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1. Introduction

This paper is concerned with the finite element approximation of system of J = 2 quasi-
variational inequalities QVIs with term sources and obstacles depending on solution: Find a vector
U = (ul,u?) € (H}(2))? satisfying

a'(ut,v— u) = (fi(u'),v —u'); v € H} () (1.1)

v,ut < Mub; ut > 0.

Where Q is a bounded smooth domain of RY with N> 1, each a!(.,.) is a continuous elliptic bilinear
form, (.,.) is the inner product in L>({2) and each f! is a regular, nonlinear functional depending on
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solutions. The obstacle M provide the coupling between the unknowns u';
Mul =k + infziut;

k is a positive number.We point out that in the case where f are independent of the solution, the
system (1.1) coincides with that introduced by Bensoussan and Lions in [1] which arises in the
management of energy production problems.

It is easy to note that the structure of system (1.1) is analogous to that of the classical obstacle
problem [2] where the term source and obstacle are depending upon the solution sought. The
terminology QVI being chosen is a result of this remark.

Numerical analysis of system of quasi-variational inequalities where term sources not
depending on solutions were achieved in several works, we refer to [3—8] for system of quasi-
variational inequalities with coercive or noncoercive operators.

For results on systems related to evolutionary Hamilton-Jacobi-Bellman equation we refer to [9-11].

The main objective of this paper is to show that problem (1.1) can be properly approximated by
a finite element method and an optimal L*-error estimates is derived, which coincides with the
optimal convergence order of elliptic variational inequalities of an obstacle type problem [12].

The approximation is carried out by first introducing a modified Bensoussan-Lions type
iterative scheme depending on parameters which is shown to converge geometrically to the
continuous solution. By a symmetrical approach, using the standard finite element method and a
discrete maximum principle (DMP), the geometric convergence of the discrete modified
Bensoussan-Lions type iterative scheme depending upon parameters is given as well. An L®-error
estimates is then established combining the geometric convergence of both the continuous and
discrete iterative schemes and the known uniform error estimates in elliptic VlIs.

It is worth mentioning that even the guiding idea of this paper rests on the algorithmic approach
followed in many papers cited above, the treatment of the geometric convergence of both continuous
and discrete schemes is totally different because of the nonlinear nature of terms sources. Also, it is
used for the first time for a system of QVIs.

An outline of this paper is as follows: In section 2, we lay down some definitions and classical
results related to variational inequalities and prove a Lipschitz continuous and discrete dependency
with respect to the source term, the boundary condition and the obstacle. Section 3 discusses the
continuous Bensoussan-Lions type iterative scheme and proves its geometrical convergence. In
Section 4, we establish the finite element counter parts of the continuous system and the continuous
Bensoussan-Lions type iterative scheme respectively and the geometrical convergence of the discrete
scheme. Section 5 is devoted the L*-error analysis of the method.

2. Preliminaries

We are given functions a}k (x),ak(x),ab(x),1 < i < 2 sufficiently smooth functions such that
1<jk<N

D ah(0f & =l eRY,a>0

1<j,k<N
ab(x) = B> 0,(x € 0) 2.1)
where S is a positive constant. We define the bilinear forms: For all u, v € H(2)
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a'(u,v) = fﬂ (215j,ksN ajy (x) == 4 Yi=1ai () a—;kv +ag (x)uv) dx (2.2)

6x] 6xk
We are given right-hand sides
fisuchthat f € L”(Q),f = f° >0,

a nonlinear functional and Lipschitz continuous on R; that is
IFi) — Fi)| < kilx — yl,Vx,y € R,
such that

, ki
[ A - .
a =<, 2.3)

where Bis a constant defined in (2.1). For W = (w},w?) € (LY (.(2))2 we introduce the norm

Wl = maxlwl,..

2.1. Elliptic variational inequalities

Let be Q a bounded polyhedral domain of R? or R3 with sufficiently smooth boundary 002. We
consider the bilinear form of the same form of those defined in (2.2), the linear form

(F.v) = J, F@)v()dx, (2.4)
The right hand side
f e L), (2.5)
the obstacle
W € W2*(Q) and ¥ > 0, (2.6)

the boundary condition g € L*(0.2) and the nonempty convex set
K9 = {v € H() such that v = g on 32 and v < on N}. (2.7)
We consider the variational inequality V.I.: Find u € K9 such that

a(u,v—u) = (f,v—u),Vv € K9. (2.8)
2.2. A monotonicity property

Proposition 1 Let (f,g,9); (f,§,¥) be a pair of data and { = o(f,g,¥); { = o(f,§,P) the
corresponding solution to (2.8). If f < finQ, g < § on 0Q and P < then, { < in Q.
Proof. The proof is an adaptation of the proof of the monotonicity property of the solution of VI with

nonlinear source term (see [13]). According to [14], { = max {E } where {5 } is the set of all the
subsolutions of {. Hence, v{ € {E }, ¢ satisfies
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a(g,v) < (f,v),Vv = Owithg < l,bandg <g.
By using the conditions f < fin Q, g < § on 6Q and ¥ < 1, we get
a(g, v) < (f,v) <(f,v),
with
ESIIJSl/;andESgSgon@Q.
Thus, { is a subsolution of { = o(f, §, 1), thatis { < { in Q.

2.3. A Lipschitz continuous dependency with respect to the boundary condition, the source term and
the obstacle

This subsection is devoted to the establishment of a Lipschitz continuous dependence property
of the solution with respect to the source term, the boundary condition and the obstacle by which we
first, set out and demonstrate.

Proposition 2 Let (f,g,¥); (f,§,9) be a pair of data and { = o(f,g,¢),; { = o(f,§,P) the

corresponding solution to (2.8). Then, we have
1 = Zll o gy < max {(Z) I = Fll ooy 19 = dlli=ay 19 = Bll o} 29

Proof. The proof is an adaptation of the proof of a Lipschitz property of the solution of VI with
nonlinear source term (see [13]). First, set

¢ =max {(Z)If = Fll ooy 19 = Flli=@ar 19 = $ll o0 (2.10)
Then,
+ ||f _f||L°°(.(2)
( “ir -
L®(2)
1 ~ -
< f +ap(®) max{(ﬁ> If = Fll o gy o)
So,
<f+a,(x)pinn. (2.11)

Thus, for all 0 < v,
(Fv) < (f + o), ),
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with
{<g<g+¢onin,
{<Y<yP+¢in.

So, according to the property ¢ is a subsolution of a(f + ay(x)p, g + ¢, Y + ¢ ) = o(f, g, ¥) + ¢,
that is

({<{+¢pinn
or

{—{<¢in. (2.12)
Similarly, interchanging the roles of the couples (f, g, ¥); ( £, 4, 1/7) we obtain

(—-{<¢pinn, (2.13)

which completes the proof.

Let 75, be a triangulation of QQ with meshsize 4, V), be the space of finite elements consisting of
continuous piecewise linear functions v vanishing on 0Q and ¢g, s = 1,2,...,m(h) be the basis
functions of V.

The discrete counterpart of (2.8) consists of finding u;, € K ,f’ such that

a(up, v —uy) = (f,v—up), Vv € K. (2.14)

Where
K,‘lq = {v € V, such thatv = m,g on 9 and v < r,Y on 2}, (2.15)

Ty, 1S an interpolation operator on 0.2 and r; is the usual finite element restriction operator on £2.
Theorem 3 (See [12] Under conditions (2.5) and (2.6), there exists a constant C independent of h
such that

IS = Sullieocay < Ch?|logh|?. (2.16)

2.4. A Lipschitz discrete dependency with respect to the boundary condition, the source term and the
obstacle

Assuming that the DMP is satisfied, i.e. the matrix resulting from the finite element
discretization is an M-matrix (see [15,16]), we prove the Lipschitz discrete dependence with respect
to the boundary condition, the source term and the obstacle by a similar study to that undertaken
previously for the Lipschitz continuous dependence property.

Proposition 4 Let (f,g,m¥); (f,§,m¥) be a pair of data and , = on(f, g, m¢) ; & =
ah(f, g, rhlﬁ) the corresponding solution to (2.14). If f < fin Q, g < § on 0Q and ryp < 13
then, {, < {y in Q.

Proof. The proof is similar to that of the continuous case.

The proposition below establishes a Lipschitz discrete dependence of the solution with respect
to the data.
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Proposition S Let the (d.m.p) holds. Then, we have
”(h - zh”Loo(m < max {(%) “f - f”Lm(m: llg — £7||L°°(a:2)’ ”rhlp - Thlﬁ”Loo(m} (2.17)

Proof. The proof is similar to that of the continuous case.
3. The continuous problem

We define the following fixed-point mapping
T: (L2(Q)” - (L2 (@)
Z=(z",2*) > TZ={= (7", 7).
Where ' € H}(22) N L*(R2) is a solution to the following variational inequality
al(T,v—1) = (fi(z!),v—0);v € H} () 3.1)
v, < MU =k+7; T >0withi=j.

Thanks to [1,2], T' is the unique solution to coercive variational inequality (3.1).
Remark 1 We remark that the solution U = (ul,u?) of the system (1.1) is the fixed point of the
mapping T; that is TU = U.

3.1. A continuous iterative scheme

Starting from U° = (u°,u?°) where u®°; i = 1,2 is solution of the variational equation
a'(ut,v) = (Fi{(u"°),v),vv € H} (),

and for all 0 < w; < 1;i = 1,2 we define the sequences (u"*1) and (u?™*1) such that ul™** and

u?™*1 the components of the vector U™, solve the following elliptic variational inequalities
respectively

@™y —ut™) > (w L) + (- w) L), v —uttt) (3:2)

v’ul,n+1 < Mul,n+1 =k + uz,n’ (3‘3)

az (uz,n+1, v — uz,n+1) > (szZ(uZ,n+1) + (1 _ Wz)fz (uz,n), v — uz,n+1) (3‘4)

D UPTH < MuPH = k4, (3.5)

3.2. Convergence of the continuous iterative scheme

Theorem 2 The sequences (ut™*1) and (u?>™*1) converge geometrically to the solution U =
(ut,u?) of the system (1.1); there exist a positive real p € (0,1) which depends on a; and w; such
that for allm = 0

U™ = Ulle, < p™HIU® = Ul (3.6)

where
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_ a(1-wq)
p = Mmax —————c <1 (3.7)

Proof. The proof will carry out by induction.
e  We first deal with the case

lut — || ooy = max |[ul — u™?| (3.8)

1<i<2 L®)’

e Indeed for n =0, using (1.1), (3.2), (3.3) and (2.9), we have

[F1 @) = (Waf @) + (1= W) f Q)| o

||u2 - u2'0||L°°(.(2)

1
lut — ut| o) < max (E)'

1
_ 10,1y _ 1,11 _ 10,1\ _ £1(,,1,0 )
el G I (G = @) + @ =W () = £ )
lu? — 0|l o)
kl
< max {(ﬁ) (W1||u1 —ubH| o) + (1 — wy)llut — u1'0||L°°(n)):}
lu? — u?0|| 20 gy

So,

aywillut — ub | o) + ar (1 — wyllut — ull o (gy;
lu' — ul||20(p) < max { i k (Q; 120 ! L@ (3.9)
lu® —u® ||L°°(.Q)
We distinguish two cases

max {“1W1”u1 - u1'1||L°°(n) +a;(1— W1)||U-1 - u1'0||L°°(Q)i lu? - u2'0||L°°(n)}

= 051W1||u1 - u1'1||L°°(n) +a;(1— W1)||U-1 - u1'0||L°°(!2) (3.10)
or

max {0—’1W1||u1 — Ul + a1 (1 — w)llut = ubClo(g); llu? — w0l o) }

= |lu* - u2'0||L°°(n) (3.11)
(3.9) in conjunction with case (3.10) implies
llu* — u1'1||L°°(n) < aywyqlut - u1’1||L°°(12) +a; (1 —wpllu' - u1’0||L°°(n) (3.12)
with
llu® - u2'0||L°°(n) < aywlut — u1'1||L°°(12) +a; (1 —wpllu' - u1'0||L°°(.(2): (3.13)
which implies

a; (1-wy) [ = w0 o0 - (3.14)

1_ .11
|t —ubH|| ooy < ry——

By replacing (3.14) in (3.13), we get

AIMS Mathematics Volume 6, Issue 6, 5977-6001.



5984

a; (1 —wy)
2 _ 200 o < 1_ 5,10 &
lu® — u®®||poq) < = aw lu — u®|| 00
i _ 0,0
< pmaxflu’ —ut?] o g,

which coincides with (3.8).

(3.9) in conjunction with (3.11) implies

lut = ub o) < llu? — Ol o) (3.15)

with
aywyllut — ub o) + a3 (1 — wy)llut — u0| =) < llu? — u?0|| 0. (3.16)

lu? — u?0|| 20y is bounded below by both [[ul — ul|| e

and
aywy|lut — u1’1||L°°(n) +a;(1—wyllu' - u1'0||L°°(n)-
So,
lu' — u1’1||L°°(:2) < agwqllut - u1'1||L°°(n) +a;(1—wyllu' - u1'0||L°°(12)
or
aywyllut — u1’1||L°°(12) +a; (1 —wyllu' - u1'0||L°°(n) < |lut - u1'1||L°°(12)-
Then,
et — | em gy < EE flut — 10 o (3.17)
1w
or
AE flut — w0l o gy < Nt — 1l g, (3.18)

1-aywq

(3.15), (3.17) and (3.18) generate the following three possibilities

a1 (1—wy) ) ,
1 .11 < 1_.,1,0 < |l1y2 — 1,20 < i _ .00
lu” — u™ |l < 1 aw Wy lu” — u™"lle ) < llu® —u"|leoe) < {Qlaé”u u ”Loom)
or
a;(1—wy) . .
1 1,1 2 2,0 1 1 1 1,0 i i,0
u —-u” < ||lu‘—u~ <——mmm||lu" —u” < max||lu* —u”
I ||L°°(.(2) <l ”L°°(.Q) =1 = aw, | ”L°°(.(2) = 151.;%” ”Loom)
or
0{1(1 - Wl) 1 10 . .
—|ut —ut < ||lu! — u'? < ||lu? — u®° < max||ut — u*® )
1— ayw; I ||L°°(.(2) <l ”L°°(.Q) <l ||L°°(.Q) = 151‘5)%” ”Loom)

All possibilities are true in the same time because they coincide with (3.8). So, there is either a
contradiction and thus case (3.11) is impossible or case (3.11) is possible if and only if
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a; (1—wy)

: lut
— Wy

lu' — u1’1||L°°(n) = u- — u1'0||L°°(!2)-

Hence, both cases (3.10) and (3.11) imply (3.14).
e Let us now discuss the second case

[? = 1?09y = max [lu’ — ut

. (3.19)

(3.9) in conjunction with (3.10) implies (3.14) with

1 —
< aq( wi)

2 2,0 1 1,0
u-—u” S u —u
I o) = == v 1 Il o)

< p max||ul — u®?||

2 _ .20
max < [[u® = u®®|| o),

L*(2)

which contradicts (3.19) which means that (3.10) is impossible. (3.9) in conjunction with (3.11) we
get (3.17) and (3.18). So,

a,(1—wy) : .
1 1,1 1 1 1 1,0 i i,0
u —u- <——mm||lu- —u” < max|lu* —u”
[ e < 5o C liso(o) < max|| [
or
a1 (1 —wy) 1 1,0 1 1,1 i )
1—aywy = iocay < flu” = u o) < {rsl{aé”ul —u ||L°°(n)'

We remark that both alternatives are true in same time because both coincide with (3.19) which
implies that in case (3.11), we must have

a(1—wy)
lu' — ut o) = ———lu' — u"0|| = ().

1 - alwl
Hence, in both cases (3.8) and (3.19), we obtain (3.14). Hence,

lut = ut o) < pmax [t —ut||

. (3.20)
Ul = (utt,u?Y) and U = (ut,u?),

we need to deal also with ||u? — u?1|| (g, by following the same reasoning as that adopted for u'
and u"', we get

052W2||u2 - u2’1||L°°(12) + a,(1 - Wz)”u2 - u2'0||1,°°(12);
lu? — u!|| ;) < max { 11 (3.21)
lut — ubH| Loy
Again we distinguish two possibilities
maX{aszlluz - u2'1||L°°(Q) +a,(1— W2)||u2 - u2'0||L°°(Q)i lut — u1'1||L°°(n)}
= 052W2||u2 - u2'1||L°°(n) + ay(1— Wz)”u2 - u2'0||L°°(n)i (3.22)

or
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max{a2W2||u2 - u2'1||L°°(!2) +a,(1 — Wz)”u2 - u2'0||L°°(12)5 lut — u1'1||L°°(n)}

= |Jut - u1’1||L°°(Q)- (3.23)
(3.21) and (3.22) imply
az(1-wy)

2 _ .21 <
[lu u ”L°°(.Q) = Uaywy)

lu? — w0l o0 (3.24)
with
lu' — u1'1||L°°(n) = 052W2||u2 - u2'1||L°°(!2) + ay(1- W2)||u2 - u2'0||L°°(12)- (3.25)

By substituting (3.24) in (3.25), we get

0{2(1 - Wz) . .
R Er=a L LR L
which coincides with (3.20). (3.21) and (3.23) imply
llu? — u2'1||L°°(n) < |lut - u1'1||L°°(n)= (3.26)

with
052W2||u2 - u2’1||L°°(n) +a,(1— W2)||u2 - u2’0||L°°(n) < ||u1 - u1'1||L°°(n)-
It is clear that ||Ju — u'|| 0y is bounded below by both
lu? — u?|| 00
and
awo|lu® — u2’1||L°°(n) + (1 —wy)llu? - u2’0||L°°(xz),
which leads us to distinguish the following possibilities

llu® — u2'1||L°°(12) < 052W2||u2 - u2'1||L°°(n) + a,(1 — Wz)”u2 - u2'0||L°°(n)

or
a2W2||u2 - u2’1||L°°(n) +a,(1— W2)||u2 - u2'0||L°°(n) < ||u2 - u2'1||L°°(n)-
Then,
lu? = u?Hlyso(a) < E=2fu? — u2|ysogq) (3.27)
or
L w2 — w2y < lu? = U lie(oy (3.28)

Thus, (3.26)—(3.28) imply that the three following alternatives are required

ay(1—wy)

2 2,1 1 1,1
us —u”~ < |lu—uv <
| o0y < I Il L0 (0) 1=,

lu® — u®°|| (g

or
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ay(1—ws)
lu? — u? |y < T—aw. u? = u?Ol o) < llut — utHlo(g)
— axW;
or
ay(1—wy)
1—a ||u2 - u2'0||L°°(n) < ||u2 - u2'1||L°°(n) < ||u1 - u1'1||L°°(Q)-
2W»

It is clear that all alternatives coincide with (3.20). So, we must have

az(1—w,)
1—a,w,

Thus, in both cases (3.22) and (3.23) we obtain (3.24). Hence,

llu?

llu® — u2'1||L°°(n) = us — u2'0||L°°(n)-

lu? — w2 || jeoeny < p{tsl{as>§||ui — ui'0||L°°(n)' (3.29)
(3.20) and (3.29) imply
U = Ullw < plIU° = Ulloo.
e Letus assume that, forn = 0
[t = ut ] oy < P maxfuf —utf| o i =122 (3.30)
e We prove
”ui _ ui'nH”L‘”(n) < ’Dnﬂ{l;lias)é”ui _ ui'n“y”(n)’i =1,2. (3.31)

By adopting the same arguments for (1.1), (3.2), (3.3) and (2.9) as that applied for the previous
iterates, we get

IF @D = waf @™ + (@ = W) @)

lu® — u®™| o0y

)
lut — ub™*1|| o) < max (ﬁl

So,
0‘1W1||u1 - ul'n+1||L°°(n) +a(1— W1)||u1 - ul'n||1,°°(xz);
lu' — ut™* 1| 100 gy < max { 2 am (3.32)
lu® —u ”L°°(.(2)

Also we distinguish two cases:

max 051W1||u1 - ul'n+1||L°°(n) +a;(1— W1)||U-1 - ul'n||L°°(n)i

lu? — u™|| 1o g
= C¥1W1||u1 - ul'n+1||L°°(n) +a;(1— W1)||u1 - ul'n||L°°(!2) (3.33)

or

{051W1||Uv1 - ul’n+1||L°°(n) +a;(1 - W1)||u1 - ul'n||L°°(xz);
max

I = w2l 20y } ~ I @39
L®(n

(3.32) in conjunction with (3.33) implies
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GOV 31— | eo g, (3.35)

1_ . 1n+1
lut —ut™ | ooy < ry—

with
llu? - uz'n||L°°(n) < agwyllut - ul'n+1||L°°(n) +a;(1—wyllu' - ul'n||L°°(n)- (3.36)

By replacing (3.35) in (3.36) we get, according to (3.30);i=1

al(l - Wl) . .
”uz — uzln”Loo(Q) S 1_—0_/1‘/‘/1 ”ul —_ ul.n”me) S pn+1:{rsllas)§||ul — ul,0||Lw(n)
which matches with (3.30); i= 2. (3.32) in conjunction with (3.34) implies
lut — ub™ | o) < llu? — U™l o) (3.37)

with
051W1||u1 - ul’n+1||L°°(n) +a;(1— W1)||u1 - ul'n||L°°(Q) < ||u2 - uz'n||L°°(n)-

lu? — u?™|| (o) is bounded below by both [[u® — ul™ 1| 0y,

and
a;wyllut — ul’n+1||L°°(n) +a;(1—wyllu' - ul’n||L°°(n)
So,
lut - ul'n+1||L°°(n) < 0‘1W1||u1 - ul'n+1||L°°(n) +a,(1- W1)||u1 - ul'n||1,°°(!2)
or
051W1||u1 - ul'n+1||L°°(n) +a;(1- W1)||U-1 - ul'n”L°°(.(2) < ||u1 - ul'n+1||L°°(n)-
Thus,
lut = w7y ) < “1(_1—0[1‘”%) lut =ty
or
“11(_1—;1‘:2)nu1 U () < Jut = g,

By taking into account (3.37), we get

a (1 —wy)
llu? = wt ™ o) < llu® = w* Moy < 5 ——— = llu’ = ul o)
— W,
or
a (1 —wy)
llu? = wt ™ o) < T ———=llut = ut o) < llu® = u*M o)
— Wy
or
a(1—wy)
—1 ||u1 - ul'n||L°°(n) < ||u1 - ul'n+1”L°°(.(2) < ||u2 - uz'n||L°°(n)-
—aw,
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Three possibilities are true because all coincide with (3.30). So, we necessarily get

1 ay(1-wq) ”ul

1—a1W1
Thus, both cases (3.33) and (3.34) imply (3.35). Hence, by using (3.30) we get (3.31) fori = 1. The
proof for (3.31); i = 2 is obtain in similar way by using (3.31); i = 1 and (3.35) so, it will be omitted.
The desired result (3.6) follows naturally from (3.31).

— Ut | o) <

[[u - ul'n||L°°(n)-

4. Statement of discrete problem

This section, we will handle the discrete problem by a perfect symmetry in the treatment of that
the continuous one. Indeed, we define the discrete system of QVIs: Find a vector U, = (uj, us) €
(V,)? such that

at(ub,v—uh) = (Fi(uy) v —uh);v eV,
4.1)
< rh(Muh) = rh(k +uh) i #j.ul, > 0andul = m,g on dL.

The related discrete fixed-point mapping
Th: (Vi)? = (Vp)?
Zn = (Zn, 21) = TnZn = G = (G G7),

where ¢} € V, is the unique solution to the following discrete variational inequality
ai({,il,v—i,il) > (f"(z,il),v—(}'l);v eV (4.2)
v, (,il < rh(M{,il) = rh(k + Z,{); Z,il > 0withi # jand (,il = mpg on 0{1.

Remark 1 We remark that the solution U, = (u},, ui) of the system (4.1) is the fixed point of the
mapping Ty, that is T,Uy, = Uy,.

4.1. A discrete iterative scheme

Starting from Uh = (uh Uy, 0) where u,il‘o = rhui'o; i = 1,2 is the discrete analog of u%0 then,

||u0 — uh0||L°°(.(2) < Ch?|logh|?. (4.3)

Forall 0 < w; < 1;i = 1,2 we define the discrete sequences (u;"*") and (u;™*") such that u;™**

2n+1
UTl+1

and u;” "~ components of the vector solve discrete elliptic variational inequalities

1(u1 n+ uh,n+1) > (Wlfl(urll'nﬂ) +(1- Wl)f1(u}11,n)’v — urlfnﬂ) (4.4)

v, u’11n+1 < rh(Mu;l{nH) _ rh(k n ule,n), (4.5)
z(uz nH uizl,n+1) > (szz(urzl,nﬂ) +(1- Wz)fz(urzl'n)‘ v— u,zl’"ﬂ) (4.6)
vu™ < (Mup™t) = (k™. 4.7)
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4.2. Convergence of the discrete iterative scheme
Theorem 2 The discrete sequences (u,ll‘nﬂ) and (u,zl’nﬂ) converge geometrically to the discrete

solution Uy, = (uj, u?) of the system (4.1); there exist a positive real p € (0,1) defined in (3.7) such
that for alln = 0

NURTY = Uplleo < p™*|UR = Uy |_. (4.8)
Proof. The proof is similar to that of the continuous case.
5. L%-error analysis

This section is devoted to the proof of the main result of this paper. For that purpose we need to
introduce an auxiliary system.

5.1. Auxiliary system

Let W,il'O = uf{o;i = 1,2 be an initialization. For all 0 < w; < 1;i = 1,2 we define the discrete

sequences (w,™*") and (w2™*") such that w,™** and w/™** solve coercive variational inequalities
a'(wy™ v —wy ™) = (wy () + - w) P (ut), v — wy (5.1)

v,wp™ < (MUt = (k4 uM), (5.2)

a?(wy™ v —wp™ ) = (wo f2(u®™Y) + (1 — wy) F2(u®™), v — wp™tt (5.3)

v, Wit < (MU = 1 (ke + uY, (5.4)

It is clear that W,il'"+1 ;i = 1,2 components of the vector W**! are finite element approximation of

ub™*1 defined in (3.2)—(3.4). Thus, making use of (2.16), we get

in+l

iin+1
lwy™ = w1

2 2. —
L) < Ch®|log|*;i=12andn = 0. (5.5)

The algorithmic approach used in the present paper rests on the following crucial lemma, where the
error estimate between the nth iterate U™ and its discrete counter parts U1 is established.
Lemma 1 Let (U™1) and (UPY) be the vectors whose components are sequences defined in (3.2)—

(3.5) and (4.4)—(4.7) respectively. Then,

1-— n+1
Ut = Up e < (v (557) + 0™ ) maxnaolU™ = Wil . (56)
Where
1
Y = MaXi<i<2 {(1—0-'_iWi)}' (5.7)

Proof. The proof of the lemma rests on the discrete Lipschitz continuous dependency with respect to
source term and obstacle and will carry out by induction.
e Forn=0, we have
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[t = o gy < Mt = Wil oy + lIwn™ = 2™ ] o -
(5.1), (5.2), (4.4), (4.5) and (2.17) imply
||u1’1 - }lllle(.Q) = ”u — Wh 1||L°°(.Q)

()~ i)+ 1 - )|

L®(2) ;

+ max
|7 (e + u0) — 7 (k + u,zl‘o)”Lw(m
So,
||u1'1 - ’111||L°°(.Q) - ”u - h1||L°°(.Q)
1 1
+ max (Zl) willut? = gy + (%) (@ = wp) [ = 1| o gy
|7k + u0) — 7, (k + u,zl'o)”Loo(m
Therefore,
||u1’1 - }11||L°°(.Q) - ”u - Wh 1||L°°(.Q) (58)
aywy |[utt — uh1||me) +ay; (1 — wy)|[u® - uh0||L°°(.Q)
+max{ ||u2° 0”
LA €)
We distinguish two cases
aywy |[utt — u,ll‘1||me) +a; (1 — wy)|ut® - uh0||L°°(.(2)
o w2 =]
LA ©)
= ayw |[utt - uh1||L°°(.(2) +a (1 — wy)|u® - uhO||L°°(.Q) (5.9)
or
ayws [[utt —uwpt| w(y T ay (1 —wp)|[u® — || w0y
max { L”lfzo h0” L®(0 ”uz,o _ uizz'OHLoo(m(S-lO)
L® ()

(5.8) in conjunction with (5.9) imply

= 8oy < 2 = 2 + v =

L®(Q) L®(Q)
ey (1= wp)l[u = 42
with
12 =y < vl = g+ @10 =D =gy 51D
So,
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(1 - alwl)”u - uh1||L°°(_Q) - ||u - Wh 1||L°°(.Q) + al(l - Wl)”ulo - uh0||L°°(_Q)
with (5.11). Then,
(1-wq)
et = Ny < e 14 = W oy + Gy 164 =80 oy (5:12)
By replacing (5.12) in (5.11) we obtain
20 _ 4,20 <YW _ bt o =w)y 1o 10
”u uh ||L°°(.Q) = (1 aw )”u Wh ||L°°(.Q) (1 _ a1W1) || uh ||L°°(.Q)
According to (5.5) and (4.3) we get,
a,
||u20 — uh0||L°°(.(2) < ﬁChzuoghP
which coincides with (4.3).
(5.8) and (5.10) imply
”ul'l - k111||L°°(Q) S ”u — Wh 1||L°°(Q) + ”uzo - uhO”Lw(g) (5.13)
with
0.’1W1||u1'1 - ui11'1||L°°(_Q) + al(]‘ - Wl)“ul'o - ui11'0||L°°(_Q) - ”u - uh0||L°°(_Q)
Then, multiplying (5.13) by a;w; and adding a; (1 — w;) ||u - uhO”Loo @y Ve obtain
alwlllul‘l 1_1u;l1’1||L00(!2) + al(l - Wl)“:lo - uhO”LOO(Q)
< aywy |[utt —w, ||L°°(.(2) + aywy |[u? — up ||L°°(.(2)
+a,(1-— W1)||u10 — uh0||L°°(.(2)
We note that
aywy |[utt — uh1||L°°(.(2) + a; (1 — wy)|[ut? - uh0||L°°(.(2)
is bounded by both
awy [[utt — wy, 1||L°°(.(2) + aywy |[u?0 — uh0||L°°(.Q) + a; (1 — wy)|[u® - uh0||L°°(.(2)
and
[ = 2| o
So,
aywy |[utt —wy, 1||L°°(.(2) + aywy |[u?0 — uh0”L°°(n) + a; (1 — wy)|[u? - uh0||L°°(.(2)

< “u2 0 — uh0||L°°(_Q)

or
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||u?® — leO“Loo(n) < aywy[|utt —w, 1||L°°(!2) +agwy[[u - uh0”L°°(ﬂ)
+ay (1= wy)[ut - ”h0||L°°(n)
Therefore, according to (5.5) and (4.3), we get
a,wy a; (1 —wy) 0 0
(1——051W1)”u —Wh1||Loo(m A—awy) [t = ”Loo(n) S ”Loo(n)
< Ch?|logh|?
or
| aw, a(1—wy)
[ — ”f210||L°°(n) “(1-aw) [t = wy 1||L°°(12) 1 —aywy) [ ’110”L°°(!2)
oy 5 )
< —(1 — ) Ch=|logh|*.

So, the last two alternatives are true at the same time because both coincide with (4.3). We
necessarily deduce that

20 _ ,,2 a1 Wq ” 1,1 _

(1-wq)
hO||L°°(.(2) = (1—a1w1) = - - ||u1’0 - h

0
hl”L‘”(ﬂ) (1-aywy) h ”L°°(!2)' (5.14)

e

By replacing (5.14) in (5.13), we get (5.12). Hence, in both cases (5.9) and (5.10); we can write

1
o =y < i g et =i
al(l - Wi) i,0 _ .10
+may {(1 - aiwg} mallut =l
Thus,
et =1 oy < @ + Pdmaxmaxlut —wi]l (5.15)

e In asimilar way, that is by following the same steps as for u* and u,;", u?* and u>’" satisfy

21 _ .2

e = 2] oy < Tt = Wil oy + lIwa™ =

L)’
So,
”uz‘1 - }211||L°°(.Q) = ”u — Wy 1||L°°(.Q)
aw,|[uzt —uPt| o+ a1 = wy)|[u?® —u2?|
4 max 2 2” h ||L ) 2 o 2 ” h ||L (_Q) (516)
et =l o
)

We distinguish also two cases
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azws [ = upt || oy + @21 = w2 [u® —up?
max { [T [ } (5.17)
= ayw, |[u?t — uh1“L°°(.(2) + ay (1 — wy)l[u?0 - uh0||L°°(.(2)
or
max {aZWZHu U gy + 32— W) [ — 2] o } = [t = w0 ) (5:18)
e o

(5.16) in conjunction with case (5.17); we get

[[uzt - i211||L°°(n) < ||t — wy 1||L°°(n)+“2W2“u — uhlllmm)
+ap (1= wy)[[u® = up?|| o
with
[ i111||L°°(.Q) < apwa[u®t - uh1||L°°(!2) @ (1= wy)[u? - uh0”L°°(f2) (5-19)
So,
a,(1-wy)
”u21 - uh1||L°°(!2) = (1-azwy) ” o 1”L°°(!2) (f—azwz) ” - }210||L°°(m (520)
with, according to (5.20)
1 ay(1—wy)
1111 . _ w2t —2h 720,20 _ 20
||u n ||L00(!2) = (1— a,w,) ”” h ||L°°(.(2) (1— a,w,) ” Up ||L°°(n)
Then,
[t = ] oo
1 . a;(1—wy)
1 i1 —l 0 _ 1,0
SR L {(1 — OliWi)} ot = wi ”L°°(”) RREE {(1 a'Wi)} fut® = ”me)
Therefore,
=2 oy < O + Imax max [l = wi"l o

which coincides with (5.15). The conjunction of (5.16) with case (5.18), implies

||u2'1 - 2'1||L°°(.Q) - ||u - Wh 1||L°°(_Q)+||u11 - uh1||L°°(_Q) (521)
with
aZWleuz‘l - uf21’1||L°°(_Q) + aZ(l - WZ)”uZO - uh0||L°°(_Q) — ”u - uh1||L°°(_Q)
Then, by multiplying (5.21) by a@,w, and adding a, (1 — w,) ||u —uy® ||L°° @y Ve obtain that the
term a2W2||u - uhllle(n) +a,(1 - W2)||u - uh0||L°°(.(2) is bounded by both
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a2w2||u2'1 - Wif' ‘|‘052Wz||u1‘1 — u}l + a,(1 - Wz)”uZ'0 — ufl'

1||L°°(!2) 1”L°°(rz) 0”L°°(ﬂ)

and

et =2 o -

So, we distinguish again, the two following alternatives

LW, a, (1 —wy)

= a,wy) =i o * Ty p— [0 = w0y = ™ = w0
< O + pymax max [Ju' —wy|| o
or
, A W; , a,(1—w,)
”ul'1 - uilzlllLoo(g) = (1 — aywy) ||u2'1 - Wif 1”L°°(!2) —(1 ~aw,) ||uz'0 - u’210”L°°(Q)

< O+ pymag '™ = Wil

We remark that both alternatives coincide with (5.15), which implies that case (5.18) is possible if
and only if

||u1,1 _ u}11,1||me) _ % ||u2'1 _ w,f' n az(1-wy) “uz,o _ u}zl,o”Loo(m_ (5.22)

1
”L°°(!2) (1-azwy)

By substituting (5.22) in (5.21), we get (5.20). Hence, in both cases (5.17) and (5.18), we get

21
||u2’1 —Up ||L°°(.Q)
< i1 _ .01
< mas {r— o) sl =i e
al(l - Wl) l'O i,O
+ max {u s Bi5:A L PSS
Thus,
21 _ ,,21 in_ LN
||l u; ||L°°(.(2) <(y +p)r¥ll§3<{151{as>§||u wy ||L°°(n)' (5.23)
(5.15) and (5.23) imply
10 = Uklles < (& + pImaxliU™ = Wyl
e [etusassumethatforn = 0andi=1,2
in_ .,in n-1 n in_ LN
|luim =y, ||L°°(.(2) <@A+p+-+p"H+p )ngggqr;g;g”u wy ||L°°(m. (5.24)
e And prove fori=1,2
int+1 _ o, in+tl n n+1 in_ LN
||l uy ||L°°(!2) <(y@A+p+-+p®)+p )rrrllggclrrsl%”u W, ||L°°(!2)' (5.25)
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We operate in the same way as in iterate n = 0. Let us begin with case i = 1 in (5.25)

n+1 n+1 1,n+1 1n+1
I ooy + W™ = uy™ |

||u _u}l L°°(.Q) S ||u' _W}:'t

L®(2) L® @)’
So, by applying (2.17), we get
o2 7 gy < 7 =
aywy ||utmtt — bt + a,; (1 — w)|lut™ — ™ ;
i { w| h ”Lj(:)_ 211 Dl h ”Loo(m»} (5:26)
[
We distinguish again two cases
max [almnul'nﬂ - ui‘"“lhw(m +a,(1- Wl)”ul'n - ufll'n”L”(n);}
”uZ,n - ule'n”L"o(_Q)
= ayw, |Jutmt — U-;l{nH”Loom) + a (1 — wy)|ut™ - u,ll‘n”Lw(m (5.27)
or
- {a1W1||u1’n+1 _ u}ll.n+1||L°o(Q) + al(l _ Wl)”ul,n — uill'n“Loo(_Q);}
”uZ'n - ule’n”L‘)o(Q)
= |juzn - ufl.n”Lw(m. (5.28)
(5.26) in conjunction with case (5.27) implies
”ul'n-l-l - urll'n-'_l”LOO(g)
< ™t = wy ™ o g + W[l = |
+ a; (1 — wy)|ut™ - u,ll’"”Loo(m
and
[ — ”izz'n“L”(n) < aywy[ut ufll'nH”L”(n) tar (- w)ut - ufll'n”Lw(n)'
Then,
”“’LM1 B ufll'nH”L”(ﬂ) = (1-aywy) “uLnH B W’i'nH”L‘”(ﬂ) + % ”ulm - u’ll'n”’lw(ﬂ) (5.29)
with, according to (5.29)
, ) (1-wy) ,
2™ = | oy < T [ = W™ | + T 02 = 1™ o -

(5.24) implies
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[ttt — ™|
L®(2)
1
< _(1 — alWl) ||u1,n+1 _ W;.n+1||Loo(m
a;(1—wy) _ , .
- (W Fpote o+ p maxmaut - Wé'"lle@)
with
aw
”uz,n _ uiZl.n”Lw(m < (1 _10(11W1) ||u1,n+1 _ W;.n+1||me)
R Lt L I
Thus,
||u1’n+1 - u}l’n+1”L°°(_Q)
<y [t = win |

L®(2)

+p <(y(1 +p+ -+ p" 1) + p)maxmax [[ut™ — W,"l'"”Loo(m)

n20 1<i<2

and as a;w; <1

||u2’n - uizl’n”Lw(_Q)

<y [t = Y+ ((V(l o+ p") + p")maxmax [[ut” — Wﬁ'"”mm))-
Hence,
||u1,n+1 _ u:l'n-l-l”l'oo(ﬂ) < (y(1+ p+ -+ p") +pn+1)r,?§g({rsl{as)§”ui'n _ W’il,n”Loo(m
and

[27 = ™| oy < G+ p 4o+ p™) + p™ ) maxma|[u™ — wy || -

which corresponds with (5.24) for i = 2. Inequality (5.26) with (5.28) imply

™ =™ oy < ™ =™ gy [ =2y (5:30)
and
ayw [t =l )+ @ (= W)l = < (0P = o
By multiplying (5.30) by a;w, and adding the term a; (1 — wy) |[u*™ — u,ll‘n”Lw (y We gt that the
term
o a1 w7
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is bounded by the following two terms

ayw, [Jutn - Wﬁ’nH“Lm(m + ayw, ||u?n — uhn”Lw(m + a; (1 — wy)|ut™ - uhn||L°°(n)
and
”uz,n_ izln”Lw(g)'

So, we need to distinguish the followings possibilities

aywy [ = w | o P = w2 + (= w [t =

< [|u?m - uhn”L‘”(n)
or
[[u? — unn”Loo(n) < aqwy [Jutt - Wﬁ'nH”Loo(n) + @ fut - u"n”L‘”(n)
+ay (1= wy)l[u' — u}l,n”me),
which implies
a4wq al(l - Wl)

T 1 7w, T T ey = 145 = e

or
Wy a; (1 —w,)

[u?™ = 1™ || oy < (1—Tw)””1 = "+1“Loo(m (1 - aywy) e = o

By using (5.24), we can write
W a (1 —wy)
- _10(11Wl) [[utmt — w n+1||L . m“ Ln —ufll‘n”Loom) < [lun _uhn“Lw(n)
< L+ p o+t p" ) + pymaxmax|u™ — wy | o
or
a Wy al(l - Wl)
”uZn — uhn||L°°(!2) = —(1 — a;wy) ||u1:n+1 wy, n+1”Lw(m O ” 1n _ uhn||L°°(Q)

< n—-1 n in _ ,,,in
GA+p+-+p"H+p )Ygggf{g%”u Wr ||L°°(.Q)

Only the last alternative is true because it matches with (5.24) for i = 2. So, in (5.28) we get

2 aw
2n _ 1W1 ” 1n+1 _ Wh

1 ai(1-wy) n_ .1
hn||L°°(.(2) — (1-aiwy) " ||L°°(!2) (11—0_'1W1) “uln

||u hn”L‘”(n)

(5.31)

By replacing (5.31) in (5.30), we get (5.29). Hence, in both cases (5.27) and (5.28), we obtain
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||u1’n+1 - u}l’n+1”L°°(_Q)
1 i, i,n+1
< max (o) maxlutn - wi )
a;(1—w) - ;
+ o {—<1 - W>}mll = U ooy
So,
||u1’n+1 - u}l’n+1||L°°(_Q)
in _ LN
< vl =l L
Pt pt ot o) + prImagmar|ut™ — wi| g
Therefore,

[+t = ™ | ey S L+ p oo p™7H 4 p™) + " Dmaxmax][u™ — wy"|| v,

(5.32)

By using the last inequality (5.32) and by adopting the same reasoning we prove (5.25); i = 2,
therefore, we get (5.6).

5.2. The main result

Theorem 2 Let U and Uy, be the solution of systems (1.1) and (4.8), respectively. Then, there exists a
constant C independent of h such that

U - Uplleo sﬁhzuoghﬁ. (5.33)

Proof. Making use of (3.6), (5.6) and (4.8), we have
U= Upllw < IU = U™ oo + U™ = Uit Hleo + U = Uplleo

pn+1
) ma 0 = e+ 5 03— 0
—p nz0 oo

< p™HU - U°e + ()/( 1

As n - +oo and by using (5.5) we get (5.33).
Conclusions

In this work an optimal convergence order is derived for a class of system of two elliptic quasi-
variational inequalities where terms sources and obstacles depend upon the solution, where the
continuous and discrete Lipschitz dependence with respect to the terms sources, boundary condition
and obstacles’ played a leading role in obtaining the main result of this paper. As (1.1) plays a key
role in solving Hamilton-Jacobi-Bellman equation the results obtained in this paper can give an
optimal error estimate for HIB equation also even for /] > 2. The approach used and the results
obtained in this paper (optimal convergence order) remain valid when we deal with systems of | > 2
quasi-variational inequalities with terms sources depends on solution and the obstacles ' independent
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of the solution, that is systems of the form; Find a vector U = (ul, ...,u’) € (H}(02))/ satisfying

{ai(ui,v —ul) = (fi(u),v—ul); v e H}(Q)

v,ul < zpi; u>0andi=1,..,J.
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