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Abstract: In recent times, Takahashi has introduced von Neumann-Jordan type constants C−∞(X). In
the present manuscript, we establish a novel geometric constant C−∞(a, X) in a Banach space X. Next,
it is shown that 1

2 + 2a
4+a2 6 C−∞(a, X) 6 1 for all a > 0. Further, between the generalized James constant

J(a, X) and C−∞(a, X), a relationship is investigated. For uniform normal structure, a few sufficient
conditions were established. Finally, we investigate some relations between the two constants N(X)
and C−∞(a, X).
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1. Introduction

In the current decade, numerous geometric constants have been investigated for a Banach space X.
Particular attention was given to the two constants; the von Neumann-Jordan constant CNJ(X) and J(X)
(the James constant), where the results are rigorously investigated and analyzed. For a Banach space
X, several studies on the James constant J(X) and also on the von Neumann-Jordan constant CNJ(X)
have been conducted by Gao [10, 11], Yang and Wang [22], and Kato, Maligranda, and Takahashi
[16, 17]. Interested readers in this field are advised to see the work presented in [3, 9, 12, 13, 18] and
the references mentioned therein.

The remaining work is organized as follows. To provide a base for the study, some definitions and
related results are presented in Section 2. In the subsequent section, the association of C−∞(a, X) with
other constants as well as its equivalent forms are considered. Further, by applying the ultraproduct
techniques and using coefficients in C−∞(a, X), we obtained sufficient criteria for uniform normal-
structure of Banach spaces. Finally, in the last Section 4, a relation between the two constants N(X)
and C−∞(a, X) is presented.
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2. Preliminaries

A Banach space X is said to be uniformly non-square whenever there exists a constant σ ∈ (0, 1) in
such a way that for each x, y ∈ S X either ‖x+y‖

2 6 1 − σ or ‖x−y‖
2 6 1 − σ. Similarly, the constant

J(X) = sup{min{‖x + y‖, ‖x − y‖} : x, y ∈ S X},

is known as the James constant of the space X or the non-square constant.
In 1937, Clarkson [5] defined the von Neumann-Jordan constant CNJ(X) of the form

CNJ(X) = sup
{
‖x + y‖2 + ‖x − y‖2

2
(
‖x‖2 + ‖y‖2

) : x, y ∈ X, not both zero
}
.

In the following, we will present some properties about von Neumann-Jordan constant (see [15, 16]):

(i) The constant CNJ(X) lies between 1 and 2 inclusively and CNJ(X) = 1 if and only if X is a Hilbert
space;

(ii) X is uniformly non-square if and only if CNJ(X) < 2;
(iii) CNJ (X∗) = CNJ(X).

The generalisation of the von Neumann-Jordan constant of X can be written as (see [8])

CNJ(a, X) = sup
{
‖x + y‖2 + ‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
: x, y, z ∈ X not all zero,

and a‖x‖ > ‖y − z‖
}
.

Some of its properties are:

(i) 2 > CNJ(a, X) > 1 + 4a
4+a2 whenever a > 0 and for a > 2, CNJ(a, X) = 2;

(ii) For a Hilbert space X, CNJ(a, X) = 4a
4+a2 + 1;

(iii) CNJ(a, X) is a continuous function of the argument a.

The constant JX,t(τ) of James type was introduced by Takahashi in [21] as a generalization of the James
constant J(X). For τ > 0 and −∞ 6 t < ∞, the constant JX,t(τ) can be defined as

JX,t(τ) = sup
{
Mt(‖x − τy‖, ‖x + τy‖) : x, y ∈ S X

}
.

It is interesting to notice that

Mt(a, b) :=
(
at + bt

2

)1/t

(−∞ < t < ∞, and t , 0),

M−∞(a, b) := lim
t→−∞

Mt(a, b) = min{a, b},

M0(a, b) := lim
t→0
Mt(a, b) =

√
ab,

where a and b are positive numbers.
Let −∞ 6 t < ∞, then the modulus Ct(X) of von Neumann-Jordan type could be defined as follows:

Ct(X) = sup
{ J2

X,t(τ)

1 + τ2 : 0 6 τ 6 1
}
.

We refer the readers to see [21] and [23] for background on Ct(X).

AIMS Mathematics Volume 6, Issue 6, 6309–6321.



6311

Definition 2.1. [21] Let us assume a Banach space X, then the constant C−∞(X) can be expressed as

C−∞(X) = sup
{

min
{
‖x + y‖2

‖x‖2 + ‖y‖2
,
‖x − y‖2

‖x‖2 + ‖y‖2

}
: x, y ∈ X, (x, y) , (0, 0)

}
.

To introduce the geometric theory, Brodskii and Milman [4] in 1948 has presented the following
important concept:

Definition 2.2. If for each closed convex and bounded non-singleton set K (being a subset of a Banach
space X) r(K) < diam(K), then the space is said to have normal structure. Here, r(K) := inf{sup{‖x −
y‖ : y ∈ K} : x ∈ K} and diam(K) := sup{‖x − y‖ : x, y ∈ K} are the Chebyshev radius and the usual
diameter of K, respectively.

Similarly, if every weakly convex and compact set K ⊂ X (consist of at least two members) has
normal structure, then the space X is believed to have weak normal structure. Generally, normal
structure playing a key role in finding the fixed points of nonexpansive mappings, for an instant
see [20]. To be more specific, for reflexive Banach spaces having normal structure, the fixed point
theorem for nonexpansive mappings holds.

Let us consider a Banach space X and a filter F on N. A sequence {xn} of the space X will converge
to x with respect to the filter, that is lim

F
xi = x, if for every U of x, {i ∈ N : xi ∈ U} ∈ F . If a filter is

maximal with respect to sets inclusion then such filterU on N is said to be an ultrafilter. If an ultrafilter
is of the type {A ⊂ N : i0 ∈ A} for a fixed i in N then it is called trivial and nontrivial in other cases.
Assume that l∞(X) stand for the product space Πn∈N‖X‖ and having the norm ‖(xn)‖ := supn∈N ‖xn‖ < ∞.
It is to be noted that whenever U is nontrivial, then one can embed isometrically X into X̃. It is also
worthy to notice that for a super-reflexive space X (i.e., X̃∗ = (X̃)∗), X has normal structure of uniform
type if X̃ has normal structure and conversely (see [14]). The subsequent definition is presented for our
future needs.

Definition 2.3. [2] Let us assume that P is a Banach space property, then one can say that a Banach
space X has the property super-P if every Banach space finitely representable in X has the property P.

In the following assertion, we will state a stronger result about the heredity (properties of spaces
which transfer to their subspaces naturally) of a property P.
Corollary 2.0.1. [2] Assume that P is a Banach space heredity property. Then a Banach space X has
super-P if and only if every ultrapower X̃ of X has P.
Theorem 2.1. [2] Every Banach space X with super-normal structure has uniform normal structure.

3. The C−∞(a, X) constant

We introduce a new constant based on the James constant and C−∞(X). In the rest of the work,
we will take into account Banach spaces having at least dimension of 2. The results will become more
clear with the help of the following concept:

Definition 3.1. Consider a Banach space X, then one can express C−∞(a, X) as: for a > 0,

C−∞(a, X) = sup
{

min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
: x, y, z ∈ X,

0 < ‖x‖ + ‖y‖ + ‖z‖ and a‖x‖ > ‖y − z‖
}
.
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In the following, we will collect some important properties being hold by this novel constant.
Remark. In a Banach space X, we have

(i) C−∞(0, X) = 1
2C−∞(X);

(ii) C−∞(a, X) is an increasing function for a > 0;
(iii) The function C−∞(a, X) is continuous for a > 0.

The following proposition establishes another form of C−∞(a, X):
Proposition 1. For a Banach space X and a > 0, we have

C−∞(a, X) = sup
{

min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
: x, y, z ∈ BX,

0 < ‖x‖ + ‖y‖ + ‖z‖, and a‖x‖ > ‖y − z‖
}

= sup
{

min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
: x, y, z ∈ BX,

of which at least one must be a member of S X and a‖x‖ > ‖y − z‖
}
.

Proposition 2. If X is a Banach space, then

(i) 1
2 + 2a

4+a2 6 C−∞(a, X) 6 1, ∀ a > 0;
(ii) C−∞(a, X) = 1 whenever a > 2.

Proof. (i) First of all, we need to prove the inequality lying to the left. For this, letting x ∈ S X and
assume y = −z = a

2x, clearly we have y − z = ax, we get

C−∞(a, X) > min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
= min

{ (1 + a
2 )2‖x‖2

2‖x‖2 + 2 · (a2

4 )‖x‖2
,

(1 + a
2 )2‖x‖2

2‖x‖2 + 2 · ( a2

4 )‖x‖2

}
= min

{ (1 + a
2 )2

2(1 + a2

4 )
,

(1 + a
2 )2

2(1 + a2

4 )

}
= min

{1
2

+
2a

4 + a2 ,
1
2

+
2a

4 + a2

}
.

Next, we show that C−∞(a, X) 6 1. Applying the usual inequality of triangles, we have

min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
6
‖x + y‖2 + ‖x − z‖2

4‖x‖2 + 2‖y‖2 + 2‖z‖2

6
2‖x‖2 + 2‖y‖2 + 2‖x‖2 + 2‖z‖2

4‖x‖2 + 2‖y‖2 + 2‖z‖2

6
4‖x‖2 + 2‖y‖2 + 2‖z‖2

4‖x‖2 + 2‖y‖2 + 2‖z‖2
= 1,

whence C−∞(a, X) 6 1.
(ii) It is to be noted that the developed function a 7→ 1

2 + 2a
4+a2 is increasing on [0, 2] strictly and the

function attain 2 (being its maximum) at a = 2. This fact suggest that C−∞(a, X) = 1 for all a > 2. �
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Example 3.1. (Day-James l∞ − l1 space) Consider X = R2 be equipped with the norm defined by

‖x‖ =

{
‖x‖∞ if 0 6 x1x2,

‖x‖1 if 0 > x1x2.

By taking x = (1, 1), y = (0, 1) and z = (−1, 0), we have ‖x + y‖ = 2, ‖x − z‖ = 2, ‖z‖ = 1. Thus

1 = min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
6 C−∞(a, X) 6 1,

whence C−∞(a, X) = 1, where a > 1.

Example 3.2. (Day-James l2 − l1 space) Assume that X = R2 and the norm is defined of the form

‖x‖ =

{
‖x‖2 if 0 6 x1x2,

‖x‖1 if 0 > x1x2.

By choosing x = ( 1
2 ,−

1
2 ), y = (0, 1) and z = (1, 0). Hence, ‖x + y‖ = 2, ‖x − z‖ = 2, ‖z‖ = 1. Thus

1 = min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
6 C−∞(a, X) 6 1,

whence C−∞(a, X) = 1, where a > 2.

Theorem 3.3. Whenever H is a Hilbert space, C−∞(a,H) = 1
2 + 2a

4+a2 , ∀ a ∈ [0, 2].

Proof. Let a is from the interval [0, 2] and x(, 0), y, z ∈ H and ‖y − z‖ = t‖x‖ for arbitrary t ∈ [0, a].
Then

min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
6
‖x + y‖2 + ‖x − z‖2

4‖x‖2 + 2‖y‖2 + 2‖z‖2

6
2‖x‖2 + ‖y‖2 + ‖z‖2 + 2‖y − z‖‖x‖

4‖x‖2 + 2‖y‖2 + 2‖z‖2

6
1
2

+
2t‖x‖2

4‖x‖2 + ‖y + z‖2 + ‖y − z‖2

6
1
2

+
2t‖x‖2

4‖x‖2 + ‖y − z‖2

=
1
2

+
2t

4 + t2

6
1
2

+
2a

4 + a2 .

Hence, by Proposition 2, C−∞(a,H) = 1
2 + 2a

4+a2 . �

Definition 3.2. [6] The modulus of convexity of a Banach space X is defined as

σX(ε) = inf
{
1 −

∥∥∥∥∥ x + y
2

∥∥∥∥∥ : x, y ∈ S X, ‖x − y‖ = ε
}
, 0 6 ε 6 2.

In the following, we intend to present a relationship between the two constants; the modulus of
convexity σX(·) and C−∞(·, X).
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Theorem 3.4. Assume a Banach space X, ε ∈ [0, 2], and 0 6 β. If C−∞(β, X) < |ε−β|2

3+(1+β)2 , then σX(ε) > 0.

Proof. Contrary to the conclusion, we supposed that σX(ε) = 0. Thus, there exist xn, yn ∈ S X in such a
way that ‖xn − yn‖ = ε ∀ n ∈ N and lim

n→∞
‖xn + yn‖ = 2. Set zn = yn − βxn. So for all n ∈ N, we obtain

βxn = yn− zn, ‖yn−βxn‖ = ‖zn‖ 6 1 +β and ‖xn− zn‖ > |‖xn−yn‖− ‖βxn‖| = |ε −β|. Therefore, we have

|ε − β|2

3 + (1 + β)2 = min
{ 4

3 + (1 + β)2 ,
|ε − β|2

3 + (1 + β)2

}
6 lim inf

n→∞
min

{ ∥∥∥xn + yn

∥∥∥2

2 ‖xn‖
2 +

∥∥∥yn

∥∥∥2
+ ‖zn‖

2
,

‖xn − zn‖
2

2 ‖xn‖
2 +

∥∥∥yn

∥∥∥2
+ ‖zn‖

2

}
6 C−∞(β, X) <

|ε − β|2

3 + (1 + β)2 .

�

Corollary 3.4.1. If C−∞(0, X) < ε2

4 for all ε ∈ [0, 2], then σX(ε) > 0 whenever X is a Banach space.

In the below Proposition, we will develop a relationship between the constant CNJ(a, X) and
C−∞(a, X).

Proposition 3. In a Banach space X, the following holds

2C−∞(a, X) 6 CNJ(a, X).

Proof. Consider the general points x, y, z from the space X, then we have

min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
6

1
2
‖x + y‖2 + ‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

6
1
2

CNJ(a, X),

which guarantees that the inequality holds true. �
In article [7], the authors consider the constant J(a, X) defined as follows

J(a, X) = sup
{
‖x − z‖ ∧ ‖x + y‖ : a‖x‖ > ‖y − z‖ and x, y, z ∈ BX

}
.

The following result is rather well-known.

Lemma 3.5. [7] For a Banach space X and 0 6 a < 2, if CNJ(a, X) = 2, then there exist sequences
{xn}, {yn}, and {zn} in BX which satisfies

(i) All of the sequences ‖xn‖ ,
∥∥∥yn

∥∥∥ , ‖zn‖ converge to 1;
(ii) ‖xn − zn‖ and

∥∥∥xn + yn

∥∥∥ tend to 2;
(iii)

∥∥∥yn − zn

∥∥∥ 6 a ‖xn‖ , ∀ n.

Proposition 4. If X is a Banach space and a lies in the interval [0, 2], then we have the following
equivalent statements:

(i) C−∞(a, X) = 1;
(ii) CNJ(a, X) = 2;
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(iii) J(a, X) = 2.

Proof. (i)⇔ (ii): If CNJ(a, X) = 2, then Lemma 3.5 suggest that there exist sequences {xn}, {yn}, {zn} in
S X holding ‖xn − zn‖, ‖xn + yn‖ → 2 as well as ‖yn − zn‖ 6 a ‖xn‖ for each n. Thus, C−∞(a, X) = 1. The
converse part can be easily proved with the help of Proposition 3.

(ii)⇔ (iii): From Corollary 3.4 in [7]. �
Next, we prove the following theorem.

Theorem 3.6. In a Banach space X, C−∞(a, X) > (1+a)2

2+2a2 for all a ∈ (0, 1] if and only if J(1, X) = 2.

Proof. As the function C−∞(a, X) is a continuous one, so

C−∞(1, X) = lim
a→1

C−∞(a, X) > lim
a→1

(1 + a)2

2 + 2a2 = 1.

Thus we have C−∞(1, X) = 1. From Proposition 4, and hence J(1, X) = 2.
For the second part of the proof, assume J(1, X) = 2. By Proposition 4 and Lemma 3.5, there must

exist sequences {xn}, {yn}, {zn} in S X which obey ‖xn − zn‖, ‖xn + yn‖ → 2 and ‖yn − zn‖ 6 1 for each n.
Thus, ‖ayn − azn‖ 6 a, ∀ n. Next, take into account the inequalities∥∥∥xn + yn

∥∥∥ − ∥∥∥yn − ayn

∥∥∥ 6 ∥∥∥ayn + xn

∥∥∥ 6 1 + a

and
− ‖zn − azn‖ + ‖xn − zn‖ 6 ‖xn − azn‖ 6 1 + a.

Hence
lim
n→∞

∥∥∥ayn + xn

∥∥∥ = 1 + a, lim
n→∞
‖xn − azn‖ = 1 + a.

Combining all of the above concerned relations

C−∞(a, X) > lim
n→∞

min
{

‖ayn + xn‖
2

2‖xn‖
2 + ‖ayn‖

2 + ‖azn‖
2 ,

‖xn − azn‖
2

2‖xn‖
2 + ‖ayn‖

2 + ‖azn‖
2

}
=

(1 + a)2

2 + 2a2 .

�
For proving our main result, we need to prove the following most important proposition.

Proposition 5. C−∞(a, X) = C−∞(a, X̃).

Proof. Obviously, C−∞(a, X̃) > C−∞(a, X). We only have to prove that C−∞(a, X̃) 6 C−∞(a, X). For this
purpose, consider σ > 0, α from the interval [0, a] and the points x̃, ỹ, z̃ (not zeros collectively) from
the space X for which the relation ‖ỹ − z̃‖ = α‖x̃‖ holds. Whenever x̃ = 0, then

min
{

‖x̃ + ỹ‖2

2 ‖x̃‖2 + ‖ỹ‖2 + ‖z̃‖2
,

‖x̃ − z̃‖2

2 ‖x̃‖2 + ‖ỹ‖2 + ‖z̃‖2

}
6

1
2
‖x̃ + ỹ‖2 + ‖x̃ − z̃‖2

2 ‖x̃‖2 + ‖ỹ‖2 + ‖z̃‖2
=

1
2
6 C−∞(a, X).

For the case of x̃ , 0, we will choose ε > 0 in such a way that ε < σ‖x̃‖. As ‖x̃‖ = lim
U
‖xn‖ and

c : = min
{

‖x̃ + ỹ‖2

2 ‖x̃‖2 + ‖ỹ‖2 + ‖z̃‖2
,

‖x̃ − z̃‖2

2 ‖x̃‖2 + ‖ỹ‖2 + ‖z̃‖2

}
= lim
U

min
{

‖x + y‖2

2‖x‖2 + ‖y‖2 + ‖z‖2
,

‖x − z‖2

2‖x‖2 + ‖y‖2 + ‖z‖2

}
:= lim

U
cn,
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which suggest that E := {n ∈ N : |cn − c| < σ and ‖yn − zn‖ 6 α‖xn‖ + ε < (α + σ)‖xn‖} belongs toU.
Particularly, noticing that xn , 0 for every n ∈ E, there exists n such that

c < min
{

‖xn + yn‖
2

2‖xn‖
2 + ‖yn‖

2 + ‖zn‖
2 ,

‖xn − zn‖
2

2‖xn‖
2 + ‖yn‖

2 + ‖zn‖
2

}
+ σ

6 C−∞(a + σ, X) + σ.

Hence, the conclusion follows from the arbitrariness of σ and from the continuity of C−∞(·, X). This
completes the proof. �

We begin by starting a lemma which will be our main tool.

Lemma 3.7. [8] Assume a Banach space X without weak normal structure, then for any 0 < ε < 1 and
every 1

2 < r 6 1, then there exists x1 ∈ S X as well as x2, x3 in rS X which satisfies

(i) x2 − x3 = ax1 with |a − r| < ε,

(ii) ‖x1 − x2‖ > 1 − ε,
(iii) ‖x1 + x2‖ > (1 + r) − ε, ‖x3 + (−x1)‖ > (3r − 1) − ε.

Theorem 3.8. If

C−∞(r, X) <
(3r − 1)2

2(1 + r2)
, f or some r ∈ (

1
2
, 1],

then the Banach space X has uniform normal structure.

Proof. The theorem will be proved if we show that the underlying conditions ensuring that X
has normal structure. Because, Proposition 5 will guarantees that X̃ has also normal structure and
ultimately X has super-normal structure by virtue of Corollary 2.0.1, and finally with the help of
Theorem 2.1, we can say that X has uniform normal structure.

Whenever C−∞(r, X) < (3r−1)2

2(1+r2) , we could observe that X is uniformly non-square and as a result,
the space is reflexive. Generally in such cases, both the weak normal and normal structures coincide.
Thus, we only need to prove that X has weak normal structure.

As C−∞(·, X) is continuous, so C−∞(r′, X) < (3r−1)2

2(1+r2) for some r′ > r. Next, we choose a natural
number m such that r + ( 1

m ) 6 r′. Contrary to the conclusion, we supposed that X does not have weak
normal structure. Then, by Lemma 3.7 there exists sequences {xn} in S X and {yn}, {zn} from rS X in such
a way that for every n ∈ N,

anxn = yn − zn with |an − r| <
1

n + m
,

‖xn − yn‖
2 >

(
1 −

1
n + m

)2

, ‖xn + yn‖
2 >

(
1 + r −

1
n + m

)2

,

and

‖xn − zn‖
2 >

(
(3r − 1) −

1
n + m

)2

.

It is worthy to notice that an = ‖yn − zn‖ <
1

n+m + r < r + 1
m < r′, and

lim inf
n→∞

∥∥∥xn + yn

∥∥∥2
> (r + 1)2 and (3r − 1)2 6 lim inf

n→∞
‖xn − zn‖

2 .
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Thus
(3r − 1)2

2
(
1 + r2) 6 lim inf

n→∞
min

{ ∥∥∥xn + yn

∥∥∥2

2 ‖xn‖
2 +

∥∥∥yn

∥∥∥2
+ ‖zn‖

2
,

‖xn − zn‖
2

2 ‖xn‖
2 +

∥∥∥yn

∥∥∥2
+ ‖zn‖

2

}
6 C−∞(r′, X)

<
(3r − 1)2

2
(
1 + r2) .

A contradiction was raised due to our wrong supposition and hence X has weak normal structure as
desired. �

4. The coefficients N(X) and C−∞(a, X) and normal structure

If A is a non-empty bounded subset of a Banach space X, then the number

r(A) = inf{sup ‖x − y‖ : x ∈ A}

is said to be the Chebyshev radius of A or Chebyshev radius with respect to A. Similarly, by Z(A) we
mean the set of all those elements x of A for which the infimum could be attained and in certain cases,
it may be empty as well. The set Z(A) is known as Chebyshev center with respect to A. If

r(A) 6 diam A

holds true for each convex bounded set A(⊂ X) having diam A greater than zero, then the Banach space
X will have normal structure. The normal structure coefficient (denoted by N(X)) for a space X can be
expressed as

N(X) = inf
{diam A

r(A)

}
,

where this infimum is taken all over the convex bounded closed sets A ⊂ X with diam A > 0. Clearly,
2 > N(X) > 1 and the Banach space X is said to have uniform normal structure whenever N(X) > 1.
We refer the reader to [1] and [19] for background on N(X).

We begin by stating a theorem from [19] which will be our main tool.

Theorem 4.1. Let us assume a non-empty convex and compact subset C of a finite-dimensional space
X and x0 be a member of C. If x0 ∈ Z(C), then there must exist points x1, · · · , xn ∈ C, functionals

x∗1, · · · , x
∗
n ∈ S X∗ , and non-negative scalars λ1, · · · , λn such that

n∑
i=1

λi = 1, and

x∗i (x0 − xi) = r(C) = ‖x0 − xi‖

for i = 1, 2, 3, · · · , n and

0 6
n∑

i=1

λix∗i (x − x0)

for each x ∈ C.

By following the ideas in [19] and [22], it is handy to prove Theorem 4.2.
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Theorem 4.2. If X is a nontrivial Banach space with the constant N(X), then for every a, we have√
maxr f (r)
C−∞(a, X)

6 N(X),

with

f (r) =
(a + 1)2

2(r2 + 1)
,

where r belongs to the interval [a, 1] and 1 > a > 0.

Proof. Case 1. If C−∞(a, X) = 1, then one can notice that

max
a6r61

f (r) = max
a6r61

(a + 1)2

2
(
r2 + 1

) 6 max
a6r61

(r + 1)2

2
(
r2 + 1

) 6 1.

Hence 1 >
√

maxr f (r)
C−∞(a,X) , and by using 1 6 N(X), we can write N(X) >

√
maxr f (r)
C−∞(a,X) with r ∈ [a, 1].

Case 2. If C−∞(a, X) < 1, then the underlying space is uniformly non-square and thus reflexive.
Further, we shall assume that C is a convex hull such that diam C = d and r(C) = 1. Also, we
can write sup{‖x‖ : x ∈ C} = 1 and so by Proposition 4.1 we could have points x1, · · · , xn, norm-1
functionals x∗1, x

∗
2, · · · , x

∗
n and non-negative real numbers λ1, · · · , λn in such a way that

∑n
i=1 λi = 1,

‖xi‖ = x∗i (−xi) = 1 for i = 1, 2, · · · , n and 0 6
∑n

i=1 λix∗i (x j) for j = 1, 2, · · · , n. Further, for any
r ∈ [a, 1], we can set

xi, j =
1
d

(xi − x j), yi, j =
rxi

d
, zi, j =

(r − a)xi + ax j

d
for i, j = 1, 2, . . . , n.

Clearly, 1 > ‖xi, j‖, r > ‖yi, j‖, r > ‖zi, j‖, and a‖xi, j‖ = ‖yi, j − zi, j‖. Next, we obtain the following
estimates:

n∑
i, j=1

λiλ j

∥∥∥xi, j + yi, j

∥∥∥2

>
n∑

j=1

λ j

n∑
i=1

λi

(
x∗i

(
xi, j + yi, j

))2

=

n∑
j=1

λ j

n∑
i=1

λi

(
1 + r

d
+

1
d

x∗i
(
x j

))2

=
(r + 1)2

d2 +
2(r + 1)

d2

n∑
j=1

λ j

n∑
i=1

λix∗i
(
x j

)
+

(
1
d2

) n∑
j=1

λ j

n∑
i=1

λi

(
x∗i

(
x j

))2

>
(r + 1)2

d2 for any r ∈ [a, 1]
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and
n∑

i, j=1

λiλ j

∥∥∥xi, j − zi, j

∥∥∥2

>
n∑

i=1

λi

n∑
j=1

λ j

(
x∗j

(
xi, j − zi, j

))2

=

n∑
j=1

λ j

n∑
i=1

λi

(
1 + a

d
+

1 + a − r
d

x∗j (xi)
)2

=
(1 + a)2

d2 +
2(1 + a)(1 + a − r)

d2

n∑
i=1

λi

n∑
j=1

λ jx∗j (xi)

+
(1 + a − r)2

d2

n∑
i=1

λi

n∑
j=1

λ j

(
x∗j (xi)

)2

>
(a + 1)2

d2 for any r ∈ [a, 1].

Ultimately, there exists i and j such that

min{
∥∥∥xi, j + yi, j

∥∥∥2
,
∥∥∥xi, j − zi, j

∥∥∥2
} >

(a + 1)2

d2 .

From the definition of the C−∞(a, X) constant, we could say

C−∞(a, X) > min
{∥∥∥xi, j + yi, j

∥∥∥2
,

∥∥∥xi, j − zi, j

∥∥∥2

2
∥∥∥xi, j

∥∥∥2
+

∥∥∥yi, j

∥∥∥2
+

∥∥∥zi, j

∥∥∥2

}
>

(a + 1)2

2d2 (
r2 + 1

) ,
which implies

d >

√
maxr f (r)
C−∞(a, X)

,

and r is again from the interval [a, 1].
As set C is arbitrary, thus we have the required result. �
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