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1. Introduction

Order statistics play an important role in reliability theory, auction theory, operations research, and
many applied probability areas. Let Xk:n denotes the kth smallest of random variables X1, . . . , Xn,

k = 1, . . . , n. In reliability theory, Xk:n characterizes the lifetime of a (n− k + 1)-out-of-n system, which
works if at least (n−k +1) of all the n components function normally. Specifically, X1:n and Xn:n denote
the lifetimes of series and parallel systems, X2:n and Xn−1:n characterize the lifetime of the fail-safe
system and 2-out-of-n system, respectively(see Barlow and Proschan [1]). In auction theory, X1:n and
X2:n represent the final price of the first-price and second-price procurement auction, Xn−1:n and Xn:n

represent the final price of the first-price and second-price sealed-bid auction (see Fang and Li [2]),
respectively.

The groundbreaking work by Boland et al. [3] on the sample from i.i.d. random variables was to
study ordering properties between Xi−1:n and Xi:n+1. In the context of Xk ≤hr Xn+1, they obtained the
hazard rate order Xi−1:n ≤hr Xi:n+1, and also proved that Xn+1 ≤hr Xk implies that Xi:n ≥hr Xi:n+1. Raqab
and Amin [4] established the likelihood ratio order between order statistics from samples of different
sizes. Bapat and Kochar [5] proved the likelihood ratio ordering between order statistics from a
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sample with observations arranged in the likelihood ration order. For homogeneous random variables
with an Archimedean (survival) copula, Li and Fang [6] derived the hazard rate, the reversed hazard
rate and the likelihood ratio ordering of the extramel values and its adjacent order statistics.
Subsequently, Fang and Li [7] further developed the reversed hazard rate order and the hazard rate
order on sample extremes in the context of proportional reversed hazard models and proportional
hazard models, respectively. For heterogenous random variables connected with an Archimedean
copula, Mesfioui et al. [8] obtained the ordering properties of the maximum order statistic of the
sample and its two adjacent order statistics. Barmalzan et al. [9] established the hazard rate order and
reversed hazard rate order of series and parallel systems with dependent components following either
modified proportional reversed hazard models or modified proportional hazard models under
Archimedean copula. In fact, Pledger and Proschan [10] were the first to deal with the problem of
comparing order statistics from heterogeneous exponential random variables. Subsequently, many
researchers devoted themselves to stochastic comparisons of order statistics from heterogeneous
independent or dependent samples, to name a few, see [11–22].

The notions of relative ageing describe the rate at which one component or system is aging relative
to the other. Various partial orders describing relative ageing of two life distributions have been
introduced in the literature. Kalashnikov and Rachev [23] introduced a relative aging notion based on
the increasing ratio of two hazard rate functions. Rezaei et al. [24] further studied the relative ageing
by considering the ratio of two reversed hazard rate functions. Lai and Xie [25] showed that the
parallel system with additional redundant components ageing faster in terms of the increasing hazard
ratio. Li and Li [26] studied the effect of heterogeneity among independent components on the
relative ageing of the series and parallel systems. Ding and Zhang [27] further investigated the effects
of Arichimedean dependence and heterogeneity among components on the relative ageing of series
and parallel system. For more research on relative ageing, one may refer to [28–32].

In reliability theory, actuarial science and survival analysis, some observations may be lost for
unavoidable reasons, and thus it may be impossible to obtain a fixed sample size. Sometimes the sample
size may depend on the occurrence of some events, which makes the sample size always random. For
example, if a common dose of radiation is given to a sample of animals, then the interest often is in the
times that the first and the last expire (see, Consul [33]). There is quite rich literature on the sample
with a random size, for example [34–36].

To the best of our knowledge, Li and Fang [6] were the first to study stochastic comparison among
Xn:n and Xn+1:n+1 from homogeneous random variables with an Archimedean copula. And the most
existing research are focusing on the extreme order statistics, while, there are few works on stochastic
comparisons among the second order statistics. In this paper, we will focus on stochastic comparisons
of the second largest order statistics from the random and non-random number of homogeneous
samples coupled by Archimedean copula, and investigate the impact of sample size and dependence
on the the second largest order statistics. Also, some ordering results are derived for relative ageing
between parallel systems and 2-out-of-n/2-out-of-(n + 1) systems in terms of increasing reversed
hazard ratio.

The remainder of this paper is organized as follows: Section 2 recalls some concepts and notations
used in this paper. Section 3 presents the results for the case of non-random sample size. Section 4
establishes the results for the case of random sample size. Section 5 provides the application of our
main results. Section 6 summarizes our research findings.
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2. Preliminaries

In this section, let us first recall some important concepts and notations related to the main results
of this article.

For random variable X with support R+ = [0,+∞), let FX(x) be distribution function ( fX(x) be
densities when absolutely continuous), and denote F̄X(x) = 1 − FX(x) the reliability function. Let
hX(x) = fX(x)/F̄X(x) and rX(x) = fX(x)/FX(x) be the hazard rate function and reversed hazard rate
function of X, respectively. The Laplace-Stieltjes transform of X is given by

LX(x) =

∫ ∞

0
e−xtdFX(t).

Definition 1. For two nonnegative random variables X and Y, X is said to be smaller than Y in the
(i) stochastic order (denoted by X ≤st Y) if F̄X(x) ≤ F̄Y(x) for all x ∈ R+;
(ii) hazard rate order (denoted by X ≤hr Y) if F̄Y(x)/F̄X(x) is increasing in x ∈ R+;
(iii) reversed hazard rate order (denoted by X ≤rh Y) if FY(x)/FX(x) is increasing in x ∈ R+;
(iv) likelihood ratio order (denoted by X ≤lr Y) if fY(x)/ fX(x) is increasing in x ∈ R+;
(v) Laplace transform ratio order (denoted by X ≤Lt-r Y) if LY(x)/LX(x) is decreasing in x ∈ R+.

It is well known that the above stochastic orders have the following relations:

X ≤st [≤Lt−r]Y ⇐= X ≤rh Y ⇐= X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤st Y.

For more comprehensive discussions on stochastic orders, please refer to Shaked and Shanthikumar
[37], Li and Li [38] and Belzunce et al. [39].

Next, we introduce the concept of relative ageing.

Definition 2. X is said to be ageing faster than Y in the reversed failure rate, denoted by X ≺b Y, if
rX(x)/rY(x) is decreasing in x ∈ R+.

For more details on ageing, one may refer to Lai and Xie [40].
Now, let us review the concept of Archimedean Copulas.

Definition 3. For a decreasing and continuous function ψ : [0,+∞) 7→ [0, 1] such that ψ(0) = 1 and
ψ(+∞) = 0, let φ = ψ−1 be the pseudo-inverse of ψ. Then

Cψ(u1, ..., un) = ψ
(
φ(u1) + ... + φ(un)

)
, ui ∈ [0, 1], i ∈ In,

is said to be an Archimedean copula with generator ψ if (−1)kψ(k)(x) ≥ 0 for k = 0, . . . , n − 2 and
(−1)n−2ψ(n−2)(x) is decreasing and convex.

Copula is used to describe the dependence among random variables and plays an important role in
constructing joint distribution through marginal distribution as it does not contain any information of
marginal distributions. Archimedean copulas are rather popular because of the mathematical
tractability and the capability of capturing wide ranges of dependence. It is well known that the
Archimedean family contains a great many useful copulas, including the well-known independence
(product) copula, the Clayton copula and the Ali– Mikhail–Haq (AMH) copula. For detailed
discussions on copulas and its applications, one may refer to Nelsen [41].

AIMS Mathematics Volume 6, Issue 6, 6390–6405.



6393

A real-valued function g : Rn 7→ R is said to be supermodular(submodular) if the following
inequality

g(x1 ∧ y1, . . . , xn ∧ yn) + g(x1 ∨ y1, . . . , xn ∨ yn) ≥ (≤)g(x1, . . . , xn) + g(y1, . . . , yn)

holds for all xi, yi ∈ R, where x ∧ y = min{x, y} and x ∨ y = max{x, y}. In particular, a function g with
finite second partial derivatives on Rn is supermodular(submodular) if and only if ∂2g(x)/(∂xi∂x j) ≥
(≤)0 for all 1 ≤ i , j ≤ n and x ∈ Rn.

Throughout the manuscript, all concerned random variables are assumed to be absolutely
continuous and nonnegative, and the terms increasing and decreasing stand for non-decreasing and
non-increasing, respectively. “

sgn
= ” means equality of sign.

3. Comparison results for the case of non-random sample size

In this section, we study the ordering results of the second largest order statistics of homogeneous
sample coupled by Archimedean copula. First, we present the comparison result in the sense of the
reversed hazard rate order between Xn−1:n and Xn:n+1.

Theorem 4. Suppose homogeneous random variables X1, X2, . . . , Xn+1 having an Archimedean copula
with generator ψ. If tψ′(t)/ψ(t) is convex and tψ′′(t)/ψ′(t) is decreasing, then

Xn−1:n ≤rh Xn:n+1.

Proof. The distribution functions of Xn−1:n and Xn:n+1 can be expressed as

FXn−1:n(x) = nψ
(
(n − 1)φ(F(x))

)
− (n − 1)ψ

(
nφ(F(x))

)
and

FXn:n+1(x) = (n + 1)ψ
(
nφ(F(x))

)
− nψ

(
(n + 1)φ(F(x))

)
,

respectively. Let u = F(x), to obtain the desired result, it suffices to show that

A1(u) =
FXn:n+1(x)
FXn−1:n(x)

=
(n + 1)ψ

(
nφ(u)

)
− nψ

(
(n + 1)φ(u)

)
nψ

(
(n − 1)φ(u)

)
− (n − 1)ψ

(
nφ(u)

)
is increasing in u ∈ [0, 1]. Taking the derivative of A1(u), we have

A′1(u)
sgn
= φ′(u)

(
(n + 1)n

(
ψ′

(
nφ(u)

)
− ψ′

(
(n + 1)φ(u)

))(
nψ

(
(n − 1)φ(u)

)
− (n − 1)ψ

(
nφ(u)

))
−(n − 1)n

(
ψ′

(
(n − 1)φ(u)

)
− ψ′

(
nφ(u)

))(
(n + 1)ψ

(
nφ(u)

)
− nψ

(
(n + 1)φ(u)

)))
= nφ′(u)

(
(n + 1)

(
nψ′

(
nφ(u)

)
ψ
(
(n − 1)φ(u)

)
− (n − 1)ψ′

(
(n − 1)φ(u)

)
ψ
(
nφ(u)

))
+(n − 1)

(
(n + 1)ψ′

(
(n + 1)φ(u)

)
ψ
(
nφ(u)

)
− (n − 1)ψ′

(
nφ(u)

)
ψ
(
(n + 1)φ(u)

))
+n

(
(n − 1)ψ′

(
(n − 1)φ(u)

)
ψ
(
(n + 1)φ(u)

)
− (n + 1)ψ′

(
(n + 1)φ(u)

)
ψ
(
(n − 1)φ(u)

)))
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= nφ′(u)
(
(n + 1)∆1(n − 1, n; u) + (n − 1)∆1(n, n + 1; u) − n∆1(n − 1, n + 1; u)

)
, (3.1)

where, for all (i, j)

∆1(i, j; u) = jψ′
(
jφ(u)

)
ψ
(
iφ(u)

)
− iψ′

(
iφ(u)

)
ψ
(
jφ(u)

)
.

As tψ′′(t)/ψ′(t) is decreasing implies that tψ′(t)/ψ(t) decreases (c.f. Theorem 3.1 of [6]), then for i < j,

∆1(i, j; u)
sgn
=

jφ(u)ψ′
(
jφ(u)

)
ψ
(
jφ(u)

) −
iφ(u)ψ′

(
iφ(u)

)
ψ
(
iφ(u)

) < 0.

Note that ψ is decreasing and tψ′(t)/ψ(t) is convex, we have

u∆1(n − 1, n; u) = ψ
(
(n − 1)φ(u)

)
ψ
(
nφ(u)

) [nφ(u)ψ′
(
nφ(u)

)
ψ
(
nφ(u)

) −
(n − 1)φ(u)ψ′

(
(n − 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) ]
≤ ψ

(
(n + 1)φ(u)

)
ψ
(
nφ(u)

) [nφ(u)ψ′
(
nφ(u)

)
ψ
(
nφ(u)

) −
(n − 1)φ(u)ψ′

(
(n − 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) ]
≤ ψ

(
(n + 1)φ(u)

)
ψ
(
nφ(u)

) [ (n + 1)φ(u)ψ′
(
(n + 1)φ(u)

)
ψ
(
(n + 1)φ(u)

) −
nφ(u)ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) ]
= u∆1(n, n + 1; u).

Let l1(x, y) = I(x ≥ y)
(
xψ′(x)ψ(y) − yψ′(y)ψ(x)

)
. As tψ′′(t)/ψ′(t) is decreasing, then for x ≥ y, we have

∂2l1(x, y)
∂x∂y

= ψ′(x)ψ′(y)
( xψ′′(x)
ψ′(x)

−
yψ′′(y)
ψ′(y)

)
≤ 0,

which implies that l1(x, y) is submodular. Therefore, we have

φ(u)
(
∆1(n − 1, n; u) + ∆1(n, n + 1; u)

)
= l1

(
nu, (n − 1)u

)
+ l1

(
(n + 1)u, nu

)
≤ l1(nu, nu) + l1

(
(n + 1)u, (n − 1)u

)
= φ(u)∆1(n − 1, n + 1; u).

Thus,

(n + 1)∆1(n − 1, n; u) + (n − 1)∆1(n, n + 1; u) − n∆1(n − 1, n + 1; u)

= (n + 1)
(
∆1(n − 1, n; u) −

1
2

∆1(n − 1, n + 1; u)
)

+(n − 1)
(
∆1(n, n + 1; u) −

1
2

∆1(n − 1, n + 1; u)
)

≤ (n − 1)
(
∆1(n − 1, n; u) + ∆1(n, n + 1; u) − ∆1(n − 1, n + 1; u)

)
≤ 0.

Then, in combination with the decreasing property of ψ, (3.1) is nonnegative, which implies that
FXn:n+1(x)/FXn−1:n(x) is increasing in x. Hence we complete the proof. �

In the following, we establish the likelihood ratio order of the second largest order statistics from n
and n + 1 homogeneous observations, respectively.
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Theorem 5. Suppose homogeneous random variables X1, X2, . . . , Xn+1 having an Archimedean copula
with generator ψ. If tψ′′′(t)/ψ′′(t) is decreasing, then

Xn−1:n ≤lr Xn:n+1.

Proof. The density functions of Xn−1:n and Xn:n+1 can be expressed as

fXn−1:n(x) = n(n − 1)φ′(F(x)) f (x)
(
ψ′

(
(n − 1)φ(F(x))

)
− ψ′

(
nφ(F(x))

))
and

fXn:n+1(x) = n(n + 1)φ′(F(x)) f (x)
(
ψ′

(
nφ(F(x))

)
− ψ′

(
(n + 1)φ(F(x))

))
,

respectively. Let u = F(x), it is sufficient to show that

A2(u)
sgn
=

fXn−1:n(x)
fXn:n+1(x)

=
ψ′

(
(n − 1)φ(u)

)
− ψ′

(
nφ(u)

)
ψ′

(
nφ(u)

)
− ψ′

(
(n + 1)φ(u)

)
is decreasing in u ∈ [0, 1]. Taking the derivative of A2(u), we have

A′2(u)
sgn
= φ′(u)

(
(n − 1)ψ′′

(
(n − 1)φ(u)

)
ψ′

(
nφ(u)

)
− nψ′′

(
nφ(u)

)
ψ′

(
(n − 1)φ(u)

))
+(n + 1)ψ′′

(
(n + 1)φ(u)

)
ψ′

(
(n − 1)φ(u)

)
− (n − 1)ψ′′

(
(n − 1)φ(u)

)
ψ′

(
(n + 1)φ(u)

))
+nψ′′(nφ(u))ψ′

(
(n − 1)φ(u)

)
− (n + 1)ψ′′

(
(n + 1)φ(u)

)
ψ′

(
nφ(u)

))
= φ′(u)

(
∆2(n − 1, n; u) + ∆2(n, n + 1; u) − ∆2(n − 1, n + 1; u)

)
, (3.2)

where, for all (i, j)

∆2(i, j; u) = iψ′′
(
iφ(u)

)
ψ′

(
jφ(u)

)
− jψ′′

(
jφ(u)

)
ψ′

(
iφ(u)

)
.

Let l2(x, y) = I(x ≤ y)
(
xψ′′(x)ψ′(y) − yψ′′(y)ψ′(x)

)
. As tψ′′′(t)/ψ′′(t) is decreasing, then for x ≤ y, we

have

∂2l2(x, y)
∂x∂y

= ψ′′(x)ψ′′(y)
( xψ′′′(x)
ψ′′(x)

−
yψ′′′(y)
ψ′′(y)

)
≥ 0,

which implies that l2(x, y) is supermodular. Then,

φ(u)(∆2(n − 1, n; u) + ∆2(n, n + 1; u))
= l2

(
(n − 1)u, nu

)
+ l2

(
nu, (n + 1)u

)
≥ l2

(
(n − 1)u, (n + 1)u

)
+ l2(nu, nu) = φ(u)∆2(n − 1, n + 1; u).

That is,

∆2(n − 1, n; u) + ∆2(n, n + 1; u) − ∆2(n − 1, n + 1; u) ≥ 0.
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Thus, (3.2) is non-positive, which implies that fXn−1:n(x)/ fXn:n+1(x) is decreasing in x. Then the proof is
completed. �

The results of Theorem 4 and Theorem 5 are based on Theorem 4(iii) and (iv) in Navarro [17], we
present a sufficient condition for the reversed hazard rate and likelihood ratio orders between 2-out-of-
(n + 1) and 2-out-of-n system. Theorem 4 and Theorem 5 state that 2-out-of-(n + 1) system is more
reliable than 2-out-of-n system in the sense of the reversed hazard rate and likelihood ratio orders.
Now, we present the following example to illustrate the above results.

Example 6. Consider the Clayton copula with generator ψ(t) = (t + 1)−1, we have( tψ′(t)
ψ(t)

)′′
=

2
(1 + t)3 ≥ 0,

( tψ′′(t)
ψ′(t)

)′
=
−2

(1 + t)2 ≤ 0,
( tψ′′′(t)
ψ′′(t)

)′
= −

3
(1 + t)3 ≤ 0.

Thus, the generator satisfies all conditions of Theorem 4 and Theorem 5. Assume that Xi has common
exponential distribution function e−x, i = 1, 2, 3, 4. To display the whole of survival curves of X2:3 and
Y3:4 on [0,∞), we perform the transformation (x +1)−1 : [0,∞) 7−→ [0, 1]. Then, as seen in Figure 1(a),
X2:3 ≤rh X3:4, and Figure 1(b) confirms that X2:3 ≤lr X3:4.

0.2 0.4 0.6 0.8 1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

(a) The curve of F̄(X2:3+1)−1 (x)/F̄(X3:4+1)−1 (x) on (0, 1).

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

(b) The curve of f(X2:3+1)−1 (x)/ f(X3:4+1)−1 (x) on (0, 1).

Figure 1. The curves of F̄(X2:3+1)−1(x)/F̄(X3:4+1)−1(x) and f(X2:3+1)−1(x)/ f(X3:4+1)−1(x).

In the following, in the context of system consist of dependent and homogeneous components, we
build the comparison results for the relative ageing between parallel system and 2-out-of-n/2-out-of-
(n + 1) system. First, we present the relative ageing between parallel and 2-out-of-n systems with
respect to the increasing reversed hazard ratio.

Theorem 7. Suppose homogeneous random variables X1, X2, . . . , Xn having an Archimedean copula
with generator ψ. If both t

(
ψ′′(t)/ψ′(t) − ψ′(t)/ψ(t)

)
and tψ′(t)/ψ(t) are decreasing in t ≥ 0, then

Xn−1:n ≺b Xn:n.

Proof. The reversed hazard rate functions of Xn−1:n and Xn:n can be expressed as

rXn−1:n(x) = n(n − 1)φ′(F(x)) f (x)
ψ′

(
(n − 1)φ(F(x))

)
− ψ′

(
nφ(F(x))

)
nψ

(
(n − 1)φ(F(x))

)
− (n − 1)ψ

(
nφ(F(x))

)
AIMS Mathematics Volume 6, Issue 6, 6390–6405.
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and

rXn:n(x) = nφ′
(
F(x)

)
f (x)

ψ′
(
nφ(F(x))

)
ψ
(
nφ(F(x))

) .
Let u = F(x), it is sufficient to show that

A3(u) =
rXn−1:n(x)
rXn:n(x)

sgn
=

ψ′
(

(n−1)φ(u)
)

ψ′
(

nφ(u)
) − 1

nψ
(

(n−1)φ(u)
)

ψ
(

nφ(u)
) − (n − 1)

is decreasing in u ∈ [0, 1]. Taking the derivative of A3(u), we have

A′3(u)
sgn
= φ′(u)

[
(n − 1)

ψ′′
(
(n − 1)φ(u)

)
ψ′

(
(n − 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) ](nψ((n − 1)φ(u)
)

ψ
(
nφ(u)

) − (n − 1)
)ψ′((n − 1)φ(u)

)
ψ′

(
nφ(u)

)
−φ′(u)

[
(n − 1)

ψ′
(
(n − 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) − n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) ](
n
ψ′

(
(n − 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n − 1)φ(u)

)
ψ
(
nφ(u)

)
= φ′(u)

[(
(n − 1)

ψ′′
(
(n − 1)φ(u)

)
ψ′

(
(n − 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) )(nψ((n − 1)φ(u)
)

ψ
(
nφ(u)

) − (n − 1)
)ψ′((n − 1)φ(u)

)
ψ′

(
nφ(u)

)
−

(
(n − 1)

ψ′((n − 1)φ(u))
ψ((n − 1)φ(u))

− n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) )(
n
ψ′

(
(n − 1)φ(u)

)
ψ′(nφ(u))

− n
)ψ((n − 1)φ(u)

)
ψ
(
nφ(u)

) ]
= φ′(u)∆3(u),

where

∆3(u)

=

(
(n − 1)

ψ′′
(
(n − 1)φ(u)

)
ψ′

(
(n − 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) )(nψ((n − 1)φ(u)
)

ψ
(
nφ(u)

) − (n − 1)
)ψ′((n − 1)φ(u)

)
ψ′

(
nφ(u)

)
−

(
(n − 1)

ψ′
(
(n − 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) − n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) )(
n
ψ′

(
(n − 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n − 1)φ(u)

)
ψ
(
nφ(u)

) .

As φ′(u) ≤ 0, we just need to show that ∆3(u) is nonnegative. Note that(
n
ψ
(
(n − 1)φ(u)

)
ψ
(
nφ(u)

) − (n − 1)
)ψ′((n − 1)φ(u)

)
ψ′

(
nφ(u)

) −

(
n
ψ′

(
(n − 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n − 1)φ(u)

)
ψ
(
nφ(u)

)
= n

ψ
(
(n − 1)φ(u)

)
ψ
(
nφ(u)

) − (n − 1)
ψ′

(
(n − 1)φ(u)

)
ψ′

(
nφ(u)

)
=

[
nφ(u)

ψ′
(
nφ(u)

)
ψ
(
nφ(u)

) − (n − 1)φ(u)
ψ′

(
(n − 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) ]ψ((n − 1)φ(u)
)

φ(u)ψ′
(
nφ(u)

) ≥ 0,

where the last inequality is due to the assumption that tψ′(t)/ψ(t) is decreasing in t ≥ 0 and ψ′(x) ≤ 0.
Thus

∆3(u)
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≥

[(
(n − 1)

ψ′′
(
(n − 1)φ(u)

)
ψ′

(
(n − 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) ) − (
(n − 1)

ψ′
(
(n − 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) − n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) )]
×

(
n
ψ′

(
(n − 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n − 1)φ(u)

)
ψ
(
nφ(u)

)
sgn
=

(
(n − 1)

ψ′′
(
(n − 1)φ(u)

)
ψ′

(
(n − 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) ) − (
(n − 1)

ψ′
(
(n − 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) − n
ψ′(nφ(u))
ψ
(
nφ(u)

) )
= (n − 1)φ(u)

(ψ′′((n − 1)φ(u)
)

ψ′
(
(n − 1)φ(u)

) − ψ′((n − 1)φ(u)
)

ψ
(
(n − 1)φ(u)

) )
− nφ(u)

(ψ′′(nφ(u)
)

ψ′
(
nφ(u)

) − ψ′(nφ(u)
)

ψ
(
nφ(u)

) )
≥ 0,

where the last inequality is by the assumption that t
(
ψ′′(t)/ψ′(t) − ψ′(t)/ψ(t)

)
is decreasing in t ≥ 0.

Hence, we complete the proof. �
Next, we establish the relative ageing between parallel system and 2-out-of-(n + 1) system in the

sense of increasing reversed hazard ratio.

Theorem 8. Suppose homogeneous random variables X1, X2, . . . , Xn+1 having an Archimedean copula
with generator ψ. If both t

(
ψ′′(t)/ψ′(t) − ψ′(t)/ψ(t)

)
and tψ′(t)/ψ(t) are decreasing in t ≥ 0, then

Xn:n+1 ≺b Xn:n.

Proof. The reversed hazard rate functions of Xn:n+1 and Xn:n can be expressed as

rXn:n+1(x) = n(n + 1)φ′
(
F(x)

)
f (x)

ψ′
(
nφ(F(x))

)
− ψ′

(
(n + 1)φ(F(x))

)
(n + 1)ψ

(
nφ(F(x))

)
− nψ

(
(n + 1)φ(F(x))

)
and

rXn:n(x) = nφ′
(
F(x)

)
f (x)

ψ′
(
nφ(F(x))

)
ψ
(
nφ(F(x))

) ,
respectively. Let u = F(x), it just need to show that

A4(u) =
rXn:n+1(x)
rXn:n(x)

sgn
=

ψ′
(

(n+1)φ(u)
)

ψ′
(

nφ(u)
) − 1

nψ
(

(n+1)φ(u)
)

ψ
(

nφ(u)
) − (n + 1)

is decreasing in u ∈ [0, 1]. Taking the derivative of A4(u), we have

A′4(u)
sgn
= φ′(u)

[(
(n + 1)

ψ′′
(
(n + 1)φ(u)

)
ψ′

(
(n + 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) )(nψ((n + 1)φ(u)
)

ψ
(
nφ(u)

) − (n + 1)
)ψ′((n + 1)φ(u)

)
ψ′

(
nφ(u)

)
−

(
(n + 1)

ψ′
(
(n + 1)φ(u)

)
ψ
(
(n − 1)φ(u)

) − n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) )(
n
ψ′

(
(n + 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n + 1)φ(u)

)
ψ
(
nφ(u)

) ]
= φ′(u)∆4(u),

where

∆4(u)
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=

(
(n + 1)

ψ′′
(
(n + 1)φ(u)

)
ψ′

(
(n + 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) )(nψ((n + 1)φ(u)
)

ψ
(
nφ(u)

) − (n + 1)
)ψ′((n + 1)φ(u)

)
ψ′

(
nφ(u)

)
−

(
(n + 1)

ψ′
(
(n + 1)φ(u)

)
ψ
(
(n + 1)φ(u)

) − n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) )(
n
ψ′

(
(n + 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n + 1)φ(u)

)
ψ
(
nφ(u)

) .

As φ′(u) ≤ 0, it only need to show that ∆4(u) is nonnegative. Note that(
n
ψ
(
(n + 1)φ(u)

)
ψ
(
nφ(u)

) − (n + 1)
)ψ′((n + 1)φ(u)

)
ψ′

(
nφ(u)

) −

(
n
ψ′

(
(n + 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n + 1)φ(u)

)
ψ
(
nφ(u)

)
= n

ψ
(
(n + 1)φ(u)

)
ψ
(
nφ(u)

) − (n + 1)
ψ′

(
(n + 1)φ(u)

)
ψ′

(
nφ(u)

)
=

[
nφ(u)

ψ′
(
nφ(u)

)
ψ
(
nφ(u)

) − (n + 1)φ(u)
ψ′

(
(n + 1)φ(u)

)
ψ
(
(n + 1)φ(u)

) ]ψ((n + 1)φ(u)
)

φ(u)ψ′
(
nφ(u)

) ≤ 0,

where the last inequality is due to the assumption that tψ′(t)/ψ(t) is decreasing in t ≥ 0 and ψ′(x) ≤ 0.
Thus

∆4(u)

≥

[(
(n + 1)

ψ′′
(
(n + 1)φ(u)

)
ψ′

(
(n + 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) ) − (
(n + 1)

ψ′
(
(n + 1)φ(u)

)
ψ
(
(n + 1)φ(u)

) − n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) )]
×

(
n
ψ′

(
(n + 1)φ(u)

)
ψ′

(
nφ(u)

) − n
)ψ((n + 1)φ(u)

)
ψ
(
nφ(u)

)
sgn
= −

(
(n + 1)

ψ′′
(
(n + 1)φ(u)

)
ψ′

(
(n − 1)φ(u)

) − n
ψ′′

(
nφ(u)

)
ψ′

(
nφ(u)

) ) +

(
(n + 1)

ψ′
(
(n + 1)φ(u)

)
ψ
(
(n + 1)φ(u)

) − n
ψ′

(
nφ(u)

)
ψ
(
nφ(u)

) )
sgn
= nφ(u)

(ψ′′(nφ(u)
)

ψ′
(
nφ(u)

) − ψ′(nφ(u)
)

ψ
(
nφ(u)

) )
− (n + 1)φ(u)

(ψ′′((n + 1)φ(u)
)

ψ′
(
(n + 1)φ(u)

) − ψ′((n + 1)φ(u)
)

ψ
(
(n + 1)φ(u)

) )
≥ 0,

where the last inequality is by the assumption that t
(
ψ′′(t)/ψ′(t) − ψ′(t)/ψ(t)

)
is decreasing in t ≥ 0.

Hence, we complete the proof. �
Theorem 7 and Theorem 8 state that 2-out-of-n system and 2-out-of-(n + 1) system ageing faster

than parallel system consisting of n components in the sense of the increasing reversed hazard ratio,
respectively. The next example demonstrates the above results.

Example 9. Consider the Clayton copula with generator ψ(t) = (t + 1)−1, we have

t
(
ψ′′(t)
ψ′(t)

−
ψ′(t)
ψ(t)

)
= −1 +

1
1 + t

,
( tψ′(t)
ψ(t)

)′
=
−1

(1 + t)2 .

Thus, the generator satisfies the conditions of Theorem 7 and Theorem 8. Assume that Xi has common
exponential distribution function e−x, i = 1, 2, 3, 4, 5. The curves of h(X3:4+1)−1(x)/h(X4:4+1)−1(x) and
h(X4:5+1)−1(x)/h(X4:4+1)−1(x) are plotted in Figure 2(a) and Figure 2(b), respectively, from which we can
see that X3:4 ≺b X4:4 and X4:5 ≺b X4:4.

4. Comparison results for the case of random sample size

In this section, we study the ordering results of the second largest order statistics from random
number of homogeneous samples coupled by Archimedean copula. First, we present the comparison
result in the sense of the reversed hazard rate order between XN1−1:N1 and XN2−1:N2 .
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(a) The curve of h(X3:4+1)−1 (x)/h(X4:4+1)−1 (x) on (0, 1).
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(b) The curve of h(X4:5+1)−1 (x)/h(X4:4+1)−1 (x) on (0, 1).

Figure 2. The curves of h(X3:4+1)−1(x)/h(X4:4+1)−1(x) and h(X4:5+1)−1(x)/h(X4:4+1)−1(x).

Theorem 10. Suppose homogeneous random variables X1, X2, . . . having an Archimedean copula with
generator ψ, and let N1(≥ 2) and N2(≥ 2) be positive integer-valued random variables which are
independent of Xi, i = 1, 2, . . .. If tψ′(t)/ψ(t) is convex and tψ′′(t)/ψ′(t) is decreasing, and N1 ≤Lt−r N2,
then

XN1−1:N1 ≤rh XN2−1:N2 .

Proof. The distribution functions of XN j−1:N j can be expressed as

FXN j−1:N j
(x) = P(XN j−1:N j ≤ x)

= P(XN j−1:N j ≤ x|N j = n)P(N j = n)
= P(Xn−1:n ≤ x)P(N j = n)

=

∞∑
n=2

FXn−1:n(x)P(N j = n)

= LN j

(
− log FXn−1:n(x)

)
, j = 1, 2.

As N1 ≤Lt−r N2 implies that LN2(x)/LN1(x) is decreasing in x > 0.Note that − log FXn−1:n(x) is decreasing
in x > 0, thus

LN2

(
− log FXn−1:n(x)

)
LN1

(
− log FXn−1:n(x)

)
is increasing in x > 0. Then we have XN1−1:N1 ≤rh XN2−1:N2 . Which finishes the proof. �

Shaked and Wong [34] have also shown that N1 ≤rh N2 implies N1 ≤Lt−r N2, thus we have the
following corollary.

Corollary 11. Suppose homogeneous random variables X1, X2, . . . having an Archimedean copula
with generator ψ, and let N1(≥ 2) and N2(≥ 2) be positive integer-valued random variable which are
independent of Xi, i = 1, 2, . . .. If tψ′(t)/ψ(t) is convex and tψ′′(t)/ψ′(t) is decreasing, and N1 ≤rh N2,
then

XN1−1:N1 ≤rh XN2−1:N2 .

The following theorem establishes the likelihood ratio order between XN1−1:N1 and XN2−1:N2 .
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Theorem 12. Suppose homogeneous random variables X1, X2, . . . having an Archimedean copula with
generator ψ, and let N1(≥ 2) and N2(≥ 2) be positive integer-valued random variables which are
independent of Xi, i = 1, 2, . . .. If tψ′′′(t)/ψ′′(t) is decreasing, and N1 ≤lr N2, then

XN1−1:N1 ≤lr XN2−1:N2 .

Proof. The density function of XN j−1:N j can be expressed as

fXN j−1:N j
(x) =

∞∑
n=2

fXn−1:n(x)P(N j = n), j = 1, 2.

As N1 ≤lr N2 implies that

P(N1 = n)
P(N2 = n)

≤
P(N1 = n + 1)
P(N2 = n + 1)

,

thus P(N j = n) is TP2 in n ≥ 2 and j( j = 1, 2). According to Theorem 5, for x1 ≤ x2, we have

fXn−1:n(x2)
fXn:n+1(x2)

≤
fXn−1:n(x1)
fXn:n+1(x1)

,

that is, fXn−1:n(x) is TP2 in n ≥ 2 and x. Then, by the Theorem 5.1 of Karlin [42], fXN j−1:N j
(x) is TP2 in x

and j( j = 1, 2). Therefore, XN1−1:N1 ≤lr XN2−1:N2 . Thus we complete the proof. �
From Corollary 11 and Theorem 12, we obtain the following two corollaries.

Corollary 13. Suppose homogeneous random variables X1, X2, . . . having an Archimedean copula with
generator ψ, and let N(≥ 2) be positive integer-valued random variable which is independent of Xi, i =

1, 2, . . .. If tψ′(t)/ψ(t) is convex and tψ′′(t)/ψ′(t) is decreasing, and
∑n

k=2 P(N ≤ n)/
∑n−1

k=2 P(N ≤ n − 1)
is decreasing in n ≥ 2, then

XN−1:N ≤rh XN:N+1.

Corollary 14. Suppose homogeneous random variables X1, X2, . . . having an Archimedean copula with
generator ψ, and let N(≥ 2) be positive integer-valued random variable which is independent of Xi,
i = 1, 2, . . .. If tψ′′′(t)/ψ′′(t) is decreasing, and P(N = n)/P(N = n − 1) is decreasing in n ≥ 2, then

XN−1:N ≤lr XN:N+1.

In the following, we present an example which satisfies the condition P(N = n)/P(N = n − 1) is
decreasing in n ≥ 2 in Corollary 14.

Example 15. Suppose positive integer-valued random variable N follows distribution with density
function

P(N = k) =
λk−2

(k − 2)!
e−λ, k = 2, 3, . . . ,

where λ > 0. It is easy to check that

P(N = n)
P(N = n − 1)

=
λ

n − 2

is decreasing in n ≥ 2.
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5. Some applications

5.1. Reliability theory

In reliability theory, the k-out-of-n system as the popular fault tolerant system has been widely
applied in industrial engineering and system security. Specifically, X1:n and Xn:n denote the lifetimes of
series and parallel systems, X2:n and Xn−1:n characterize the lifetime of the fail-safe system and 2-out-
of-n system, respectively. Theorem 4 states that adding a more component to 2-out-of-n system as a
redundancy will lead to a more reliable system in the sense of the reversed hazard rate order.

5.2. Auction theory

The second-price sealed-bid auction is of important theoretical and practical interest in auction
theory. There are several bidders competing to buy a good, bidders hand in their bids to the auctioneers
simultaneously without the knowledge of their rivals’ bids. The bidder with the highest bid wins the
object and pays the second highest bid in the English auction. Theorem 4 states that attracting one
more bidder makes the final price of second-price sealed-bid auction stochastically higher in terms of
the reversed hazard rate order.

6. Concluding remarks

In this paper, in the context of system consisting of dependent and homogeneous components, we
investigate the problem of stochastic comparisons of the second largest order statistics, and we build
the reversed hazard rate and likelihood ratio orders, and we further generalize the corresponding results
to the case of random sample size. We also derive some results for relative ageing between parallel
systems and 2-out-of-n/2-out-of-(n + 1) systems in terms of the increasing reversed hazard rate order.
And we present two applications of the main results. The hazard rate and likelihood ratio orders for
the second smallest order statistics can be obtained in a similar method, also, relative ageing between
series systems and (n−1)-out-of-n/n-out-of-(n+1) systems in terms of the increasing hazard rate order.
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