (3.9)

where
gω = max

ξ1−ω≤x(t)≤η1+ω

|g(x)|

and |e| is the mean value of |e(t)| on the interval [0,T ].
Obviously, ξ1, η1 and M1 are positive constants independent of λ . Take three positive constants h1,

h2 and M̃1 with
h1 < ξ1−ω < η1 +ω < h2, M̃1 > M1 (3.10)

and let
Ω1 =

{
x : x ∈ X ,h1 < x(t)< h2, |x′(t)|< M̃1, t ∈ [0,T ]

}
.

Obviously, Ω1 is an open bounded set of X . By the definition of N, we know that N is L-compact on
the Ω̄1. By (3.7), (3.9) and (3.10), we get that

x ∈ ∂Ω1∩DomL, Lx , λNx, λ ∈ (0,1).

Hence, the condition (A1) in Lemma 2.1 is satisfied.
Next, we verify that the condition (A2) of Lemma 2.1 is satisfied. Clearly, if x ∈ ∂Ω1 ∩KerL =

∂Ω1∩R, we have QNx , 0. If it does not hold, then there exists x ∈ ∂Ω1∩R, such that QNx = 0, and
x(t)≡ ζ is a constant. That is

1
T

∫ T

0
[−g(ζ )+ e(t)]dt = 0,

i.e.,
g(ζ )− e = 0.

This implies that
e∗ ≤ g(ζ )≤ e∗,

which together with (H1) yield
ζ ∈ [ξ1,η1].
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This contradicts x = ζ ∈ ∂Ω1∩R. Thus,

QNx , 0, ∀x ∈ ∂Ω1∩KerL. (3.11)

Finally, we prove that the condition (A3) of Lemma 2.1 is also satisfied. Define

H(µ,x) = µx+(1−µ)JQN(x),

where
J = I : ImL→ KerL, Jx = x.

Then, by (3.11), we notice that

xH(µ,x) , 0, ∀(µ,x) ∈ [0,1]×∂Ω1∩KerL.

Therefore, we have

deg{JQNx,Ω1∩KerL,0} = deg{H(0,x),Ω1∩KerL,0}
= deg{H(1,x),Ω1∩KerL,0} , 0.

To sum up the above discussion, we have proven that all of the conditions of Lemma 2.1 are satisfied.
Therefore, Eq (1.1) has a T -periodic solution x1 in Ω1. Moreover, by (3.4) and (3.7), we get that (3.1)
holds. �

Theorem 3.3. Assume that (H0) holds and Eq (1.1) has a repulsive singularity at the origin. Suppose
further that

(H2) There exist only four positive constants ξ1, ξ2, η1, η2 with ξ2 > η2 > η1 > ξ1 > ω , such that

g(ξ1) = e∗ = g(ξ2), g(η1) = e∗ = g(η2).

Then Eq (1.1) has two positive T -periodic solutions x1 and x2, which satisfy

ξ1−ω ≤ x1(t)≤ η1 +ω, min
t∈[0,T ]

x1(t)≤ η1, ∀t ∈ [0,T ] (3.12)

and
η2 ≤ x2(t)≤ ξ2, ∀t ∈ [0,T ]. (3.13)

Proof. From Lemma 3.1 and (H2), we obtain

ξ1 ≤ x(s1)≤ ξ2

and
x(t1)≤ η1 or x(t1)≥ η2.

Therefore, we have either
η2 ≤ x(t)≤ ξ2, ∀t ∈ [0,T ] (3.14)

or
ξ1 ≤ x(s1)≤ ξ2, x(t1)≤ η1. (3.15)
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(1) If (3.14) holds, notice that
α(t) = η2

is a constant lower solution of Eq (1.1) and

β (t) = ξ2

is a constant upper solution of Eq (1.1). Then by the method of upper and lower solutions (see [11,31]),
we know that Eq (1.1) has a positive T -periodic solution x2 such that (3.13) holds.

(2) If (3.15) holds, by (3.3), analysis similar to that in (3.5) and (3.6), we have

ξ1−ω ≤ x(t)≤ η1 +ω, ∀t ∈ [0,T ]. (3.16)

By using similar arguments of Theorem 3.2, it follows from (3.16) that there exists a constant M2 > 0
such that

|x′|< M2.

Clearly, ξ1, η1, M2 are all independent of λ . Take three constants u1, u2, and M̃2 with

0 < u1 < ξ1−ω < η1 +ω < u2, M̃2 > M2

and set
Ω2 =

{
x : x ∈ X ,u1 < x(t)< u2, |x′(t)|< M̃2, t ∈ [0,T ], min

t∈[0,T ]
x(t)≤ η1

}
.

The remainder can be proved in the same way as in the proof of Theorem 3.2. Then, Eq (1.1) has a
positive T -periodic solution x1 in Ω2 such that (3.12) holds.

To sum up the above discussion, we plainly conclude that Eq (1.1) has at least two positive T -
periodic solutions. �

Remark 1. In Theorem 3.3, if η1 = η2, we can only get that Eq (1.1) has at least one positive T -
periodic solution.

Proof. If η1 = η2, by Lemma 3.1 and (H2), we can only get

ξ1 ≤ x(s1)≤ ξ2.

As in the proof of Theorem 3.3, we can prove that Eq (1.1) has a positive T -periodic solutions x1 such
that

ξ1−ω ≤ x1(t)≤ ξ2, max
t∈[0,T ]

x1(t)≥ ξ1, for all t ∈ [0,T ]. (3.17)

Moreover, by the method of upper and lower solutions (see [11, 31]), we can also get that Eq (1.1)
has a positive T -periodic solution x2 such that

η1 = η2 ≤ x2(t)≤ ξ2, ∀t ∈ [0,T ]. (3.18)

But, by (3.17) and (3.18), we are not sure that x1 is different from x2.
Therefore, we just can assert that Eq (1.1) has at least one positive T -periodic solution. �

Furthermore, Theorem 3.3 can be generalized to arbitrarily many periodic solutions.
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Theorem 3.4. Assume that (H0) holds and Eq (1.1) has a repulsive singularity at the origin. Suppose
further that

(Hn) There exist only 2n positive constants ξ1, ξ2, · · · ξn, η1, η2, · · · ηn, with

ξn > ηn > ηn−1 > ξn−1 > · · ·η1 > ξ1 > ω, if n is even ,

ηn > ξn > ξn−1 > ηn−1 > · · ·η1 > ξ1 > ω, if n is odd (3.19)

and

η2i−1 < ξ2i+1−ω, i = 1,2 · · · [n
2
], (3.20)

where [·] stands for the integer part, such that

g(ξ1) = g(ξ2) = · · ·= g(ξn) = e∗,

g(η1) = g(η2) = · · ·= g(ηn) = e∗.

Then Eq (1.1) has at least n different positive T -periodic solutions.

Proof. The case n = 1 and n = 2, one can see Theorem 3.2 and Theorem 3.3.
Let us define the following sets

B2i−1 = {x|x ∈ X ,ξ2i−1−ω ≤ x(t)≤ η2i−1 +ω, max
t∈R

x(t)≥ ξ2i−1 min
t∈R

x(t)≤ η2i−1},

i = 1,2 · · · [n+1
2

],

B2i = {x|x ∈ X ,η2i ≤ x(t)≤ ξ2i,}, i = 1 · · · [n
2
].

By (3.19) and (3.20), notice that Bi∩B j = ∅, for i , j, i, j = 1,2 · · ·n.
For the case n = 3, by Lemma 3.1 and (H3), we have

ξ1 ≤ x(s1)≤ ξ2 or x(s1)≥ ξ3

and
x(t1)≤ η1 or η2 ≤ x(t1)≤ η3.

Then
ξ1 ≤ x(s1)≤ ξ2 and x(t1)≤ η1 (3.21)

or
η2 ≤ x(t)≤ ξ2 (3.22)

or
x(s1)≥ ξ3 and η2 ≤ x(t1)≤ η3. (3.23)

By (3.21) and (3.22), as in the proof of Theorem 3.3, we can prove that Eq (1.1) has two different
positive T -periodic solutions x1 and x2 with x1 ∈ B1 and x2 ∈ B2. By (3.23), analysis similar to that
in the proof of Theorem 3.2 shows that Eq (1.1) has a positive T -periodic solution x3 belonging to B3.
Then, by the facts , we get that Eq (1.1) has at least 3 different positive T -periodic solutions.

Similar arguments apply to the case n > 3, we can prove that Eq (1.1) has n different positive
T -periodic solutions x1, x2, · · · xn with xi ∈ Bi, i = 1,2, · · ·n.

The proof is completed. �
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3.2. Attractive singular case

Theorem 3.5. Assume that (H0) holds and Eq (1.1) has an attractive singularity at the origin. Suppose
further that

(C1) There exist only two positive constants ξ1, η1 with η1 > ξ1, such that

g(ξ1) = e∗, g(η1) = e∗.

Then Eq (1.1) has at least one positive T-periodic solution.

Proof. Obviously,
α(t) = ξ1

is a constant lower solution of Eq (1.1) and

β (t) = η1

is a constant upper solution of Eq (1.1). Then by the method of upper and lower solutions (see [11,31]),
we know that Eq (1.1) has a positive T -periodic solution x such that α(t)≤ x(t)≤ β (t) for every t. �

Theorem 3.6. Assume that (H0) holds and Eq (1.1) has an attractive singularity at the origin. Suppose
further that

(C2) There exist only four positive constants ξ1 < η1 < η2 < ξ2, such that

g(ξ1) = e∗ = g(ξ2), g(η1) = e∗ = g(η2).

Then Eq (1.1) has at least two positive T -periodic solutions.

Proof. The proof of Theorem 3.6 works almost exactly as the proof Theorem 3.3. It is easy to get that

x(s1)≤ η1 or x(s1)≥ η2

and
ξ1 ≤ x(t1)≤ ξ2,

which together with Lemma 3.1 yield that

ξ1 ≤ x(t)≤ η1, ∀t ∈ [0,T ] (3.24)

or
ξ1 ≤ x(t1)≤ ξ2, x(s1)≥ η2. (3.25)

(1) If (3.24) holds, by the method of upper and lower solutions align (see [11, 31]), we get that Eq
(1.1) has at least one positive T -periodic solution x such that

ξ1 ≤ x(t)≤ η1, ∀t ∈ [0,T ].

(2) If (3.25) holds, repeating the proof of Theorem 3.2, we can construct an open bounded set

Ω3 = {x : x ∈ X ,r1 < x(t)< r2, |x′(t)|< M̃3, ∀t ∈ [0,T ]},

such that Eq (1.1) has at least one positive T-periodic solutions in Ω3.
To sum up the above discussion, we have proved that Eq (1.1) has at least two positive T -periodic

solutions. �
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Similar as in the proof of Theorem 3.4, we can generalize Theorem 3.6 to arbitrarily many periodic
solutions.

Theorem 3.7. Assume that (H0) holds and Eq (1.1) has an attractive singularity at the origin. Suppose
further that

(Cn) There exist only 2n positive constants ξ1, ξ2, · · · ξn, η1, η2, · · · ηn with

ξn > ηn > ηn−1 > ξn−1 > · · ·η1 > ξ1 > 0, if n is even ,

ηn > ξn > ξn−1 > ηn−1 > · · ·η1 > ξ1 > 0, if n is odd

and

ξ2i < η2i+2−ω, i = 1,2 · · · [n−2
2

]

such that
g(ξ1) = g(ξ2) = · · ·= g(ξn) = e∗,

g(η1) = g(η2) = · · ·= g(ηn) = e∗.

Then Eq (1.1) has at least n positive T -periodic solutions.

4. Example and numerical simulations

In this section, some examples and numerical solutions are given to illustrate the application of our
results.

Example 1. Consider the following equation:

x′′+13.2x′+3.3x− 4
x2 = 3.8sin(πt)+2. (4.1)

Conclusion: Eq (4.1) has at least one positive 2-periodic solution.

Proof. Corresponding to Eq (1.1), we have

f (x′) = 13.2x′, g(x) = 3.3x− 4
x2 , e(t) = 3.8sin(πt)+2.

Obviously, e∗ = 5.8, e∗ =−1.8. It is easy to see that there exist only two positive constants ξ1 ≈ 0.912,
η1 ≈ 2.047 such that

g(ξ1) = e∗ =−1.8, g(η1) = e∗ = 5.8.

Moreover, it is easy to check that ξ1 > ω . Then, by Theorem 3.2, we get that Eq (4.1) has at least one
positive 2-periodic solution. Applying Matlab software, we obtain numerical periodic solution of Eq
(4.1), which is shown in Figure 1. �
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t

1.2
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1.35

1.4

1.45

x(
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Figure 1. The periodic solution of Eq (4.1) as x(0) = 1.22, x
′
(0) = 0, t ∈ [0,20].

Example 2. Consider the following equation:

x′′+83x′−6.4x− 1.7
x2 =

−17.52
1+ sin2(t)

. (4.2)

Conclusion: Eq (4.2) has at least two positive π-periodic solutions.

Proof. Corresponding to Eq (1.1), we have

f (x′) = 83x′, g(x) =−6.4x− 1.7
x2 , e(t) =

−17.52
1+ sin2(t)

.

Obviously, e∗ = −8.76, e∗ = −17.52. It is easy to check that exist only four positive constants ξ1 ≈
0.3323, η1 ≈ 0.5805, η2 ≈ 1.177, ξ2 ≈ 2.7 such that

g(ξ1) = g(ξ2) = e∗ =−17.52, g(η1) = g(η2) = e∗ =−8.76.

Moreover, it is easy to check that ξ1 > ω . Then, by Theorem 3.3, we get that Eq (4.2) has at least
two positive π-periodic solutions. We obtain two numerical periodic solutions of Eq (4.2), which are
shown in Figures 2 and 3, respectively. �

0 5 10 15 20 25 30

t

0.39

0.4

0.41

0.42

0.43

0.44

0.45

x 1(t
)

Figure 2. The periodic solution of Eq (4.2) as x(0) = 0.413, x
′
(0) = 0, t ∈ [0,30].
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)

Figure 3. The periodic solution of Eq (4.2) as x(0) = 1.86, x
′
(0) = 0, t ∈ [0,20].

Example 3. Consider the following equation:

x′′+95(x′)3 +5.6x− 3
x2 = 3sin(πt)+2. (4.3)

Conclusion: Eq (4.3) has at least one positive 2-periodic solution.

Proof. Corresponding to Eq (1.1), we have

f (x′) = 95(x′)3, g(x) = 5.6x− 3
x2 , e(t) = 3sin(πt)+2.

Obviously, e∗ = 5, e∗ = −1. It is easy to see that there exist only two positive constants ξ1 ≈ 0.757,
η1 ≈ 1.24 such that

g(ξ1) = e∗ =−1, g(η1) = e∗ = 5.

Moreover, it is easy to check that ξ1 > ω . Then, by Theorem 3.2, we get that Eq (4.3) has at least one
positive 2-periodic solution. Applying Matlab software, we obtain numerical periodic solution of Eq
(4.3), which is shown in Figure 4. �

0 2 4 6 8 10 12 14 16 18 20

t
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1
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Figure 4. The periodic solution of Eq. (4.3) as x(0) = 0.835, x
′
(0) = 0, t ∈ [0,20].
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5. Conclusions

In this paper, we study the existence and multiplicity of positive periodic solutions of the singular
Rayleigh differential equation (1.1). Based on the continuation theorem of coincidence degree theory
and the method of upper and lower solutions, we construct some subsets Bk, k = 1,2, · · · ,n of C1

T with
Bi∩B j = ∅, for i , j, i, j = 1,2, · · · ,n, such that the equation (1.1) has a positive T -periodic solution
in each set Bk, k = 1,2, · · · ,n. That is, the equation (1.1) has at least n distinct positive T -periodic
solutions. We discuss both the repulsive singular case and the attractive singular case, and the singular
term has a weaker force condition than the literatures about strong force condition. Some results in
the literature are generalized and improved. It should be pointed out that it is the first time to study
the existence of arbitrarily many periodic solutions of singular Rayleigh equations. In addition, some
typical numerical examples and the corresponding simulations have been presented at the end of this
paper to illustrate our theoretical analysis.
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