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1. Introduction

This paper deals with the existence of solutions to boundary value problems (BVP for short) for
fractional differential inclusions. In particular, we consider the boundary value inclusion on an infinite
interval

H
C Dry(t) ∈ F(t, y(t)), for a.e t ∈ J = [1,∞), 1 < r ≤ 2, (1.1)

y(1) = y1, y bounded on [1,∞), (1.2)

where H
C Dr is the Caputo-Hadamard fractional derivative, P(R) is the family of all nonempty subsets

of R, F : J × R→ P(R) is a multivalued map, and y1 ∈ R.
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Fractional order differential equations have proven to be effective models of various phenomena in
engineering and the sciences such as viscoelasticity, electrochemistry, control theory, flows through
porous media, electromagnetism, and others. Recently, they have been applied to problems in
biological modeling and social interactions [14, 15]. The monographs of Abbas et al. [1–3],
Hilfer [21], Kilbas et al. [23], Podlubny [26], Momani et al. [25] contain the mathematical
background needed to understand the value of this modeling tool. For results on fractional order
derivatives in general and Hadamard fractional derivatives in particular, we refer the reader
to [5–7, 10, 17, 18, 20, 28].

The Caputo left-sided fractional derivative of order α is defined by

(cDα
a+h)(t) =

1
Γ(n − α)

∫ t

a
(t − s)n−α−1h(n)(s)ds,

where α > 0 and n = [α]+1. This derivative is very useful in many applied problems because it satisfies
its initial data which contains y(0), y′(0), etc., as well as the same data for boundary conditions.

The fractional derivative as presented by Hadamard in 1892 [19] differs from the well-known
Caputo derivative in two significant ways. First, its kernel involves a logarithmic function with an
arbitrary exponent, and secondly, the Hadamard derivative of a constant is not 0. The
Caputo-Hadamard fractional derivative was introduced by Jarad et al. [22] is a modification of the
Hadamard fractional derivative that maintains the property that the derivative of a constant is 0. In
recent years there have been a number of papers examining problems involving the Caputo-Hadamard
derivative, and as examples, we refer the reader to Adjabi et al. [4] and Shammack [27].

Here we present two results guaranteeing the existence of solutions to the problem (1.1)–(1.2); one
is for the case where the right hand side is convex valued, and the other is for the nonconvex case. The
nonlinear alternative of Leray-Schauder type is used in the proof for the convex case, and the Covitz-
Nadler fixed point theorem for multivalued contraction maps is used in the nonconvex case. We should
mention that each of approaches are then combined with the diagonalization method to obtain the
results. It should be pointed out that this paper actually initiates the application of the diagonalization
method to such classes of problems. The theorems in the present paper extend current results in the
literature to the multivalued case.

2. Preliminaries

We begin by presenting some definitions and preliminary facts that are needed in the proofs of our
results. We take C(J,R) to be the space of all continuous functions from J into R and let L1(J,R) be
the Banach space of Lebesgue integrable functions y : J −→ R with the norm

‖y‖L1 =

∫
J
|y(t)|dt.

Also, we let AC(J,R) denote the space of functions y : J → R that are absolutely continuous.

Let δ = t
d
dt

, δn = δ(δn−1), set

ACn
δ(J,R) = {y : J −→ R | δn−1y(t) ∈ AC(J,R)},
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and let AC1(J,R) be the space of absolutely continuous functions y : J → R with an absolutely
continuous first derivative.

For any Banach space (X, ‖ · ‖), we set:

Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded},
Pcp(X) = {Y ∈ P(X) : Y is compact},
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

We say that a multivalued map G : X → P(X) is convex (closed) valued if G(X) is convex (closed)
for all x ∈ X. A map G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all
B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)} < ∞). The mapping G is upper semi-continuous (u.s.c) on
X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and for each open set N of X
containing G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊂ N. The mapping G is
completely continuous if G(B) is relatively compact for each B ∈ Pb(X).

If G is a multivalued map that is completely continuous with nonempty compact values, then G is
upper semi-continuous if and only if G has a closed graph (that is, if xn → x∗, yn → y∗, and yn ∈ G(xn),
then y∗ ∈ G(x∗)). We say that x ∈ X is a fixed point of G if x ∈ G(x). The set of fixed points of
the multivalued operator G will be denote by FixG. A multivalued map G : J → Pcl(R) is called
measurable if for every y ∈ R,

t → d(y,G(t)) = in f {|y − z| : z ∈ G(t)}

is a measurable function.

Definition 2.1. A multivalued map F : J × R→ P(R) is said to be Carathéodory if

(1) t → F(t, u) is measurable for each u ∈ R, and
(2) u→ F(t, u) is upper semicontinuous for almost all t ∈ J.

Let (X, d) be a metric space induced from the normed space (X, |·|). the function Hd : P(X)×P(X)→
R+ ∪ {∞} given by

Hd(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(A, b)}

is known as the Hausdorff-Pompeiu metric.

Definition 2.2. A multivalued operator N : X → Pcl(X) is called:

(1) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x),N(y)) ≤ γd(x, y), for eachx, y ∈ X;

(2) a contraction if and only if it is γ-Lipschitz with γ < 1.

For more details on multivalued maps see the books of Aubin and Cellina [8], Aubin and
Frankowska [9], Castaing and Valadier [11], and Deimling [13].

Theorem 2.3. ( [12, Covitz and Nadler]) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN , ∅.
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Lemma 2.4. ( [24]) Let J be a compact real interval, F be a Carathéodory multivalued map, and let θ
be a linear continuous map from L1(J, E) 7→ C(J, E). Then the operator

θ ◦ S F,y : C(J, E) 7→ Pcp,c(C(J, E)), y 7→ (θ ◦ S F,y)(y) = θ(S F,y),

is a closed graph operator in L1(J, E) ×C(J, E).

Definition 2.5. ( [23]) The Hadamard fractional integral of order r for a function h : [1,+∞) → R is
defined as

HIrh(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1 h(s)
s

ds, r > 0,

provided that the integral exists.

Definition 2.6. ( [23]) For a function h on the interval [1,+∞), the Hadamard fractional-order
derivative of h of order r is defined by

(HDrh)(t) =
1

Γ(n − r)

(
t

d
dt

)n ∫ t

1

(
log

t
s

)n−r−1 h(s)
s

ds, n − 1 < r < n, n = [r] + 1.

Here, [r] denotes the integer part of r and log(·) = loge(·).

Definition 2.7. ( [22]) For a function h belonging to ACn
δ([a, b],R) with a > 0, we define the Caputo-

type modification of the left-sided Hadamard fractional derivatives to be

H
C Dry(t) = HDr

y(s) −
n−1∑
k=0

δky(a)
k!

(
log

s
a

)k
 (t)

where n = [α] + 1.

Lemma 2.8. ( [22]) Let y ∈ ACn
δ([a, b],R) or Cn

δ([a, b],R). Then

HIr(H
C Dr)y(t) = y(t) −

n−1∑
k=0

δky(a)
k!

(
log

t
a

)k
.

We next recall the nonlinear alternative of Leray-Schauder.

Theorem 2.9. Let X be a Banach space and C a nonempty closed convex subset of X. Let U be a
nonempty open subset of C with 0 ∈ U and T : U → Pcp,c(C) be a upper semicontinuous compact
map. Then either

(1) T has fixed points in U, or
(2) There exist u ∈ ∂U and λ ∈ (0, 1) with u ∈ λT (u).

3. Main results

We begin by defining what we mean by the problem (1.1)–(1.2) having a solution.

Definition 3.1. A function y ∈ AC2
δ(J,R) is said to be a solution of (1.1)–(1.2), if there exists a function

v ∈ L1(J,R) with v(t) ∈ F(t, y(t)) for a.e. t ∈ J such that H
C Dry(t) = v(t) and the function y satisfies the

boundary condition (1.2).
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Lemma 3.2. Let h : [1,T ] → R be continuous functions. A function y is a solution of the fractional
integral equation

y(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
h(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ T

1

(
log

T
s

)r−2

h(s)
ds
s

+ y1.

(3.1)

if and only if y is a solution of the nonlinear fractional problem

H
C Dry(t) = h(t) for a.e. t ∈ J = [1,T ], 1 < r ≤ 2, (3.2)

y(1) = y1, y′(T ) = 0. (3.3)

Proof. Applying the Hadamard fractional integral of order r to both sides of (3.2) and then using
Lemma 2.8, we obtain

y(t) = c1 + c2 log t + HIrh(t). (3.4)

Applying (3.3) yields
c1 = y1

and

y′(t) =
(r − 1)
tΓ(r)

∫ T

1

(
log

T
s

)r−2

h(s)
ds
s

+
c2

t
.

Hence,

c2 =
−(r − 1)

Γ(r)

∫ T

1

(
log

T
s

)r−2

h(s)
ds
s
.

Substituting into (3.4), we obtain (3.1).
Conversely, it is clear that if y satisfies equation (3.1), then (3.2) and (3.3) hold. �

Remark 3.3. Notice that for m ∈ N, there exists Jm := [1,Tm] ⊂ J with

1 < T1 < T2 < · · · < Tm < · · ·

such that Tm → ∞ as m→ ∞.

Definition 3.4. For each m ∈ N and y ∈ AC(Jm,R), define the set of selections of F by

S F,y = {v ∈ L1([1,Tm],R) : v(t) ∈ F(t, y(t)) a.e. t ∈ [1,Tm]}.

3.1. The convex case

Our first existence result is for the case where F is convex valued.

Theorem 3.5. Assume that for each m ∈ N:

(H1) F : Jm × R→ Pcp,p(R) is a Carathéodory multi-valued map;
(H2) There exist p ∈ C(Jm,R

+) and a continuous nondecreasing function ψ : [0,∞)→ (0,∞) such that

‖F(t, u)‖P ≤ p(t)ψ(|u|) for t ∈ Jm and u ∈ R;
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(H3) There exists C > 0 such that

C
2(log Tm)r

Γ(r + 1)
‖p‖∞ψ(C) + |y1|

> 1. (3.5)

(H4) There exists l ∈ L1(Jm,R
+) with HIrl(t) < ∞ such that

Hd(F(t, u), F(t, ū)) ≤ l(t)|u − ū| for every u, ū ∈ R, (3.6)

and
d(0, F(t, 0)) ≤ l(t), a.e. t ∈ Jm; (3.7)

Then the problem (1.1)–(1.2) has at least one solution on J.

Proof. Fix m ∈ N and consider the related boundary value problem

H
C Dry(t) ∈ F(t, y(t)), for a.e t ∈ Jm, 1 < r ≤ 2, (3.8)

y(1) = y1, y′(Tm) = 0. (3.9)

First, we shall show that the BVP (3.8)–(3.9) has a solution ym ∈ C(Jm,R) with

|ym(t)| ≤ M for each t ∈ Jm,

where M > 0 is a constant. To do this, consider the multivalued operator N : C(Jm,R) → P(C(Jm,R))
defined by

N(y) =

h ∈ C(Jm,R) :
h(t) =

1
Γ(r)

∫ t

1

(
log

t
s

)r−1
v(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v(s)
ds
s

+ y1, v ∈ S F,y

 .
Clearly, from Lemma 3.2, the fixed points of N are solutions to (3.8)–(3.9). We shall show that N
satisfies the hypotheses of the nonlinear Leray-Schauder alternative. We give the proof in steps.

Step 1: N(y) is convex for each y ∈ C(Jm, E). For h1, h2 ∈ N(y), there exist v1, v2 ∈ S F,y such that

hi(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
vi(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

vi(s)
ds
s

+ y1

for t ∈ Jm and i = 1, 2. Letting 0 ≤ d ≤ 1, we see that for each t ∈ Jm,

(dh1 + (1 − d)h2)(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
[dv1 + (1 − d)v2]

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

[dv1 + (1 − d)v2]
ds
s
.
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Now F has convex values, so S F,y is convex; hence,

dh1 + (1 − d)h2 ∈ N(y),

so N(y) is convex.
Step 2: N maps bounded sets into bounded sets in C(Jm,R). Let Bµ∗ = {y ∈ C(Jm,R) : ‖y‖∞ ≤ µ∗}

be a bounded set in C(Jm,R) and y ∈ Bµ∗ . Then for each h ∈ N(y), there exists v ∈ S F,y such that

h(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v(s)
ds
s

+ y1.

By (H2), we have, for each t ∈ Jm,

|h(t)| ≤
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
|v(s)|

ds
s

+
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

|v(s)|
ds
s

+ |y1|

≤
(log t)r

Γ(r + 1)
‖p‖∞ψ(µ∗) +

(log Tm)r−1

Γ(r + 1)
‖p‖∞ψ(µ∗) + |y1|.

Thus,

‖h‖∞ ≤
2(log Tm)r

Γ(r + 1)
‖p‖∞ψ(µ∗) + |y1| := `.

Step 3: N maps bounded sets into equicontinuous sets in C(Jm,R). Take t1, t2 ∈ Jm with t1 < t2,
and take Bµ∗ to be a bounded set in C(Jm,R) as we did in Step 2. Let y ∈ Bµ∗ and h ∈ N(y). Then,

|h(t2) − h(t1)| =

∣∣∣∣∣∣ 1
Γ(r)

∫ t1

1

[(
log

t2

s

)r−1
−

(
log

t1

s

)r−1
]

v(s)
ds
s

+
1

Γ(r)

∫ t2

t1

(
log

t2

s

)r−1
v(s)

ds
s

+
(r − 1)(log t2 − log t1)

Γ(r)

[∫ Tm

1

(
log

Tm

s

)r−2

v(s)
ds
s

]∣∣∣∣∣∣
≤
‖p‖∞ψ(µ∗)

Γ(r)

∫ t1

1

[(
log

t2

s

)r−1
−

(
log

t1

s

)r−1
]

ds
s

+
‖p‖∞ψ(µ∗)

Γ(r)

∫ t2

t1

(
log

t2

s

)r−1 ds
s

+ (log t2 − log t1)(r − 1)

∣∣∣∣∣∣‖p‖∞ψ(µ∗)
Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2 ds
s

∣∣∣∣∣∣ .
As t1 → t2, the right hand side of the inequality above approaches zero. Therefore, in view of Steps 1
to 3 and the Arzelà-Ascoli theorem, it follows that N is completely continuous.

Step 4: N is upper semicontinuous. We will show this by showing that N has a closed graph. Let
yn → y∗, hn ∈ N(yn), and hn → h∗. We need to prove that h∗ ∈ N(y∗). Now hn ∈ N(yn) implies there
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exists vn ∈ S F,yn such that for t ∈ Jm,

hn(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
vn(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

vn(s)
ds
s

+ y1.

We need to show that there is a v∗ ∈ S F,y∗ such that, for each t ∈ Jm,

h∗(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v∗(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v∗(s)
ds
s

+ y1.

Now F(t, ·) is upper semi-continuous, so for every ε > 0 there exists Nε ∈ N such that for every n > Nε ,
we have

vn(t) ∈ F(t, yn(t)) ⊂ F(t, y∗(t)) + εB(0, 1), a.e. t ∈ Jm.

Since F has compact values by (H1), there is a subsequence vnk of vn such that

vnk → v∗ as k → ∞

and
v∗ ∈ F(t, y∗(t)), a.e. t ∈ Jm.

For every w ∈ F(t, y∗(t)), we have

|vnk(t) − v∗(t)| ≤ |vnk(t) − w| + |w − v∗(t)|.

Then,
|vnk(t) − v∗(t)| ≤ d(vnk(t), F(t, y∗(t))).

We can obtain an analogous relation by interchanging the roles of vnk and v∗, so

|vnk(t) − v∗(t)| ≤ Hd(F(t, yn(t)), F(t, y∗(t))) ≤ l(t)‖yn − y∗‖∞

by (H4). It is easy to see that
‖hnk − h∗‖∞ → 0 as k → ∞,

which is what we wished to show.
Step 5: A priori bounds on solutions. Let y ∈ λN(y) with λ ∈ (0, 1]. Then there is a v ∈ S F,y so that

for each t ∈ Jm,

h(t) =
λ

Γ(r)

∫ t

1

(
log

t
s

)r−1
v(s)

ds
s

−
λ(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v(s)
ds
s

+ y1.
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This implies by (H2) that, for each t ∈ Jm, we have

|h(t)| ≤
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
|v(s)|

ds
s

+
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

|v(s)|
ds
s

+ |y1|

≤
(log t)r

Γ(r + 1)
‖p‖∞ψ(‖y‖∞) +

(log Tm)r−1

Γ(r + 1)
‖p‖∞ψ(‖y‖∞) + |y1|

≤ 2
(log Tm)r

Γ(r + 1)
‖p‖∞ψ(‖y‖∞) + |y1|.

Thus,
‖y‖∞

2
(log Tm)r

Γ(r + 1)
‖p‖∞ψ(‖y‖∞) + |y1|

< 1.

Then by condition (3.5), there exists C > 0 such that ‖y‖∞ , C. Let U = {y ∈ C(Jm,R) : ‖y‖∞ < C}.
The operator N : U → P(C(Jm,R)) is upper semi-continuous and completely continuous. From the
choice of U, there is no y ∈ ∂U such that y ∈ λN(y) for some λ ∈ (0, 1]. It then follows from the
Leray-Shauder nonlinear alternative that N has a fixed point y ∈ U that in turn is a solution of problem
(3.8)–(3.9).

Step 6: A diagonalization process. First let Nm = N∗− {m}. For each k ∈ N, let yk(t) be the solution
of (3.8)–(3.9) whose existence is guaranteed by Steps 1–5 above, and set

uk(t) =

yk(t), for t ∈ [1,Tm],
yk(Tm), for t ∈ [Tm,∞).

For m = 1, there exists v1
k ∈ S F,u such that

uk(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v1

k(s)
ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v1
k(s)

ds
s

+ y1

and
|uk(t)| ≤ M for t ∈ [1,T1].

Now for t1, t2 ∈ J1 with t1 < t2, we have

|uk(t2) − uk(t1)| ≤
‖p‖∞ψ(M)

Γ(r)

∫ t1

1

[(
log

t2

s

)r−1
−

(
log

t1

s

)r−1
]

ds
s

+
‖p‖∞ψ(M)

Γ(r)

∫ t2

t1

(
log

t2

s

)r−1 ds
s

+ (log t2 − log t1)

∣∣∣∣∣∣r − 1
Γ(r)

∫ T1

1

(
log

T1

s

)r−2

v1
k(s)

ds
s

∣∣∣∣∣∣ .
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By the Arzelà-Ascoli Theorem, {uk} has a uniformly convergent subsequence, so there is a subset N1

of N and a function z1 ∈ C([1,T1],R) such that

{uk} → z1 as k → ∞ through N1.

Now for k ∈ N1 and m = 2, we have

|uk(t)| ≤ M for t ∈ [1,T2].

Also for t1, t2 ∈ J2 with t1 < t2, there exists v2
k ∈ S F,u such that

|uk(t2) − uk(t1)| ≤
‖p‖∞ψ(M)

Γ(r)

∫ t1

1

[(
log

t2

s

)r−1
−

(
log

t1

s

)r−1
]

ds
s

+
‖p‖∞ψ(M)

Γ(r)

∫ t2

t1

(
log

t2

s

)r−1 ds
s

+ (log t2 − log t1)

∣∣∣∣∣∣r − 1
Γ(r)

∫ T2

1

(
log

T2

s

)r−2

v2
k(s)

ds
s

∣∣∣∣∣∣ .
Again using the Arzelà-Ascoli Theorem, {uk} has a uniformly convergent subsequence, so there is a
subset N2 of N1 and a function z2 ∈ C([1,T1],R) such that

{uk} → z2 as k → ∞ through N2

where z1 = z2 on [1,T1] since N2 ⊂ N1.
Proceeding inductively, we see that for t1, t2 ∈ Jm with t1 < t2, there is vm

k ∈ S F,u, such that

|uk(t2) − uk(t1)| ≤
‖p‖∞ψ(M)

Γ(r)

∫ t1

1

[(
log

t2

s

)r−1
−

(
log

t1

s

)r−1
]

ds
s

+
‖p‖∞ψ(M)

Γ(r)

∫ t2

t1

(
log

t2

s

)r−1 ds
s

+ (log t2 − log t1)

∣∣∣∣∣∣r − 1
Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

vm
k (s)

ds
s

∣∣∣∣∣∣
and

{uk} → zm as k → ∞ through Nm.

Now, let m ∈ N with s ≤ Tm, fix t ∈ [1,∞), and let y(t) = zm(t). Then y ∈ C([1,∞),R), y(1) = y1, and
|y(t)| ≤ M for t ∈ [1,∞).

Again for fixed t ∈ [1,∞) and m ∈ N with s ≤ Tm, for n ∈ Nm there exists v′n ∈ S F,u so that

un(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v′n(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v′n(s)
ds
s

+ y1

AIMS Mathematics Volume 6, Issue 6, 6278–6292.



6288

as n→ ∞ through Nm. Hence, there exists v′ ∈ S F,u, such that

zm(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v′(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v′(s)
ds
s

+ y1,

that is, there exists v ∈ S F,y such that

y(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v(s)
ds
s

+ y1.

We can apply this method for each t ∈ [1,Tm] and each m ∈ N. Thus,

H
C Dry(t) ∈ F(t, y(t)) for a.e. t ∈ J = [1,Tm], 1 < r ≤ 2, (3.10)

for each m ∈ N. This completes the proof of the theorem. �

3.2. The nonconvex case

We now consider the case where right hand side of problem (1.1)–(1.2) is nonconvex valued. In this
case the proof relies on the fixed point result contained in Theorem 2.3.

Theorem 3.6. In addition to condition (H4) assume that:

(H5) F : Jm × R→ Pcp(R) has the property that F(·, u) : Jm → Pcp(R) is measurable for each u ∈ R.

If

2
(log Tm)r

Γ(r + 1)
‖l‖L1(Jm,R) < 1, (3.11)

then the problem (1.1)–(1.2) has at least one solution on J.

Remark 3.7. By (H5), we can see that S F,y is nonempty for each y ∈ C(Jm,R), so F has a measurable
selection by [11, Theorem III.6].

Proof. We will show that N satisfies the conditions of Theorem 2.3. Once again our proof will be given
in steps.

Step 1: N(y) ∈ Pcl(C(Jm,R)) for each y ∈ C(Jm,R). Let (yn)n≥0 ⊂ N(y) be such that yn → ȳ. Then,
ȳ ∈ C(Jm,R) and there exists vn ∈ S F,y, n = 1, 2, . . . such that, for each t ∈ Jm,

yn(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
vn(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

vn(s)
ds
s

+ y1.

From the fact that F has compact values and condition (H4), passing if necessary to a subsequence, we
can conclude that vn converges weakly to v in L1

w(Jm,R) (the space endowed with the weak topology).
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Applying Mazur’s theorem, this implies that vn is strongly convergent to v and hence v ∈ S F,y. Then,
for t ∈ Jm,

yn(t)→ ȳ(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v(s)
ds
s

+ y1.

Hence, ȳ ∈ N(y).
Step 2: There exists γ < 1 such that Hd(N(y),N(ȳ)) ≤ γ‖y − ȳ‖∞ for y, ȳ ∈ C(Jm,R). Let y,

ȳ ∈ C(Jm,R) and h1 ∈ N(y). Then, there exists v1 ∈ F(t, y(t)) such that for each t ∈ Jm

h1(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v1(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v1(s)
ds
s

+ y1.

From (H4) it follows that
Hd(F(t, y(t)), F(t, ȳ(t)) ≤ l(t)|y(t) − ȳ(t)|.

Hence, there exists w ∈ F(t, ȳ(t)) such that

|v1(t) − w| ≤ l(t)|y(t) − ȳ(t)|, t ∈ Jm.

Consider U : Jm → P(R) given by

U(t) = {w ∈ R : |v1(t) − w| ≤ l(t)|y(t) − ȳ(t)|}.

Since the multivalued operator V(t) = U(t) ∩ F(t, ȳ(t)) is measurable, there exists a function v2(t) that
is a measurable selection for V . So, v2 ∈ F(t, ȳ(t)), and for each t ∈ Jm,

|v1(t) − v2(t)| ≤ l(t)|y(t) − ȳ(t)|, t ∈ Jm.

Let us define, for v2 ∈ S F,ȳ,

h2(t) =
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
v2(s)

ds
s

−
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−2

v2(s)
ds
s

+ y1.

Then, for each t ∈ Jm,

|h1(t) − h2(t)| ≤
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
|v1(s) − v2(s)|

ds
s

+
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−1

|v1(s) − v2(s)|
ds
s

≤
1

Γ(r)

∫ t

1

(
log

t
s

)r−1
|y(s) − ȳ(s)|l(s)

ds
s
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+
(r − 1)(log t)

Γ(r)

∫ Tm

1

(
log

Tm

s

)r−1

|y(s) − ȳ(s)|l(s)
ds
s

≤

[
2

(log Tm)r

Γ(r + 1)

∫ Tm

1
l(s)ds

]
‖y − ȳ‖∞.

Thus,

‖h1 − h2‖∞ ≤

[
2

(log Tm)r

Γ(r + 1)
‖l‖L1(Jm,R)

]
‖y − ȳ‖∞.

An analogous relation obtained by interchanging the roles of y and ȳ gives

Hd(N(y),N(ȳ)) ≤
[
2

(log Tm)r

Γ(r + 1)
‖l‖L1(Jm,R)

]
‖y − ȳ‖∞.

Hence, by (3.11), N is a contraction, so by Theorem 2.3, N has a fixed point y that is a solution to
(1.1)–(1.2).

Step 3: The diagonalization process. We can use a similar argument to the one used in Step 6 in
the proof of Theorem 3.5. Thus

H
C Dry(t) ∈ F(t, y(t)) for a.e. t ∈ J = [1,Tm], 1 < r ≤ 2, (3.12)

for each m ∈ N. This proves the theorem. �

4. An example

We conclude this paper with an example illustrating our main result. We apply Theorem 3.5 to the
fractional differential inclusion

H
C Dry(t) ∈ F(t, y(t)), for a.e t ∈ J = [1,∞), 1 < r ≤ 2, (4.1)

y(1) = y1, y is bounded on [1,∞). (4.2)

We set
F(t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)}

where f1, f2 : [1,Tm] × R 7→ R. We assume that for each t ∈ [1,Tm], f1(t, ·) is lower semi-continuous
(i.e., the set {y ∈ R : f1(t, y) > µ} is open for each µ ∈ R), and assume that for each t ∈ [1,Tm], f2(t, ·)
is upper semi-continuous (i.e., the set {y ∈ R : f2(t, y) < µ} is open for each µ ∈ R). Assume that there
exist p ∈ C([1,Tm],R+) and a continuous and nondecreasing function ψ : [0,∞) 7→ (0,∞) such that

‖F(t, y)‖P = sup{|v|, v(t) ∈ F(t, y)}
= max(| f1(t, y)|, | f2(t, y)|) ≤ p(t)ψ(|y|), for each t ∈ [1,Tm], y ∈ R.

It is clear that F is compact and convex-valued and is upper semi-continuous. Finally, we assume that
there exists a number C > 0 such that

C
2(log Tm)r

Γ(r + 1)
‖p‖∞ψ(C) + |y1|

> 1. (4.3)

Since all the conditions of Theorem 3.5 are satisfied, problem (4.1)–(4.2) has at least one bounded
solution y on [1,∞).
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5. Conclusions

In this paper we consider a boundary value problem for a fractional differential inclusion involving
the Caputo-Hadamard type derivative of order r ∈ (1, 2] on the infinite interval [1,∞). We give
sufficient conditions for the existence of solutions in case the right hand side of the inclusion is
convex valued and where it is not. In the convex valued case, the nonlinear alternative of
Leray-Schauder type is used in the proof, and in the nonconvex case, the Covitz-Nadler fixed point
theorem for multivalued contractions is applied. Due to the fact that our problem is on an infinite
interval, a diagonalization method was needed to complete the proofs. This was the first time the
diagonalization method has been applied to such problems.
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