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solutions. The obstacle M provide the coupling between the unknowns u1; u2 

��� = � + �������
�; 

� is a positive number.We point out that in the case where ��  are independent of the solution, the 

system (1.1) coincides with that introduced by Bensoussan and Lions in [1] which arises in the 

management of energy production problems. 

It is easy to note that the structure of system (1.1) is analogous to that of the classical obstacle 

problem [2] where the term source and obstacle are depending upon the solution sought. The 

terminology QVI being chosen is a result of this remark. 

Numerical analysis of system of quasi-variational inequalities where term sources not 

depending on solutions were achieved in several works, we refer to [3–8] for system of quasi-

variational inequalities with coercive or noncoercive operators. 

For results on systems related to evolutionary Hamilton-Jacobi-Bellman equation we refer to [9–11]. 

The main objective of this paper is to show that problem (1.1) can be properly approximated by 

a finite element method and an optimal �� _error estimates is derived, which coincides with the 

optimal convergence order of elliptic variational inequalities of an obstacle type problem [12]. 

The approximation is carried out by first introducing a modified Bensoussan-Lions type 

iterative scheme depending on parameters which is shown to converge geometrically to the 

continuous solution. By a symmetrical approach, using the standard finite element method and a 

discrete maximum principle (DMP), the geometric convergence of the discrete modified 

Bensoussan-Lions type iterative scheme depending upon parameters is given as well. An ��-error 

estimates is then established combining the geometric convergence of both the continuous and 

discrete iterative schemes and the known uniform error estimates in elliptic VIs. 

It is worth mentioning that even the guiding idea of this paper rests on the algorithmic approach 

followed in many papers cited above, the treatment of the geometric convergence of both continuous 

and discrete schemes is totally different because of the nonlinear nature of terms sources. Also, it is 

used for the first time for a system of QVIs. 

An outline of this paper is as follows: In section 2, we lay down some definitions and classical 

results related to variational inequalities and prove a Lipschitz continuous and discrete dependency 

with respect to the source term, the boundary condition and the obstacle. Section 3 discusses the 

continuous Bensoussan-Lions type iterative scheme and proves its geometrical convergence. In 

Section 4, we establish the finite element counter parts of the continuous system and the continuous 

Bensoussan-Lions type iterative scheme respectively and the geometrical convergence of the discrete 

scheme. Section 5 is devoted the ��-error analysis of the method. 

2. Preliminaries 

We are given functions ���
� (�), ��

� (�), ��
� (�), 1 ≤  � ≤ 2 sufficiently smooth functions such that 

1 ≤ �, � ≤ � 

� ���
� (�)�� �� ≥ �

���,���

|ξ|�, ξ ∈ ℝ�, � > 0 

��
� (�) ≥ �� > 0, (� ∈  �)         (2.1) 

where �� is a positive constant. We define the bilinear forms: For all �, � ∈ ��
�(�) 
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��(�, �) = ∫ �∑ ���
�

���,��� (�)
��

���

��

���
+ ∑ ��

� (�)
��

���

�
��� � + ��

� (�)��� ��
�

  (2.2) 

We are given right-hand sides 

�� ���ℎ �ℎ�� �� ∈ ��(�), �� ≥ ��  > 0, 

a nonlinear functional and Lipschitz continuous on ℝ; that is 

���(�) − ��(�)� ≤ ��|� − �|, ∀�, � ∈ ℝ, 

such that 

�� =
��

�� < 1,            (2.3) 

where ��  is a constant defined in (2.1). For � = (��, ��) ∈ ���
�(�)�

�
 we introduce the norm 

‖�‖� = max
�����

����
��(�)

. 

2.1. Elliptic variational inequalities 

Let be Ω a bounded polyhedral domain of ℝ� or ℝ� with sufficiently smooth boundary ��. We 

consider the bilinear form of the same form of those defined in (2.2), the linear form 

(�, �) = ∫ �(�)
�

�(�)��,       (2.4) 

The right hand side 

� ∈ ��(�),          (2.5) 

the obstacle 

� ∈ ��,�(�) ��� � ≥ 0,       (2.6) 

the boundary condition � ∈ ��(��) and the nonempty convex set 

�� = {� ∈ ��(�) ���ℎ �ℎ�� � = � �� �� ��� � ≤ � �� �}.   (2.7) 

We consider the variational inequality V.I.: Find � ∈ �� such that  

�(�, � − �) ≥ (�, � − �), ∀� ∈ ��.       (2.8) 

2.2. A monotonicity property 

Proposition 1 Let (�, �, �);  ���, ��, ��� be a pair of data and � = �(�, �, �) ; �� = ����, ��, ���  the 

corresponding solution to (2.8). If � ≤ �� in Ω, � ≤ �� on ∂Ω and � ≤ �� then, � ≤ �� in Ω. 
Proof. The proof is an adaptation of the proof of the monotonicity property of the solution of VI with 

nonlinear source term (see [13]). According to [14], � = max ��� where ��� is the set of all the 

subsolutions of �. Hence, ∀� ∈ ���, � satisfies  
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� ��, �� ≤ (�, �), ∀� ≥ 0 ���ℎ �  ≤ � ��� � ≤  �. 

By using the conditions � ≤ �� in Ω, � ≤ �� on ∂Ω and � ≤ ��, we get 

� ��, �� ≤ (�, �) ≤ ���, ��, 

with 

� ≤ � ≤ �� ��� � ≤ � ≤ �� on ∂Ω. 

Thus, � is a subsolution of �� = ����, ��, ���, that is � ≤ �� in Ω. 

2.3. A Lipschitz continuous dependency with respect to the boundary condition, the source term and 

the obstacle 

This subsection is devoted to the establishment of a Lipschitz continuous dependence property 

of the solution with respect to the source term, the boundary condition and the obstacle by which we 

first, set out and demonstrate. 

Proposition 2 Let (�, �, �);  ���, ��, ��� be a pair of data and  � = �(�, �, �) ; �� = ����, ��, ���  the 

corresponding solution to (2.8). Then, we have 

�� − ���
��(�)

≤ max ��
�

�
� �� − ���

��(�)
, ‖� − ��‖��(��), �� − ���

��(�)
�. (2.9) 

Proof. The proof is an adaptation of the proof of a Lipschitz property of the solution of VI with 

nonlinear source term (see [13]). First, set 

� = max ��
�

�
� �� − ���

��(�)
, ‖� − ��‖��(��), �� − ���

��(�)
�.   (2.10) 

Then, 

�� ≤ � + �� − ���
��(�)

 

≤ � + (1)�� − ���
��(�)

 

≤ � + �
��(�)

�
� �� − ���

��(�)

 

≤ � + ��(�) max ��
1

�
� �� − ���

��(�)
, ‖� − ��‖��(��), �� − ���

��(�)
� . 

So, 

≤ � + ��(�)� �� �.         (2.11) 

Thus, for all 0 < �, 

���, �� ≤ (� + ��(�)�, �), 
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with 

�� ≤ �� ≤ � + � �� ��, 

�� ≤ �� ≤ � + � �� �. 

So, according to the property �� is a subsolution of �(� + ��(�)�, � + �, � + � ) = �(�, �, �) + �, 

that is  

�� ≤ � + � �� � 

or 

�� − � ≤ � �� �.         (2.12) 

Similarly, interchanging the roles of the couples (�, �, �); ���, ��, ���, we obtain 

� − �� ≤ � �� �,         (2.13) 

which completes the proof. 

Let ��  be a triangulation of Ω with meshsize h, Vh be the space of finite elements consisting of 

continuous piecewise linear functions v vanishing on ∂Ω and �� ; s = 1,2,…,m(h) be the basis 

functions of Vh. 

The discrete counterpart of (2.8) consists of finding �� ∈ ��
�

 such that 

�(��, � − ��) ≥ (�, � − ��), ∀� ∈ ��
�

.     (2.14) 

Where 

��
�

= {� ∈ �ℎ ���ℎ �ℎ�� � = �ℎ� �� �� ��� � ≤ �ℎ� �� �},    (2.15) 

�� is an interpolation operator on �� and rh is the usual finite element restriction operator on �. 

Theorem 3 (See [12] Under conditions (2.5) and (2.6), there exists a constant C independent of h 

such that  

‖� − ��‖��(�) ≤ �ℎ�|���ℎ|�.        (2.16) 

2.4. A Lipschitz discrete dependency with respect to the boundary condition, the source term and the 

obstacle 

Assuming that the DMP is satisfied, i.e. the matrix resulting from the finite element 

discretization is an M-matrix (see [15,16]), we prove the Lipschitz discrete dependence with respect 

to the boundary condition, the source term and the obstacle by a similar study to that undertaken 

previously for the Lipschitz continuous dependence property. 

Proposition 4 Let (�, �, ���);  ���, ��, ����� be a pair of data and �� = ��(�, �, ���) ; ��� =

�����, ��, �����  the corresponding solution to (2.14). If � ≤ ��  in Ω, � ≤ ��  on ∂Ω and ��� ≤ ���� 

then, �� ≤ ��� in Ω. 
Proof. The proof is similar to that of the continuous case. 

The proposition below establishes a Lipschitz discrete dependence of the solution with respect 

to the data. 
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Proposition 5 Let the (d.m.p) holds. Then, we have 

��� − ����
��(�)

≤ max ��
�

�
� �� − ���

��(�)
, ‖� − ��‖��(��), ���� − �����

��(�)
� (2.17) 

Proof. The proof is similar to that of the continuous case. 

3. The continuous problem 

We define the following fixed-point mapping 

T: �L�
�(Ω)�

�
→ �L�

�(Ω)�
�
 

Z = (z�, z�) → TZ = ζ = (ζ�, ζ�). 

Where ζ� ∈ ��
�(�) ∩ ��(�) is a solution to the following variational inequality 

���ζ�, v − ζ�� ≥ �f ��z��, v − ζ��; � ∈ ��
�(�)      (3.1) 

�, ζ� ≤ �ζ� = k + z�; ζ� ≥ 0 with i ≠ j. 

Thanks to [1,2], ζ� is the unique solution to coercive variational inequality (3.1). 

Remark 1 We remark that the solution � = (��, ��) of the system (1.1) is the fixed point of the 

mapping T; that is �� = �. 

3.1. A continuous iterative scheme 

Starting from �� = (��,�, ��,�) where ��,�; i = 1;2 is solution of the variational equation 

�����,�, �� = ������,��, ��, ∀� ∈ ��
�(�), 

and for all 0 < �� < 1; � = 1,2 we define the sequences (��,���) and (��,���) such that ��,��� and 

��,���  the components of the vector ���� , solve the following elliptic variational inequalities 

respectively 

(��,���, � − ��,���) ≥ (����(��,���) + (1 − ��)��(��,�), � − ��,���)  (3.2) 

�, ��,��� ≤ ���,��� = � + ��,�,       (3.3) 

��(��,���, � − ��,���) ≥ (����(��,���) + (1 − ��)��(��,�), � − ��,���) (3.4) 

�, ��,��� ≤ ���,��� = � + ��,���.      (3.5) 

3.2. Convergence of the continuous iterative scheme 

Theorem 2 The sequences (��,���)  and (��,���)  converge geometrically to the solution � =

(��, ��) of the system (1.1); there exist a positive real � ∈ (0,1) which depends on ��  and �� such 

that for all � ≥ 0 

‖���� − �‖� ≤ ����‖�� − �‖�        (3.6) 

where 
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� = max
�����

��(����)

������
< 1.         (3.7) 

Proof. The proof will carry out by induction. 

 We first deal with the case 

‖�� − ��,�‖��(�) = max
�����

��� − ��,��
��(�)

.    (3.8) 

 Indeed for n = 0; using (1.1), (3.2), (3.3) and (2.9), we have 

‖�� − ��,�‖��(�) ≤ max �
�

1

��
� ���(��) − �����(��,�) + (1 − ��)��(��,�)��

��(�)
;

 ‖�� − ��,�‖��(�) 

� 

≤ ��� �
�

1

��
� ������(��) − ��(��,�)� + (1 − ��)���(��) − ��(��,�)��

��(�)
; 

‖�� − ��,�‖��(�) 

� 

≤ ��� �
�

��

��� ���‖�� − ��,�‖��(�) + (1 − ��)‖�� − ��,�‖��(�)�; 

‖�� − ��,�‖��(�) 
�. 

So, 

‖�� − ��,�‖��(�) ≤ max �
����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�); 

‖�� − ��,�‖��(�) 
� (3.9) 

We distinguish two cases 

max �����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�); ‖�� − ��,�‖��(�)

 
� 

= ����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�)    (3.10) 

or 

max �����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�);  ‖�� − ��,�‖��(�) 
 

� 

= ‖�� − ��,�‖��(�)        (3.11) 

(3.9) in conjunction with case (3.10) implies 

‖�� − ��,�‖��(�) ≤ ����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) (3.12) 

with 

‖�� − ��,�‖��(�) ≤ ����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�), (3.13) 

which implies 

‖�� − ��,�‖��(�) ≤
��(����)

������
‖�� − ��,�‖��(�).      (3.14) 

By replacing (3.14) in (3.13), we get 
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‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) 

≤ � max
�����

��� − ��,��
��(�)

, 

which coincides with (3.8). 

(3.9) in conjunction with (3.11) implies 

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�)      (3.15) 

with 

����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�). (3.16) 

‖�� − ��,�‖��(�) is bounded below by both ‖�� − ��,�‖��(�) 

and 

����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�). 

So, 

‖�� − ��,�‖��(�) ≤ ����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) 

or 

����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�). 

Then, 

‖�� − ��,�‖��(�) ≤
��(����)

������
‖�� − ��,�‖��(�)      (3.17) 

or 

��(����)

������
‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�).      (3.18) 

(3.15), (3.17) and (3.18) generate the following three possibilities 

‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) ≤ max
�����

��� − ��,��
��(�)

 

or 

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ max
�����

��� − ��,��
��(�)

 

or 

��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) ≤ max
�����

��� − ��,��
��(�)

. 

All possibilities are true in the same time because they coincide with (3.8). So, there is either a 

contradiction and thus case (3.11) is impossible or case (3.11) is possible if and only if 
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‖�� − ��,�‖��(�) =
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�). 

Hence, both cases (3.10) and (3.11) imply (3.14). 

 Let us now discuss the second case 

‖�� − ��,�‖��(�) = max
�����

��� − ��,��
��(�)

.      (3.19) 

(3.9) in conjunction with (3.10) implies (3.14) with 

‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�)  

 ≤ � max
�����

��� − ��,��
��(�)

< ‖�� − ��,�‖��(�), 

which contradicts (3.19) which means that (3.10) is impossible. (3.9) in conjunction with (3.11) we 

get (3.17) and (3.18). So, 

‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ max
�����

��� − ��,��
��(�)

 

or 

��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) ≤ max
�����

��� − ��,��
��(�)

. 

We remark that both alternatives are true in same time because both coincide with (3.19) which 

implies that in case (3.11), we must have 

‖�� − ��,�‖��(�) =
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�). 

Hence, in both cases (3.8) and (3.19), we obtain (3.14). Hence, 

‖�� − ��,�‖��(�) ≤ �max
�����

��� − ��,��
��(�)

.     (3.20) 

 As 

�� = (��,�, ��,�) ��� � = (��, ��), 

we need to deal also with ‖�� − ��,�‖��(�), by following the same reasoning as that adopted for u1 

and u1,1, we get 

‖�� − ��,�‖��(�) ≤ max �
����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�); 

‖�� − ��,�‖��(�) 
�(3.21) 

Again we distinguish two possibilities 

max�����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�); ‖�� − ��,�‖��(�)� 

= ����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�);    (3.22) 

or 
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max�����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�);  ‖�� − ��,�‖��(�)�  

= ‖�� − ��,�‖��(�).         (3.23) 

(3.21) and (3.22) imply 

‖�� − ��,�‖��(�) ≤
��(����)

(������)
‖�� − ��,�‖��(�)    (3.24) 

with 

‖�� − ��,�‖��(�) ≤ ����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�). (3.25) 

By substituting (3.24) in (3.25), we get 

‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ � max
�����

��� − ��,��
��(�)

, 

which coincides with (3.20). (3.21) and (3.23) imply 

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�),      (3.26) 

with 

����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�). 

It is clear that ‖�� − ��,�‖��(�) is bounded below by both 

‖�� − ��,�‖��(�) 

and 

����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�), 

which leads us to distinguish the following possibilities 

‖�� − ��,�‖��(�) ≤ ����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) 

or 

����‖�� − ��,�‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�). 

Then, 

‖�� − ��,�‖��(�) ≤
��(����)

������
‖�� − ��,�‖��(�)      (3.27) 

or 

��(����)

������
‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�).     (3.28) 

Thus, (3.26)–(3.28) imply that the three following alternatives are required 

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) 

or 
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‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) 

or 

��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�). 

It is clear that all alternatives coincide with (3.20). So, we must have 

‖�� − ��,�‖��(�) =
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�). 

Thus, in both cases (3.22) and (3.23) we obtain (3.24). Hence, 

‖�� − ��,�‖��(�) ≤ �max
�����

��� − ��,��
��(�)

.      (3.29) 

(3.20) and (3.29) imply 

‖�� − �‖� ≤ �‖�� − �‖�. 

 Let us assume that, for � ≥ 0 

��� − ��,��
��(�)

≤ �� max
�����

��� − ��,��
��(�)

, � = 1,2.    (3.30) 

 We prove 

��� − ��,����
��(�)

≤ ���� max
�����

��� − ��,��
��(�)

, � = 1,2.   (3.31) 

By adopting the same arguments for (1.1), (3.2), (3.3) and (2.9) as that applied for the previous 

iterates, we get 

‖�� − ��,���‖��(�) ≤ max �
�

1

��
� ���(��) − �����(��,���) + (1 − ��)��(��,�)��

��(�)
;

 ‖�� − ��,�‖��(�) 

� 

So, 

‖�� − ��,���‖��(�) ≤ max �
����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�); 

‖�� − ��,�‖��(�) 
�(3.32) 

Also we distinguish two cases: 

max �
����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�); 

‖�� − ��,�‖��(�) 
� 

= ����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�)     (3.33) 

or 

max �
����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�); 

‖�� − ��,�‖��(�) 
� = ‖�� − ��,�‖��(�)(3.34) 

(3.32) in conjunction with (3.33) implies 
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‖�� − ��,���‖��(�) ≤
��(����)

������
‖�� − ��,�‖��(�),     (3.35) 

with 

‖�� − ��,�‖��(�) ≤ ����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�).
 
  (3.36) 

By replacing (3.35) in (3.36) we get, according to (3.30); i = 1 

‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ���� max
�����

��� − ��,��
��(�)

 

which matches with (3.30); i= 2. (3.32) in conjunction with (3.34) implies 

‖�� − ��,���‖��(�) ≤ ‖�� − ��,�‖��(�)       (3.37) 

with 

����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�)

 
 ≤ ‖�� − ��,�‖��(�). 

‖�� − ��,�‖��(�) is bounded below by both ‖�� − ��,���‖��(�) 

and 

����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) 

So, 

‖�� − ��,���‖��(�) ≤ ����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) 

or 

����‖�� − ��,���‖��(�) + ��(1 − ��)‖�� − ��,�‖��(�) ≤ ‖�� − ��,���‖��(�). 

Thus, 

‖�� − ��,���‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) 

or 

��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,���‖��(�). 

By taking into account (3.37), we get 

‖�� − ��,���‖��(�) ≤ ‖�� − ��,�‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) 

or 

‖�� − ��,���‖��(�) ≤
��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,�‖��(�) 

or 

��(1 − ��)

1 − ����

‖�� − ��,�‖��(�) ≤ ‖�� − ��,���‖��(�) ≤ ‖�� − ��,�‖��(�). 
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Three possibilities are true because all coincide with (3.30). So, we necessarily get 

‖�� − ��,���‖��(�) ≤
��(����)

������
‖�� − ��,�‖��(�). 

Thus, both cases (3.33) and (3.34) imply (3.35). Hence, by using (3.30) we get (3.31) for i = 1. The 

proof for (3.31); i = 2 is obtain in similar way by using (3.31); i = 1 and (3.35) so, it will be omitted. 

The desired result (3.6) follows naturally from (3.31). 

4. Statement of discrete problem 

This section, we will handle the discrete problem by a perfect symmetry in the treatment of that 

the continuous one. Indeed, we define the discrete system of QVIs: Find a vector �� = (��
�, ��

�) ∈
(��)� such that 

�

�����
� , � − ��

� � ≥ ������
� �, � − ��

� �; � ∈ ��

�,  ��
� ≤ ������

� � = ���� + ��
�

�; � ≠ �. ��
� ≥ 0 ��� ��

� = ��� �� ��.

�  (4.1) 

The related discrete fixed-point mapping 

��: (��)� → (��)� 

�� = (��
�, ��

�) → ���� = �� = (��
�, ��

�), 

where ��
� ∈ �� is the unique solution to the following discrete variational inequality 

�����
� , � − ��

� � ≥ ������
� �, � − ��

� �; � ∈ ��      (4.2) 

�, ��
� ≤ ������

� � = ���� + ��
�
�;  ��

� ≥ 0 ���ℎ � ≠ � ��� ��
� = ��� �� ��. 

Remark 1 We remark that the solution �� = (��
�, ��

�) of the system (4.1) is the fixed point of the 

mapping ��; that is ���� = ��. 

4.1. A discrete iterative scheme 

Starting from ��
� = ���

�,�, ��
�,�� where ��

�,� = ����,�; � = 1,2 is the discrete analog of ��,� then, 

���,� − ��
�,��

��(�)
≤ �ℎ�|���ℎ|�.        (4.3) 

For all 0 < �� < 1; � = 1,2 we define the discrete sequences ���
�,���� and ���

�,���� such that ��
�,��� 

and ��
�,��� components of the vector ��

��� solve discrete elliptic variational inequalities 

�����
�,���, � − ��

�,���� ≥ ��������
�,���� + (1 − ��)�����

�,��, � − ��
�,���� (4.4) 

�, ��
�,��� ≤ ������

�,���� = ���� + ��
�,��,     (4.5) 

�����
�,���, � − ��

�,���� ≥ ��������
�,���� + (1 − ��)�����

�,��, � − ��
�,���� (4.6) 

�, ��
�,��� ≤ ������

�,���� = ���� + ��
�,����.    (4.7) 
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4.2. Convergence of the discrete iterative scheme 

Theorem 2 The discrete sequences ���
�,���� and ���

�,���� converge geometrically to the discrete 

solution �� = (��
�, ��

�) of the system (4.1); there exist a positive real � ∈ (0,1) defined in (3.7) such 
that for all � ≥ 0 

‖��
��� − ��‖� ≤ �������

� − ���
�

.        (4.8) 

Proof. The proof is similar to that of the continuous case. 

5. ��-error analysis 

This section is devoted to the proof of the main result of this paper. For that purpose we need to 

introduce an auxiliary system. 

5.1. Auxiliary system 

Let ��
�,� = ��

�,�; � = 1,2 be an initialization. For all 0 < �� < 1; � = 1,2 we define the discrete 

sequences ���
�,���� and ���

�,���� such that ��
�,��� and ��

�,��� solve coercive variational inequalities 

�����
�,���, � − ��

�,���� ≥ ��������,���� + (1 − ��)�����,��, � − ��
�,����  (5.1) 

�, ��
�,��� ≤ ������,���� = ���� + ��,��,      (5.2) 

�����
�,���, � − ��

�,���� ≥ ��������,���� + (1 − ��)�����,��, � − ��
�,����  (5.3) 

�, ��
�,��� ≤ ������,���� = ���� + ��,����.     (5.4) 

It is clear that ��
�,���; � = 1,2 components of the vector ��

��� are finite element approximation of 

��,��� defined in (3.2)–(3.4). Thus, making use of (2.16); we get 

���
�,��� − ��,����

��(�)
≤ �ℎ�|���|�; � = 1,2 ��� � ≥ 0.    (5.5) 

The algorithmic approach used in the present paper rests on the following crucial lemma, where the 

error estimate between the nth iterate �� and its discrete counter parts ��
��� is established. 

Lemma 1 Let (����) and (��
���) be the vectors whose components are sequences defined in (3.2)–

(3.5) and (4.4)–(4.7) respectively. Then, 

‖���� − ��
���‖� ≤ �� �

������

���
� + ����� max���‖�� − ��

�‖� .  (5.6) 

Where 

� = max����� �
�

(������)
�.          (5.7) 

Proof. The proof of the lemma rests on the discrete Lipschitz continuous dependency with respect to 

source term and obstacle and will carry out by induction. 

 For n = 0, we have 
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���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

+ ���
�,� − ��

�,��
��(�)

. 

(5.1), (5.2), (4.4), (4.5) and (2.17) imply 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

 

+ max �
�

1

��
� ���(��,�) − ��������

�,�� + (1 − ��)�����
�,����

��(�)
;

 ���(� + ��,�) − ���� + ��
�,���

��(�)

� 

So, 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

 

+ max �
�

��

��� �����,� − ��
�,��

��(�)
+ �

��

��� (1 − ��)���,� − ��
�,��

��(�)
;

 ���(� + ��,�) − ���� + ��
�,���

��(�)

�. 

Therefore, 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

      (5.8) 

+ max �
�������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
;

 ���,� − ��
�,��

��(�)

�. 

We distinguish two cases 

max �
�������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
;

 ���,� − ��
�,��

��(�)

� 

= �������,� − ��
�,��

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

    (5.9) 

or 

max �
�������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
;

 ���,� − ��
�,��

��(�)

� = ���,� − ��
�,��

��(�)
(5.10) 

(5.8) in conjunction with (5.9) imply 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

+ �������,� − ��
�,��

��(�)
 

+��(1 − ��)���,� − ��
�,��

��(�)
 

with 

���,� − ��
�,��

��(�)
≤ �������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
. (5.11) 

So, 
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(1 − ����)���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
, 

with (5.11). Then, 

���,� − ��
�,��

��(�)
≤

�

(������)
���,� − ��

�,��
��(�)

+
��(����)

(������)
���,� − ��

�,��
��(�)

. (5.12) 

By replacing (5.12) in (5.11) we obtain 

���,� − ��
�,��

��(�)
≤

����

(1 − ����)
���,� − ��

�,��
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

. 

According to (5.5) and (4.3) we get, 

���,� − ��
�,��

��(�)
≤

��

(1 − ����)
�ℎ�|���ℎ|�, 

which coincides with (4.3). 

(5.8) and (5.10) imply 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

+ ���,� − ��
�,��

��(�)
   (5.13) 

with 

�������,� − ��
�,��

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

≤ ���,� − ��
�,��

��(�)
. 

Then, multiplying (5.13) by ���� and adding ��(1 − ��)���,� − ��
�,��

��(�)
, we obtain 

�������,� − ��
�,��

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

≤ �������,� − ��
�,��

��(�)
+ �������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
. 

We note that 

�������,� − ��
�,��

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

 

is bounded by both 

�������,� − ��
�,��

��(�)
+ �������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
 

and 

���,� − ��
�,��

��(�)
. 

So, 

�������,� − ��
�,��

��(�)
+ �������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
 

≤ ���,� − ��
�,��

��(�)
 

or 
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���,� − ��
�,��

��(�)
≤ �������,� − ��

�,��
��(�)

+ �������,� − ��
�,��

��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
. 

Therefore, according to (5.5) and (4.3), we get 

����

(1 − ����)
���,� − ��

�,��
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

≤ ���,� − ��
�,��

��(�)

≤ �ℎ�|���ℎ|� 

or 

���,� − ��
�,��

��(�)
≤

����

(1 − ����)
���,� − ��

�,��
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

≤
��

(1 − ����)
�ℎ�|���ℎ|�. 

So, the last two alternatives are true at the same time because both coincide with (4.3). We 

necessarily deduce that 

���,� − ��
�,��

��(�)
=

����

(������)
���,� − ��

�,��
��(�)

+
��(����)

(������)
���,� − ��

�,��
��(�)

. (5.14) 

By replacing (5.14) in (5.13); we get (5.12). Hence, in both cases (5.9) and (5.10); we can write 

���,� − ��
�,��

��(�)
≤ max

�����
�

1

(1 − ����)
� max

�����
���,� − ��

�,��
��(�)

 

+max
�����

�
��(1 − ��)

(1 − ����)
� max

�����
���,� − ��

�,��
��(�)

. 

Thus, 

���,� − ��
�,��

��(�)
≤ (� + �)max

���
max
�����

���,� − ��
�,��

��(�)
.    (5.15) 

 In a similar way, that is by following the same steps as for ��,� and ��
�,�, ��,� and ��

�,� satisfy 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

+ ���
�,� − ��

�,��
��(�)

. 

So, 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

 

+ max �
�������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
; 

���,� − ��
�,��

��(�)

� . (5.16) 

We distinguish also two cases 
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max
�
�������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
; 

���,� − ��
�,��

��(�)

�

= �������,� − ��
�,��

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

   (5.17) 

or 

max �
�������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
; 

���,� − ��
�,��

��(�)

� = ���,� − ��
�,��

��(�)
.(5.18) 

(5.16) in conjunction with case (5.17); we get 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

+�������,� − ��
�,��

��(�)
 

+��(1 − ��)���,� − ��
�,��

��(�)
 

with 

���,� − ��
�,��

��(�)
≤ �������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
. (5.19) 

So, 

���,� − ��
�,��

��(�)
≤

�

(������)
���,� − ��

�,��
��(�)

+
��(����)

(������)
���,� − ��

�,��
��(�)

  (5.20) 

with, according to (5.20) 

���,� − ��
�,��

��(�)
≤

1

(1 − ����)
���,� − ��

�,��
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

. 

Then, 

���,� − ��
�,��

��(�)

≤ max
�����

�
1

(1 − ����)
� ���,� − ��

�,��
��(�)

+ max
�����

�
��(1 − ��)

(1 − ����)
� ���,� − ��

�,��
��(�)

. 

Therefore, 

���,� − ��
�,��

��(�)
≤ (� + �)max

���
max
�����

���,� − ��
�,��

��(�)
, 

which coincides with (5.15). The conjunction of (5.16) with case (5.18), implies 

���,� − ��
�,��

��(�)
≤ ���,� − ��

�,��
��(�)

+���,� − ��
�,��

��(�)
   (5.21) 

with 

�������,� − ��
�,��

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

≤ ���,� − ��
�,��

��(�)
. 

Then, by multiplying (5.21) by ���� and adding ��(1 − ��)���,� − ��
�,��

��(�)
, we obtain that the 

term �������,� − ��
�,��

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

 is bounded by both 
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�������,� − ��
�,��

��(�)
+�������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
 

and 

���,� − ��
�,��

��(�)
. 

So, we distinguish again, the two following alternatives 

����

(1 − ����)
���,� − ��

�,��
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

≤ ���,� − ��
�,��

��(�)

≤ (� + �)max
���

max
�����

���,� − ��
�,��

��(�)
 

or 

���,� − ��
�,��

��(�)
≤

����

(1 − ����)
���,� − ��

�,��
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

≤ (� + �)max
���

max
�����

���,� − ��
�,��

��(�)
. 

We remark that both alternatives coincide with (5.15), which implies that case (5.18) is possible if 

and only if 

���,� − ��
�,��

��(�)
=

����

(������)
���,� − ��

�,��
��(�)

+
��(����)

(������)
���,� − ��

�,��
��(�)

. (5.22) 

By substituting (5.22) in (5.21), we get (5.20). Hence, in both cases (5.17) and (5.18), we get 

���,� − ��
�,��

��(�)

≤ max
�����

�
1

(1 − ����)
� max

�����
���,� − ��

�,��
��(�)

+ max
�����

�
��(1 − ��)

(1 − ����)
� max

�����
���,� − ��

�,��
��(�)

. 

Thus, 

���,� − ��
�,��

��(�)
≤ (� + �)max

���
max
�����

���,� − ��
�,��

��(�)
.   (5.23) 

(5.15) and (5.23) imply 

‖�� − ��
�‖� ≤ (� + �)max

���
‖�� − ��

�‖�. 

 Let us assume that for � ≥ 0 and i = 1,2 

���,� − ��
�,��

��(�)
≤ (�(1 + � + ⋯ + ����) + ��)max

���
max
�����

���,� − ��
�,��

��(�)
. (5.24) 

 And prove for i = 1,2 

���,��� − ��
�,����

��(�)
≤ (�(1 + � + ⋯ + ��) + ����)max

���
max
�����

���,� − ��
�,��

��(�)
. (5.25) 
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We operate in the same way as in iterate n = 0. Let us begin with case i = 1 in (5.25) 

���,��� − ��
�,����

��(�)
≤ ���,��� − ��

�,����
��(�)

+ ���
�,��� − ��

�,����
��(�)

. 

So, by applying (2.17), we get 

���,��� − ��
�,����

��(�)
≤ ���,��� − ��

�,����
��(�)

 

+max �
�������,��� − ��

�,����
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
;

 ���,� − ��
�,��

��(�)

� (5.26) 

We distinguish again two cases 

max �
�������,��� − ��

�,����
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
;

 ���,� − ��
�,��

��(�)

� 

= �������,��� − ��
�,����

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

  (5.27) 

or 

max �
�������,��� − ��

�,����
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
;

 ���,� − ��
�,��

��(�)

� 

=  ���,� − ��
�,��

��(�)
.            (5.28) 

(5.26) in conjunction with case (5.27) implies 

���,��� − ��
�,����

��(�)

≤ ���,��� − ��
�,����

��(�)
+ �������,��� − ��

�,����
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
 

and 

���,� − ��
�,��

��(�)
≤ �������,��� − ��

�,����
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
. 

Then, 

���,��� − ��
�,����

��(�)
≤

�

(������)
���,��� − ��

�,����
��(�)

+
��(����)

(������)
���,� − ��

�,��
��(�)

 (5.29) 

with, according to (5.29) 

���,� − ��
�,��

��(�)
≤

����

(������)
 ���,��� − ��

�,����
��(�)

+
��(����)

(������)
���,� − ��

�,��
��(�)

. 

(5.24) implies 
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���,��� − ��
�,����

��(�)

≤  
1

(1 − ����)
 ���,��� − ��

�,����
��(�)

+
��(1 − ��)

(1 − ����)
�(�(1 + � + ⋯ + ����) + ��)max

���
max
�����

���,� − ��
�,��

��(�)
� 

with 

���,� − ��
�,��

��(�)
≤

����

(1 − ����)
���,��� − ��

�,����
��(�)

 

+
��(����)

(������)
�(�(1 + � + ⋯ + ����) + ��)max

���
max
�����

���,� − ��
�,��

��(�)
�. 

Thus, 

���,��� − ��
�,����

��(�)

≤ � ���,��� − ��
�,����

��(�)

+ � �(�(1 + � + ⋯ + ����) + ��)max
���

max
�����

���,� − ��
�,��

��(�)
� 

and as ���� < 1 

���,� − ��
�,��

��(�)
 

≤ � ���,��� − ��
�,����

��(�)
+ � �(�(1 + � + ⋯ + ����) + ��)max

���
max
�����

���,� − ��
�,��

��(�)
�. 

Hence, 

���,��� − ��
�,����

��(�)
≤ (�(1 + � + ⋯ + ��) + ����)max

���
max
�����

���,� − ��
�,��

��(�)
 

and 

���,� − ��
�,��

��(�)
≤  (�(1 + � + ⋯ + ��) + ����)max

���
max
�����

���,� − ��
�,��

��(�)
.  

which corresponds with (5.24) for i = 2: Inequality (5.26) with (5.28) imply 

���,��� − ��
�,����

��(�)
≤ ���,��� − ��

�,����
��(�)

+ ���,� − ��
�,��

��(�)
  (5.30) 

and 

�������,��� − ��
�,����

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)

≤ ���,� − ��
�,��

��(�)
. 

By multiplying (5.30) by ���� and adding the term ��(1 − ��)���,� − ��
�,��

��(�)
, we get that the 

term 

�������,��� − ��
�,����

��(�)
+ ��(1 − ��)���,� − ��

�,��
��(�)
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is bounded by the following two terms 

�������,��� − ��
�,����

��(�)
+ �������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
 

and 

���,� − ��
�,��

��(�)
. 

So, we need to distinguish the followings possibilities 

�������,��� − ��
�,����

��(�)
+ �������,� − ��

�,��
��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)

≤ ���,� − ��
�,��

��(�)
 

or 

���,� − ��
�,��

��(�)
≤ �������,��� − ��

�,����
��(�)

+ �������,� − ��
�,��

��(�)

+ ��(1 − ��)���,� − ��
�,��

��(�)
, 

which implies 

����

(1 − ����)
���,��� − ��

�,����
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

≤ ���,� − ��
�,��

��(�)
 

or 

���,� − ��
�,��

��(�)
≤

����

(1 − ����)
���,��� − ��

�,����
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

. 

By using (5.24), we can write 

����

(1 − ����)
���,��� − ��

�,����
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

≤ ���,� − ��
�,��

��(�)

≤ (�(1 + � + ⋯ + ����) + ��)���
���

���
�����

���,� − ��
�,��

��(�)
, 

or 

���,� − ��
�,��

��(�)
≤

����

(1 − ����)
���,��� − ��

�,����
��(�)

+
��(1 − ��)

(1 − ����)
���,� − ��

�,��
��(�)

≤ (�(1 + � + ⋯ + ����) + ��)���
���

���
�����

���,� − ��
�,��

��(�)
. 

Only the last alternative is true because it matches with (5.24) for i = 2. So, in (5.28) we get 

���,� − ��
�,��

��(�)
≤

����

(������)
���,��� − ��

�,����
��(�)

+
��(����)

(������)
���,� − ��

�,��
��(�)

.(5.31) 

By replacing (5.31) in (5.30); we get (5.29). Hence, in both cases (5.27) and (5.28), we obtain 
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���,��� − ��
�,����

��(�)

≤ ���
�����

�
1

(1 − ����)
� ���

�����
���,��� − ��

�,����
��(�)

+ ���
�����

�
��(1 − ��)

(1 − ����)
� ���

�����
���,� − ��

�,��
��(�)

. 

So, 

���,��� − ��
�,����

��(�)

≤ ����
���

 ���
�����

���,� − ��
�,��

��(�)

+ �(�(1 + � + ⋯ + ����) + ��)���
���

���
�����

���,� − ��
�,��

��(�)
. 

Therefore, 

���,��� − ��
�,����

��(�)
≤ (�(1 + � + ⋯ + ���� + ��) + ����)���

���
���
�����

���,� − ��
�,��

��(�)
.(5.32) 

By using the last inequality (5.32) and by adopting the same reasoning we prove (5.25); i = 2, 

therefore, we get (5.6). 

5.2. The main result 

Theorem 2 Let � and ��  be the solution of systems (1.1) and (4.8), respectively. Then, there exists a 
constant C independent of h such that 

‖� − ��‖� ≤
�

���
ℎ�|���ℎ|�.        (5.33) 

Proof. Making use of (3.6), (5.6) and (4.8), we have 

‖� − ��‖� ≤  ‖� − ����‖� + ‖���� − ��
���‖� + ‖��

��� − ��‖� 

≤ ����‖� − ��‖� + �� �
1 − ����

1 − �
� + ����� max

���
 ‖�� − ��

�‖� + ���� ��� − ��
��

�
. 

As � → +∞ and by using (5.5) we get (5.33). 

6. Conclusions 

In this work an optimal convergence order is derived for a class of system of two elliptic quasi-

variational inequalities where terms sources and obstacles depend upon the solution, where the 

continuous and discrete Lipschitz dependence with respect to the terms sources, boundary condition 

and obstacles’ played a leading role in obtaining the main result of this paper. As (1.1) plays a key 

role in solving Hamilton-Jacobi-Bellman equation the results obtained in this paper can give an 

optimal error estimate for HJB equation also even for � ≥ 2. The approach used and the results 

obtained in this paper (optimal convergence order) remain valid when we deal with systems of � ≥ 2 

quasi-variational inequalities with terms sources depends on solution and the obstacles i independent 
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of the solution, that is systems of the form; Find a vector � = (��, … , ��) ∈ (��
�(�))� satisfying 

�
�����, � −  ��� ≥ �������, � − ���;  � ∈ ��

�(�)

�, �� ≤ ��;  �� ≥ 0 ��� � = 1, … , �.
� 
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