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1. Introduction

Fractional calculus provides a concise model for the description of the dynamic events that occur
in biological tissues. Such a description is important for gaining an understanding of the underlying
multiscale processes that occur when, for example, tissues are electrically stimulated or mechanically
stressed. The mathematics of fractional calculus has been applied successfully in physics, chemistry,
and materials science to describe dielectrics, electrodes and viscoelastic materials over extended ranges
of time and frequency, see [1, 2].

Fractional calculus is now a well-established tool in engineering science, with very promising
applications in materials modelling. Indeed, several studies have shown that fractional operators can
successfully describe complex long-memory and multiscale phenomena in materials, which can
hardly be captured by standard mathematical approaches as, for instance, classical differential
calculus. Furthermore, fractional calculus has recently proved to be an excellent framework for
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modelling non-conventional fractal and non-local media, opening valuable prospects on future
engineered materials, see [3, 4].

Fractional calculus become a key tool for many fields such as Biology [5, 6], Economy [7],
Demography [8], Geophysics [9], Medicine [10] and Bio-engineering [11]. There are many
interesting controversies and generalizations for fractional calculus available to handle more and more
real world problems [5, 12]. This operator is significant because of their singular Kernal and hence, it
is interesting to develop inequalities involving fractional order derivatives and fractional operators.
Now a days, “Hermite-Hadamard type inequalities” are one of the top trend topic for the researchers
of convex analysis and inequalities, which is define as:

Theorem 1.1. [13] Let ξ : J ⊆ R→ R be a convex function and u, v ∈ J with u<v, then the following
double inequality holds:

ξ
(u + v

2

)
≤

1
v − u

∫ v

u
ξ(x)dx ≤

ξ(u) + ξ(v)
2

. (1.1)

Many fractional operators are used to generalized Hermite-Hadamard inequality, for example,
Chen and Katugampola [14] presented Hermite-Hadamard and Hermite-Hadamard-Fejér type
inequalities for generalized fractional integrals. In 2015, Set et al., [15] presented some new
inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals. In 2016,
Set, Sarikaya and Karakoc [16] presented Hermite-Hadamard type inequalities for convex functions
via fractional integrals. Iscan in [17] presented Hermite-Hadamard type inequalities for harmonically
convex functions. Gurbuz et al., in 2020, [18] studied Hermite-Hadamard inequality for fractional
integrals of Caputo-Fabrizio type and presented some other related inequalities. The inequalities
related to h-convexity had been studied in [19] by Varosanec. Also, there are many different
extensions and versions appeared in number of papers and these extensions received many
applications in different areas of mathematics, see for example [20–26]. For more detailed study
about inequality theory and its applications, we refer to the readers [27–31] and the references therein.

Motivated by the work done in past years on generalizations of Hermite-Hadamard type
inequalities for different convexities involving certain fractional integral operators, we developed
Hermite-Hadamard type inequality for Caputo-Fabrizio fractional operator for the class of h convex
functions in this paper. We also presented some other inequalities and gave applications of our results
in special means. Our results are generalization and extension of many existing results in literature.

2. Preliminaries

In this section, we present some known definitions and results that will help us in proving main
results of this paper.

Definition 1. (Convex function) Consider an extended real valued function ξ : J → R, where J ⊂ Rn

is any convex set, then the function ξ is convex on J if

ξ(θu + (1 − θ)v) ≤ θξ(u) + (1 − θ)ξ(v), (2.1)

holds for all u, v ∈ J and θ ∈ (0, 1).
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Definition 2. (h-convex function) [19] Let I, J be intervals in R, (0, 1) ⊂ J and let h : J → R be a
non-negative function, h , 0. A non-negative function ξ : I → R is h-convex if

ξ(θu + (1 − θ)v) ≤ h(θ)ξ(u) + h(1 − θ)ξ(v), (2.2)

holds for all u, v ∈ J and θ ∈ (0, 1).

If the inequality (2.2) is reversed, then the function ξ is h-concave. The class of h convex functions
is denoted by S X(h, J) and the class of h concave functions is denoted by S V(h, J).

In the following remark, we give the relationship between the definitions 1 and 2.

Remark 1. 1. If h(θ) = θ then (2.2) reduces to (2.1).
2. If h(θ) ≥ θ for all θ ∈ (0, 1) and the function ξ is convex and non-negative than ξ ∈ S X(h, J).
3. If h(θ) ≤ θ for all θ ∈ (0, 1)and the function ξ is convex and non-negative than ξ ∈ S V(h, J).

Definition 3. (Caputo-Fabrizio fractional time derivative) For any function ξ, the Caputo fractional
derivative of order σ is denoted by (UFDt) and is defined as

Dσ
t ξ(t) =

1
γ(1 − σ)

∫ t

u

ξ′(x)
(t − x)σ

dx, (2.3)

with σ ∈ (0, 1) and u ∈ [−∞, t), ξ ∈ H1(u, v), u < v, (H1(u, v) is class of first order differentiable
function). By changing the kernal (t − x)−σ with the function exp

(
−σ(t−x)σ

1−σ

)
and 1

γ(1−σ) with B(σ)
1−σ , where

B(σ) > 0 is a normalization function satisfying B(0) = B(1) = 1, we obtained the new definition of
fractional time derivative

(Dσ
t ξ)(t) =

B(σ)
1 − σ

∫ t

u
ξ′(x)e

−σ(t−x)σ
1−σ dx, (2.4)

Definition 4. [1] Let ξ ∈ H1(u, v), u < v, σ ∈ (0, 1), then the left Caputo-Fabrizio fractional derivative
is defined as (

CFC
u Dσξ

)
(t) =

B(σ)
1 − σ

∫ t

u
ξ′(x)e

−σ(t−x)σ
1−σ dx, (2.5)

and the integral associated with this fractional derivative is(
CF
u Iσξ

)
(t) =

1 − σ
B(σ)

ξ(t) +
σ

B(σ)

∫ t

u
ξ(x)dx. (2.6)

Here, the function B(σ) > 0 is normalization that satisfy the condition B(0) = B(1) = 1.
Now, the right Caputo-Fabrizio fractional derivative is defined as(

CFCDσ
v ξ

)
(t) =

−B(σ)
1 − σ

∫ v

t
ξ′(x)e

−σ(x−t)σ
1−σ dx, (2.7)

and the integral associated with this fractional derivative is(
CF Iσv ξ

)
(t) =

1 − σ
B(σ)

ξ(t) +
σ

B(σ)

∫ v

t
ξ(x)dx. (2.8)
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Lemma 1. Consider a differential mapping ξ : J ⊆ R → R defined on J̊ and u, v ∈ J with u < v. If
ξ′ ∈ L[u, v] then we have

ξ(u) + ξ(v)
2

−
1

v − u

∫ v

u
ξ (x) dx =

v − u
2

∫ 1

0
(1 − 2α)ξ′(θu − (1 − θ)v)dθ.

Lemma 2. [18, Lemma 2] Consider a differential mapping ξ : J = [u, v] → R defined on J̊, and
u, v ∈ J with u < v. If ξ ∈ L1[u, v], and σ ∈ (0, 1) then we have

v − u
2

∫ 1

0
(1 − 2θ)ξ′(θu − (1 − θ)v)dθ −

2(1 − σ)
σ(v − u)

ξ(k)

=
ξ(u) + ξ(v)

2
−

B(σ)
σ(v − u)

[(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k)

]
, (2.9)

where k ∈ [u, v] and B(σ) > 0 is a normalization function.

3. Hermite-Hadamard inequality via h convex function involving Caputo-Fabrizio fractional
operator

In the following theorem, we present a variant of Hermite-Hadamard inequality in the setting of
h-convex functions.

Theorem 3.1. Let ξ : J = [u, v] → R be an h-convex function defined on [u, v] and ξ ∈ L1[u, v]. If
σ ∈ (0, 1), then we have

1

2h
(

1
2

)ξ (u + v
2

)
≤

B(σ)
σ(v − u)

[(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k) −

2(1 − σ)
B(σ)

ξ(k)
]

≤ (ξ(u) + ξ(v))
∫ 1

0
h(θ)dθ,

(3.1)

where k ∈ [u, v] and B(σ) > 0 is as defined above.

Proof. The Hermite-Hadamard inequality for h-convex is as follows;

1

2h
(

1
2

)ξ (u + v
2

)
≤

1
v − u

∫ v

u
ξ(x)dx ≤ (ξ(u) + ξ(v))

∫ 1

0
h(θ)dθ. (3.2)

Since ξ is a h-convex function on [u, v], we can write

2

2h
(

1
2

)ξ (u + v
2

)
≤

2
v − u

∫ v

u
ξ(x)dx

=
2

v − u

(∫ k

u
ξ(x)dx +

∫ v

k
ξ(x)dx

)
. (3.3)
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Multiplying both sides of (3.3) by σ(v−u)
2B(σ) and adding 2(1−σ)

B(σ) ξ(k), we get

2(1 − σ)
B(σ)

ξ(k) +
σ(v − u)

B(σ)

 1

2h
(

1
2

)ξ (u + v
2

)
≤

2(1 − σ)
B(σ)

ξ(k) +
σ

B(σ)

[∫ k

u
ξ(x)dx +

∫ v

k
ξ(x)dx

]
=

(
(1 − σ)

B(σ)
ξ(k) +

σ

B(σ)

∫ k

u
ξ(x)dx

)
+

(
(1 − σ)

B(σ)
ξ(k) +

σ

B(σ)

∫ v

k
ξ(x)dx

)
=

(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k). (3.4)

After suitable rearrangement of (3.4), we arrive at the left inequality of (3.1).
Now we will prove the right side of (3.1). The Hermite-Hadamard inequality for h-convex

functions is

2
v − u

∫ v

u
ξ(x)dx ≤ 2

[
(ξ(u) + ξ(v))

∫ 1

0
h(θ)dθ

]
,

2
v − u

[∫ k

u
ξ(x)dx +

∫ v

k
ξ(x)dx

]
≤ 2

[
(ξ(u) + ξ(v))

∫ 1

0
h(θ)dθ

]
. (3.5)

By using the same operator with (3.3) in (3.5), we have(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k)

≤
2(1 − σ)

B(σ)
ξ(k) +

σ(v − u)
B(σ)

(
(ξ(u) + ξ(v))

∫ 1

0
h(θ)dθ

)
.

(3.6)

After suitable rearrangement of (3.6), we get the required right side of (3.1), which complete the
proof. �

Following remark proofs that our result is generalization of existing result.

Remark 2. Taking h(θ) = θ in Theorem 3.1, we get [18, Theorem 2].

In the following theorem, we present another variant of Hermite-Hadamard inequality.

Theorem 3.2. Let ξ1, ξ2 : J ⊆ R → R be a h-convex functions on J. If ξ1ξ2 ∈ L1([u, v]), then we have
the following inequality:

2B(σ)
σ(v − u)

[(
CF
u Iσξ1ξ2

)
(k) +

(
CF Iσv ξ1ξ2

)
(k) −

2(1 − σ)
B(σ)

ξ1(k)ξ2(k)
]

≤

(
2
∫ 1

0
(h(θ))2dθ

)
M(u, v) +

(
2
∫ 1

0
h(θ)h(1 − θ)dθ

)
N(u, v), (3.7)

where M(u, v) = ξ1(u)ξ2(u) + ξ1(v)ξ2(v), N(u, v) = ξ1(u)ξ2(v) + ξ1(v)ξ2(u) and k ∈ [u, v] and B(σ) > 0.
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Proof. By definition of h-convexity of ξ1 and ξ2, we have

ξ1(θu + (1 − θ)v) ≤ h(θ)ξ1(u) + h(1 − θ)ξ1(v),∀θ ∈ [0, 1], (3.8)

and

ξ2(θu + (1 − θ)v) ≤ h(θ)ξ2(u) + h(1 − θ)ξ2(v),∀θ ∈ [0, 1]. (3.9)

Multiplying both sides of (3.8) and (3.9), we have

ξ1(θu + (1 − θ)v)ξ2(θu + (1 − θ)v) (3.10)
≤ (h(θ))2 ξ1(u)ξ2(u) + (h(1 − θ))2 ξ1(v)ξ2(v) + h(θ)h (1 − θ)

[
ξ1(u)ξ2(v) + ξ1(v)ξ2(u)

]
.

Integrating (3.11) with respect to θ over [0, 1] and changing variables, we obtain

1
v − u

∫ v

u
ξ1(x)ξ2(x)dx ≤ ξ1(u)ξ2(u)

∫ 1

0
(h(θ))2 dθ + ξ1(v)ξ2(v)

∫ 1

0
(h(1 − θ))2 dθ

+
[
ξ1(u)ξ2(v) + ξ1(v)ξ2(u)

] ∫ 1

0
h(θ)h (1 − θ) dθ,

which implies

2
v − u

[∫ t

u
ξ1(x)ξ2(x)dx +

∫ v

t
ξ1(x)ξ2(x)dx

]
≤ 2

[∫ 1

0
(h(θ))2 dθ

[
ξ1(u)ξ2(u) + ξ1(v)ξ2(v)

]
+

∫ 1

0
h(θ)h (1 − θ) dθ +

[
ξ1(u)ξ2(v) + ξ1(v)ξ2(u)

]]
.

≤ 2
[(∫ 1

0
(h(θ))2 dθ

)
M(u, v) +

(∫ 1

0
h(θ)h (1 − θ) dθ

)
N(u, v)

]
. (3.11)

Multiplying both sides of (3.11) by σ(v−u)
2B(σ) and adding 2(1−σ)

B(σ) ξ1(k)ξ2(k), we get

σ

B(σ)

[∫ k

u
ξ1(x)ξ2(x)dx +

∫ v

k
ξ1(x)ξ2(x)dx

]
+

2(1 − σ)
B(σ)

ξ1(k)ξ2(k)

≤
σ(v − u)

B(σ)

[
2
(∫ 1

0
(h(θ))2 dθ

)
M(u, v) + 2

(∫ 1

0
h(θ)h (1 − θ) dθ

)
N(u, v)

]
+

2(1 − σ)
B(σ)

ξ1(k)ξ2(k).

Thus (
CF
u Iσξ1ξ2

)
(k) +

(
CF Iσv ξ1ξ2

)
(k)

≤
σ(v − u)

B(σ)

[
2
(∫ 1

0
(h(θ))2 dθ

)
M(u, v) + 2

(∫ 1

0
h(θ)h (1 − θ) dθ

)
N(u, v)

]
+

2(1 − σ)
B(σ)

ξ1(k)ξ2(k). (3.12)

The suitable arrangement of (3.12) completes the proof. �
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The following remark shows that our result is generalization of existing result.

Remark 3. Taking h(θ) = θ in Theorem 3.2 we obtain [18, Theorem 3].

Following theorem contains another variant of Hermite-hadamard inequality.

Theorem 3.3. Let ξ1 and ξ2 are h-convex functions on J. If ξ1ξ2 ∈ L([u, v]), then we have

1

2
[
h( 1

2 )
]2 ξ1

(u + v
2

)
ξ2

(u + v
2

)
−

B(σ)
σ(v − u)

[(
CF
u Iσξ1ξ2

)
(k) +

(
CF Iσv ξ1ξ2

)
(k)

]
+

2(1 − σ)
σ(v − u)

ξ1(k)ξ2(k)

≤ M(u, v)
∫ 1

0
h(θ)h (1 − θ) dθ +

1
2

N(u, v)
∫ 1

0

[
(h(θ))2 + (h(1 − θ))2

]
dθ, (3.13)

where M(u, v) = ξ1(u)ξ1(u) + ξ1(v)ξ1(v), N(u, v) = ξ2(u)ξ2(v) + ξ2(v)ξ2(u) and k ∈ [u, v] and B(σ) > 0.

Proof. By using h-convexity of ξ1 and ξ2 and taking θ = 1
2 , we have

ξ1

(u + v
2

)
≤

[
h
(
1
2

)]2

ξ1((1 − θ)u + θv) +

[
h
(
1
2

)]2

ξ1(θu + (1 − θ)v),

and

ξ2

(u + v
2

)
≤

[
h
(
1
2

)]2

ξ2((1 − θ)u + θv) +

[
h
(
1
2

)]2

ξ2(θu + (1 − θ)v).

Multiplying the above inequalities at both sides, we get

ξ1

(u + v
2

)
ξ2

(u + v
2

)
≤

[
h
(
1
2

)]2 [
ξ1((1 − θ)u + θv)ξ2((1 − θ)u + θv) + ξ1(θu + (1 − θ)v)

ξ2(θu + (1 − θ)v) + ξ1((1 − θ)u + θv)ξ2(θu + (1 − θ)v) + ξ1(θu + (1 − θ)v)
ξ2((1 − θ)u + θv)

]
≤

[
h
(
1
2

)]2 [
ξ1((1 − θ)u + θv)ξ2((1 − θ)u + θv) + ξ1(θu + (1 − θ)v)

ξ2(θu + (1 − θ)v) + 2h(θ)h(1 − θ) {ξ1(u)ξ2(u) + ξ1(v)ξ2(v)}{
(h(θ))2 + (h(1 − θ))2

}
{ξ1(u)ξ2(v) + ξ1(v)ξ2(u)}

]
. (3.14)

Integrating (3.14) with respect to θ over [0, 1] and changing variables, we obtain

ξ1

(u + v
2

)
ξ2

(u + v
2

)
≤

[
h
(
1
2

)]2 [
2

v − u

∫ v

u
ξ1(x)ξ2(x)dx + 2M(u, v)

∫ 1

0
h(θ)h(1 − θ)dθ

+N(u, v)
∫ 1

0

[
(h(θ))2 + (h(1 − θ))2

]
dθ

]
. (3.15)

Multiplying both sides of (3.15) by σ(v−u)
2B(σ) and subtracting 2(1−σ)

B(σ) ξ1(k)ξ2(k), we obtain
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σ(v − u)

2B(σ)
[
h
(

1
2

)]2 ξ1

(u + v
2

)
ξ2

(u + v
2

)
−

2(1 − σ)
B(σ)

ξ1(k)ξ2(k)

≤
σ

B(σ)

∫ v

u
ξ1(x)ξ2(x)dx +

σ(v − u)
2B(σ)

[
2M(u, v)

∫ 1

0
h(θ)h (1 − θ) dθ

+N(u, v)
∫ 1

0

[
(h(θ))2 + (h(1 − θ))2

]
dθ

]
−

2(1 − σ)
B(σ)

ξ1(k)ξ2(k) .

Thus

σ(v − u)

2B(σ)
[
h
(

1
2

)]2 ξ1

(u + v
2

)
ξ2

(u + v
2

)
−

2(1 − σ)
B(σ)

ξ1(k)ξ2(k)

−
σ

B(σ)

[∫ k

u
ξ1(x)ξ2(x)dx +

∫ u

k
ξ1(x)ξ2(x)dx+

]
≤
σ(v − u)
2B(σ)

[
2M(u, v)

∫ 1

0
h(θ)h (1 − θ) dθ + N(u, v)

∫ 1

0

[
(h(θ))2 + (h(1 − θ))2

]
dθ

]
−

2(1 − σ)
B(σ)

ξ1(k)ξ2(k) .

This implies that

σ(v − u)

2B(σ)
[
h
(

1
2

)]2 ξ1

(u + v
2

)
ξ2

(u + v
2

)
−

(
CF
u Iσξ1ξ2

)
(k) +

(
CF Iσv ξ1ξ2

)
(k)

≤
σ(v − u)
2B(σ)

[
2M(u, v)

∫ 1

0
h(θ)h (1 − θ) dθ + N(u, v)

∫ 1

0

[
(h(θ))2 + (h(1 − θ))2

]
dθ

]
−

2(1 − σ)
B(σ)

ξ1(k)ξ2(k) . (3.16)

Multiplying (3.16) 2B(σ)
σ(v−u) , we obtained the required inequality (3.13). �

Remark 4. If we take h(θ) = θ in Theorem 3.3 we obtain [18, Theorem 4].

4. Results concerning Caputo-Fabrizio fractional operator

In the following theorem, we present an inequality concerning Caputo-Fabrizio fractional operator
in the setting of h-convexity.

Theorem 4.1. Consider a differentiable function ξ : J → R defined on J̊ such that the function |ξ′| is
h-convex on [u, v], where u, v ∈ J with u < v. If ξ′ ∈ L1[u, v] and σ ∈ (0, 1), then we have∣∣∣∣∣ξ(u) + ξ(v)

2
+

2(1 − σ)
σ(v − u)

ξ(k) −
B(σ)

σ(v − u)

[(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k)

]∣∣∣∣∣
≤

v − u
2

[
E1 |ξ

′(u)| + E2 |ξ
′(v)|

]
, (4.1)
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where

E1 =

∫ 1
2

0
|1 − 2θ| h(θ)dθ +

∫ 1

1
2

|2θ − 1| h(θ)dθ

 , (4.2)

E2 =

∫ 1
2

0
|1 − 2θ| h(1 − θ)dθ +

∫ 1

1
2

|2θ − 1| h(1 − θ)dθ

 , (4.3)

where k ∈ [u, v] and B(σ) > 0 is a normalization function.

Proof. In the light of the Lemma 2 and the fact that |ψ′| is h-convex, we get∣∣∣∣∣ξ(u) + ξ(v)
2

+
2(1 − σ)
σ(v − u)

ξ(k) −
B(σ)

σ(v − u)

[(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k)

]∣∣∣∣∣
≤

v − u
2

∫ 1

0
|1 − 2θ| |ξ′(θu + (1 − θ)v)| dθ

≤
v − u

2

∫ 1

0
|1 − 2θ|

[
h(θ) |ξ′(u)| + h(1 − θ) |ξ′(v)|

]
dθ

=
v − u

2

∫ 1
2

0
|1 − 2θ|

[
h(θ) |ξ′(u)| + h(1 − θ) |ξ′(v)|

]
dθ

+

∫ 1

1
2

|2θ − 1|
[
h(θ) |ξ′(u)| + h(1 − θ) |ξ′(v)|

]
dθ


=

v − u
2

|ξ′(u)|

∫ 1
2

0
|1 − 2θ| h(θ)dθ +

∫ 1

1
2

|2θ − 1| h(θ)dθ


+ |ξ′(v)|

∫ 1
2

0
|1 − 2θ| h(1 − θ)dθ +

∫ 1

1
2

|2θ − 1| h(1 − θ)dθ


=

v − u
2

[
E1 |ξ

′(u)| + E2 |ξ
′(v)|

]
. (4.4)

Which completes the proof. �

Remark 5. If we take h(θ) = θ in Theorem 4.1, we obtain [18, Theorem 5].

Theorem 4.2. Consider a differentiable funciton ξ : J → R defined on J̊ such that the function |ξ′|q is
h-convex on [u, v], u, v ∈ J̊ with u < v, q > 1, 1

p + 1
q = 1 where u, v ∈ J with u < v. If ξ′ ∈ L1[u, v], and

σ ∈ (0, 1), then we have∣∣∣∣∣ξ(u) + ξ(v)
2

+
2(1 − σ)
σ(v − u)

ξ(k) −
B(σ)

σ(v − u)

[(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k)

]∣∣∣∣∣
≤

v − u
2

(
1

p + 1

) 1
p
[
|ξ′(u)|q

∫ 1

0
h(θ)dθ + |ξ′(v)|q

∫ 1

0
h(1 − θ)dθ

] 1
q

,

(4.5)

where k ∈ [u, v] and B(σ) > 0 is a normalization function.
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Proof. In the light of Lemma 2, Hölder’s inequality and the fact that |ξ′|q is h-convex, we get∣∣∣∣∣ξ(u) + ξ(v)
2

+
2(1 − σ)
σ(v − u)

ξ(k) −
B(σ)

σ(v − u)

[(
CF
u Iσξ

)
(k) +

(
CF Iσv ξ

)
(k)

]∣∣∣∣∣
≤

v − u
2

∫ 1

0
|1 − 2θ| |ξ′(θu + (1 − θ)v)| dθ

≤
v − u

2

(∫ 1

0
|1 − 2θ|p dθ

) 1
p
(∫ 1

0
|ξ′(θu + (1 − θ)v)|q dθ

) 1
q


=
v − u

2

(
1

p + 1

) 1
p
(
|ξ′(u)|q

∫ 1

0
h(θ)dθ + |ξ′(v)|q

∫ 1

0
h(1 − θ)dθ

) 1
q

.

Which completes the proof. �

Remark 6. If we take h(θ) = θ in Theorem 4.2 we obtain [18, Theorem 6].

5. Application to means

Means has significant important in applied and pure mathematics, especially the accuracy of a
results can be confirmed by the application to special means for real numbers u, v such that u , v.
They are in the following order;

H ≤ G ≤ L ≤ I ≤ A (5.1)

For two positive numbers u > 0 and v > 0, the arithmetic mean is define as

A(u, v) =
u + v

2
, u, v ∈ R

The generalized logarithmic mean is defined as

L = Lr
r(u, v) =

vr+1 − ur+1

(r + 1)(v − u)
, r ∈ R − [−1, 0], u, v ∈ R, u , v. (5.2)

Proposition 5.1. Let u, v ∈ [0,∞) with u < v, we have∣∣∣A(u2, v2) − L2
2(u, v)

∣∣∣ ≤ (v − u) [E1 |u| + E2 |v|] . (5.3)

Proof. In Theorem 4.1, if we set ξ(x) = x2, with σ = 1 and B(σ) = B(1) = 1, we obtained the
required result. �

Remark 7. If we put h(θ) = θ, in preposition (5.1) then we will obtain [18, preposition 1].

Proposition 5.2. Let u, v ∈ [0,∞) with u < v, then we have

|A(eu, ev) − L(eu, ev)| ≤
(v − u)

2
[E1eu + E2ev] . (5.4)
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Proof. In Theorem 4.1, if we set ξ(x) = ex, with σ = 1 and B(σ) = B(1) = 1, we obtained the
required result. �

Remark 8. If we put h(θ) = θ, in preposition (5.1) then we will obtain [18, preposition 2].

Proposition 5.3. Let u, v ∈ R+, u < v, then∣∣∣A(un, vn) − Ln
n(u, v)

∣∣∣ ≤ n(v − u)
2

[
E1

∣∣∣un−1
∣∣∣ + E2

∣∣∣vn−1
∣∣∣] . (5.5)

Proof. In Theorem 4.1, if we set ξ(x) = xn,where n is an even number withσ = 1 and B(σ) = B(1) = 1,
we obtained the required result. �

Remark 9. If we put h(θ) = θ, in preposition (5.1) then we will obtain [18, preposition 3].

6. Conclusions

The class of convex functions has special place in the theory of optimization problems due to their
special properties, for example, any convex function defined on an open domain has exactly one
minimum. An another important tool of mathematics is Caputo-Fabrizio integral operator that attract
attentions of many mathematician and researcher working in other fields. This operator is very helpful
for sake of modeling of problems of applies sciences and engineering. The fractional derivatives
contribute significantly in modeling almost every phenomena in the field of Engineering and applied
physics. In this paper, Hermite-Hadamard type inequalities for h-convex functions via
Caputo-Fabrizio integral operator are derived. Some new and important integral inequalities involving
Caputo-Fabrizio fractional integral operator are also obtained for h-convex functions. Many existing
results in literature become the particular cases for these results as mentioned in remarks.
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