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Abstract: In this contemporary era, fractional derivatives are widely used for the development of
mathematical models to precisely describe the dynamics of real-world physical processes. In the field
of fluid mechanics, analysis of thermal performance and flow behavior of non-Newtonian fluids is a
topic of interest for a variety of researchers due to their significant applications in several industries,
engineering operations, devices, and thermal equipment. The primary focus of this article is to
investigate the effectiveness of jointly imposed time-controlled (ramped) boundary conditions in the
electro-osmotic flow of a chemically reactive and radiative Walters’ B fluid along with concentration
and energy distributions. In Particular, the concept of using piece-wise time-dependent mass, motion,
and energy conditions simultaneously for any non-Newtonian fluid is extensively explored in this
work. The flow is developed due to the motion of the bounding vertical wall, which is suspended in a
porous material subject to heat injection/absorption and uniform magnetic influences.
Atangana-Baleanu derivative of order ¢ is incorporated to establish the fractional form of ordinary
modeled equations. Laplace transform method is adapted in light of some unit-less quantities to
procure the exact solutions of the under observation model. Several graphical delineations are
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produced to comprehensively analyze the key characteristics of many physical and thermal
parameters. To highlight the significance of operating surface conditions, solutions are compared for
time-dependent and constant boundary conditions in every graph. Furthermore, the role of the
fractional parameter, time-dependent conditions, and different other involved parameters in heat
transfer, mass transfer, and flow rates is characterized by determining the expressions for Nusselt and
Sherwood number and coefficient of skin friction. The numerical outcomes are organized in several
tables to deeply scrutinize the noteworthy variations in the behavior of the aforementioned physical
quantities. The graphical study reveals that the parameter E; accounting for electro-osmotic effects
decelerates the flow of fluid. At the atomic level, such electro-osmotic flows are useful in the
separation processes of the liquids. The fractional parameter ¢ attenuates thicknesses of boundary
layers for the evolution of time 7 but, it exhibits an opposite role for smaller values of z. It is also noted
that the direct correspondence between velocity and time at the boundary for time duration ¢t < 1 plays
a supportive part to effectively control the flow. The exercise tolerance level of cardiac patients is
anticipated by following a ramped velocity based protocol. The fractional models are more effective
than ordinary models for restricting the boundary shear stress. The occurrence of a chemical reaction
leads to improving the mass transfer rate. Additionally, augmentation in heat transfer rate due to the
ramped heating technique indicates the significance of this technique in cooling processes. The
findings of this work are helpful for clear and comprehensive understanding of electro-osmotic flow
of Walters’ B fluid in a fractional framework together with chemically reacted mass transfer and
thermally radiative heat transfer phenomena subject to wall ramping technique.

Keywords: ramped heat transfer; electro-osmotic flow; porous media; Laplace transform; chemical
reaction; heat absorption/generation
Mathematics Subject Classification: 26A33, 35R11, 76D05

Nomenclature

v Time

g Acceleration due to gravity

Y Spatial variable

u Velocity component

M,  Applied magnetic field

D mass diffusion

1 Characteristic time

R Rate of chemical reaction

0O Thermal injection/absorption coefficient
0, Thermal radiative flux

E, External electric field

C, Specific heat capacitance

t Unit-less time

W, Unit-less parameter of Walters’ B fluid
E; Electro-osmotic parameter

Gr;  Thermal Grashof number
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Gr,  Mass Grashof number
Pr Prandtl number
R Radiation parameter
M Magnetic parameter
0 Heat injection/absorption parameter
Sc Schmidt number
K Permeability parameter
Cr Chemical reaction parameter
p Laplace parameter
Greek symbols
0 Fluid density
B Coefficient of thermal expansion
B2 Coeflicient of mass expansion
®"  Fluid temperature
®’  Fluid concentration
u Dynamic viscosity
Pe Total charge density
€ Permeability of the fluid
Y,  Induced electrical potential
Ko, @9 Walters’ B fluid parameters
o Electric conductance
K1 Permeability of the medium
Ko Thermal conductance
I,  Characteristic velocity
v Kinematic viscosity
®;,  Wall temperature
@/, Wall concentration
@ Porosity parameter
®/, Ambient temperature
@/, Ambient concentration
€ Stefan-Boltzmann constant
Ky Coeflicient of Rosseland absorption
4 Unit-less axial variable
b Unit-less fluid velocity
O] Unit-less fluid temperature
() Unit-less fluid concentration

1. Introduction

In modern times, electro-osmosis is a preeminent and stimulating mechanism due to its
involvement in several kinds of devices at macro and nano scales. An abundant range of its practical
applications includes bio-pharmaceutical inspections, industrial operations, chemical separation
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procedures, and biochemistry. The migration of a liquid caused due to the imposition of electric
power about mediums with porous holes, blood vessels, micro-channels, layers of cells, or any other
fluid conveying systems is termed as electro-osmosis. The credit for this electrifying mechanism is
attributed to Reuss [1]. In the initial decade of 19" century, he introduced the idea of electro-osmosis
on water transportation through clay during his pioneering experimental research. About four decades
later, following the theme of Reuss, Wiedemann [2] reconfigured the experiment and discussed the
formal mathematics involved in this phenomenon. Mainly, electro-osmotic flows involve the transport
of ions, and they are described with the assistance of some fundamental theories and principles. A
few of them are Helmholtz-Smudchowski theory [3], Schmid’s theory, Debye-Huckel approximation,
and ion-hydration theory [4,5]. In recent times, various imperative devices of microfluidics operate on
the principle of electro-osmosis to achieve the rigorous delivery of the involved fluids. The
exceptional role of microfluidics can be found in nanotechnology, energy harvesting,
micro-propulsion, material processing, determining prognosis, and development of Deoxyribonucleic
acid chips. Additionally, microfluidic flows specify some stimulating consequences and unintuitive
features. For instance, there are minute chances for the traditional mixing of different fluids because,
at the micro-scale, these flows become laminar. Besides this, such flows ensure the high specificity of
physical and chemical characteristics, which leads to produce better reactive conditions [6]. However,
the major complication faced in microfluidics is the actuation of fluid flow that is usually procured
through the ability of fluid to integrate with surface-tension of conduits or due to the combined action
of electrokinetic and capillary forces. The said complication arises as a consequence of size depletion
of section geometry to micro-scale because, for such cases, the size of the channel strongly influences
the velocity of the fluid. An adequate alternative to overcome this issue is the external pumping of
fluids via peristalsis, mechanical pumps, electro-osmosis, syringe pumps, or some other exterior
pressure sources. The primary reason to operate electro-osmosis as the preferred external pumping
means is that the conduit measurements have no effects on the velocity of the fluid. Some
supplementary advantages of electro-osmosis are accurate mobility, better control, enhanced
efficiency, easily implementable, non-moving mechanical parts, and inexpensive fabrication of
devices [7,8]. Observing the broad utility range of electro-osmosis, numerous engineers and scientists
are focused to explore the vast effectiveness of this phenomenon for various working liquids such as
blood, polymeric arrangements, salt solutions, industrial adhesives, colloidal suspensions, and so
forth. In this regard, multitudinous numerical [9—-12], theoretical [13—-16], and experimental [17]
investigations have been performed to mature the available facts.

Keeping view of the significant relevance of electro-osmotic flows in the development of
microfluidic equipment, Hadian et al. [18] adapted an analytic technique to evaluate the temperature
distribution associated with electro-osmotic flow established through a slit microchannel and to find
the relative contribution of imposed electric strength and channel height in development of the
temperature distribution. Dejam [19] computed an analytic expression to discuss the dispersion
phenomenon for the electro-osmotic flow of a viscoelastic fluid inside a channel, which possesses
porous walls. Mishra and Sinha [20] considered the biological problem of heat transfer in blood
carriage through an artery with Navier slip as a practical-life demonstrative example of
electro-osmosis. Recently, Ponalagusamy and Manchi [21] reported that the combined application of
magnetic and electric fields substantially controls Jeffrey fluid transport through a stenosed duct with
blood cell dispersion. Azari et al. [22] presented analytic solutions to investigate an exclusive
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coupling between heat transmission and surface charge asymmetries for an electro-osmosis flow
inside a circular channel. A computational model to analyze electro-osmosis through a microfluidic
porous channel subject to various flow profiles is formulated by Dejam [23]. Moghadam [24]
examined the thermal efficiency of some electro-osmotically established flows in an annulus to study
the influence of several alternatively appearing electric fields.

The fluids accounting mass and heat transmission phenomena at the same time are of broad
utilization in several industrial and chemical engineering problems such as sample separation,
temperature preservation, climate control, and food processing. Heat and mass transfer collectively
take place due to the simultaneous impacts of species and energy gradients. In many complex
engineering situations, the combined occurrence of these phenomena in electromagnetically
established flows possesses a crucial contribution. Particularly mass transfer is considered a
fundamental unit for multiple biological, aeronautical, and chemical problems. For instance, the
transfer of ions inside the kidney through membranes and oxygenation of the human body are
sub-disciplines of biological processes. Meanwhile, the formation of semiconducting thin films, water
purification, coating of a silicon wafer, and polymer production are some common examples of
chemical processes [25]. To examine the main impacts of a chemical reaction and activation energy,
Khan et al. [26] derived the dual solutions for magneto cross liquid migration close to a moving
wedge.  Systematic research was carried out to scrutinize the mass transfer mechanism of
magnetohydrodynamic (MHD) Casson fluid under variable energy and solutal surface constraints by
Kataria and Patel [27]. Zhao [28] operated a hybrid numerical method to explore the consequences of
species diffusion on the free convectional transport of an Oldroyd-B nanofluid. Moving forward, it is
worth considering that the heat transmission process can be maneuvered through radiation and
induction of some heat injector/absorbent to achieve the desired result. The applications of radiative
flows are witnessed at various industrial and environmental stages. For example, water evaporation
from open channels, cooling and heating chambers, nuclear plants, combustion, and astrophysical
flows [29]. Likewise, the installation of a heat injector/absorbent is an efficient solution for several
complex problems like cooling of chips, heat treatments, ventilation, better performance of
microprocessors, and storage of foodstuff [30]. Recently proposed studies on radiative flows
including injection or absorption of heat have opened many new horizons. Saeed et al. [31] discussed
the Maxwell fluid migration over an extending cylinder to highlight the productivity of heat
injection/absorption and radiation for convective flows. Baslem et al. [32] utilized a numerical
approach to analyze the improvement in the thermal behavior of some nanofluids resulted due to
radiation phenomenon. Hayat et al. [33] theoretically addressed the role of nonlinear radiative flux
and heat injector/absorbent to minimize the entropy generation. The effects of radiation on thermal
functioning of chemically reactive Casson fluid during mixed convective flow near an inclined surface
were deliberated by Sulochana et al. [34].

The idea of fractional calculus came into existence on the basis of a query made by L’Hospital in
1965. In a letter, he inquired from Leibniz about the best practical description of the nth derivative of
an arbitrary function F(x) when n = 1/2. In modern times, it is a well-recognized fact that
L’Hospital’s letter was the first discussion about fractional derivatives. To achieve the differentiation
cause in an efficient manner, the utilization of fractional derivatives is more effectual as equated with
regular derivatives. Mainly there are two key reasons firstly, there is no restriction on the choice of
fractional parametric value, which leads to produce exceptional accordance between experimental
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results and theoretical information. Secondly, fractional derivatives encounter both current and
previous time steps, and this characteristic makes them more adequate to restore and communicate the
memory effects. Fractional derivatives have a remarkable history and a vast range of applications in
multitudinous disciplines of economics, signal processing, biotechnology, medical, viscoelasticity,
and many more [35-37]. Kumar et al. [38] constructed a fractional model to anticipate the expansion
of malaria and to propose the medication via sprays, pills, and vaccination. Ahmed et al. [39]
analyzed the principal reliability extent of lockdown to mitigate the dissemination of novel
coronavirus by proposing a fractional model based on the Caputo derivative. Ullah and Khan [40]
formulated a non-integer order model to evaluate the dynamics of hepatitis B and to develop the
strategies for limiting the spread of the disease. Acay et al. [41] performed a comprehensive
investigation to explore multiple aspects of different economical problems with the help of diverse
fractional derivatives.

The development of different fractional operators is based on the convolution of classical
derivatives and some particular kernels. Several kernels have been advised in the literature, which
possess practical advantages on each other coupled with particular limitations. For example, the
differentiation of a constant value is not zero in the case of the operator proposed by Reiman and
Liouville [42]. Caputo [43] eliminated this limitation by proposing a different fractional operator,
which later encountered the observations of having a singular kernel. To address the marked fault,
Caputo and Fabrizio [44] further advised a model with a special exponential kernel. After its
utilization in a variety of analyses, the disadvantage of possessing a local kernel came into sight. In
particular, the incapability of a local kernel to exhibit the memory effect is the primary concern here.
Atangana and Baleanu [45] circumvented the shortcomings of the aforementioned operator by
propounding a novel operator containing a unique kernel that is neither local nor singular. In fluid
mechanics, there are extensive applications of fractional operators to delineate the elastic, thermal,
material, and viscous properties of various fluids. Furthermore, some of the essential rheological
qualities of industrial liquids are precisely anticipated only through non-integer order simulations.
Gemant [46] initiated the use of fractional calculus in viscoelasticity. With the assistance of
semi-analytic expressions, Aman et al. [47] explored the physical behavior of Maxwell fluid subject
to second-order slip flow. Awan et al. [48] operated a non-singular kernel to scrutinize electro-osmotic
slip transportation of second grade fluid contained by two parallel unbounded walls. Jiang et al. [49]
analyzed the electromagnetically developed circular motion of fractional Oldroyd-B fluid by
employing Hankel and Laplace transformation methods. Asjad et al. [SO] constructed a model with a
non-integer order to explore the thermal behavior of a chemically reactive nanofluid composed of
carbon nanotubes and Carboxyl methylcellulose.

The literature review discloses that piece-wise time-dependent boundary conditions are not jointly
operated for momentum, concentration, and energy equations of a non-Newtonian fluid. Particularly,
there is no fractional model in terms of Atangana-Baleanu fractional derivative, which studies the
flow behavior of a chemically reactive and thermally radiative Walters’ B fluid under heat
injection/absorption effects. Moreover, there are very few investigations that simultaneously examine
electro-osmotic flows with heat transfer phenomenon. The novelty of this work is the development of
a fractional model based on Atangana-Baleanu fractional derivative to study the electro-osmotic
transport mechanism of Walters’ B fluid together with mass and heat transfer. In addition to this,
piece-wise time-dependent boundary conditions are applied at the boundary wall to establish
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foregoing phenomena. The vertical wall is assumed to be nested in a porous material subject to the
imposition of a magnetic influence. Laplace transform method is employed to produce integral form
exact solutions of the modeled problem. These solutions are further utilized in determining the
gradients of velocity, concentration, and energy functions to obtain the expressions for skin friction
coefficient, Sherwood number, and Nusselt number respectively. A detailed illustrative and tabular
analysis is performed to explore the quantities of physical significance and interest.

The article is arranged in the following order: Section 2 contains a description of the problem and
formulation of governing equations, Section 3 presents the generalization of the developed model to
fractional model along with analytic solutions, Section 4 discusses graphical and tabular results, and
concluding remarks are provided in Section 5.

2. Description and modeling of the problem

In this investigation, we have considered the boundary driven MHD flow of a chemically reacted
and electrically insulated Walters” B fluid close to an unbounded surface. The upright wall situated
along the vertical direction (marked as x’-axis) is encountering the radiative effects in the horizontal
direction (labeled as y’-axis). The geometry of the considered problem is configured in Figure 1 in
terms of the Cartesian system. Initially, for # = 0, the wall and fluid are static with concentration @/
and temperature ®,. Later for 0 < ¢ < ¢, the boundary wall develops the flow of fluid due to its
time-controlled motion with velocity J;(¢'/t). For the same time interval, concentration and energy
levels of the wall are maintained as @, + A®’(¢' /1)) and O, + A®'(¢'/1;) respectively. After this time
duration, the wall expresses a uniform movement with velocity 3/, and concentration and temperature

are respectively changed to constant values as @], and ®;,, for ¢’ > .
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Figure 1. Geometrical display of the under observation problem.

Using expressions from the appendix, the final form of momentum equation is given along with
energy and concentration equations
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In the modeled equations, C, is the heat capacitance, «, denotes the thermal conductance, ®
represents the fluid’s temperature, ¢ is the porosity parameter, Q; is the thermal injection/absorption
coeflicient, Q, stands for thermal radiative flux, D accounts for the mass diffusion, R” specifies the rate
of chemical reaction, «’ is the fluid’s velocity, 56 indicates the characteristic velocity, o is the
electrical conductance, k; is the porosity of medium, «, is the parameter associated with Walters’ B
fluid. Moreover, p and g are standard notations presenting density and gravitational pull respectively.
The mathematical presentation of connected initial conditions and ramped surface conditions is

Fory >0; u'(y’,0) = 0, ©'(y,0) = @, ®'(y,0) = D’ (2.4)
w(0,1) = 9y%
O ’
For 7 < to; 0'(0,7) =0, + A®’§—6 , (2.5)

V'(0,1) = D, + AD'L
0
w(0,1) = I

Fort >1); 1 ©(0,/)=@, , (2.6)
(0,7) = D,
Fory — oo; u/(y',1') > 0, ®'(y,t') - O, ®'(y,t') -» D._. 2.7

Under Rosseland approximation [51], the total thermal radiation flux is approximated as

4g, 00"
= — . 2.8
0 3%, dy (2.8)

The above expression is nonlinear in terms of temperature function (®%). This term is expanded
around O/ through the Taylor series to obtain a linearized version of temperature function. Assuming
sufficiently small temperature differences yields

0" ~ O (40'072 - 302). (2.9)

Providing Egs (2.8) and (2.9) in Eq (2.2) yields
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00’ 0’0 16£,072 5?0’
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To make the problem independent of geometry and to reduce the number of parameters, the
following unit-free quantities are employed

q)_(D’—(I);O ®_®’—®;, \P_u’ t_ngt' I @.11)
A T T Ae _36’_v’§_v’ '

into Egs (2.1), (2.3)—(2.7), and (2.10). This substitution gives the following modified model

oY 0’y 0*Y
-k3{ _
a;— 5 6{2 - ¥ +Gri®+Gr® - Ege Wf(atagz)’ (2.12)
8@ 62® 02(9
= Pr)®, 2.13
"o = ot Rap QP 2.13)
op 6D
SCE = 8_52 - (CRSC)q) (214)
¥(,00=0, 06,0 =0, P0=0 for =0, (2.15)
W(0,1) = ©(0,1) = DO, 1) = { r<1 (2.16)
T T 1 t>1" )
Y, 1) -0, 0Ot —0, dt)—0 for — oo, .17
where a; = 1 + & =M+ l and k3 = 5, are constants, K =
parameter, Cy = s R s the parameter of chemical reaction, Q = z’g%‘c accounts for the heat injected
0o~-pr

gA®'yB,

57 is the thermal Grashof number,
0

or absorbed, M = ps_'z denotes the magnetic strength, Gr| =
0

. . c VB -
Sc = % 18 the Schmidt number, Pr = u represents the Prandtl number, Gr, = gAg)—,;ﬁl 1s the mass
0
2
Grashof number, R = lgi’K characterizes the radiation effects, E, = VE;ZK,%WW deals with electro-osmosis
0

> B fluid.

effects, and Wy = % k
3. Generalization of model and computation of exact solutions

3.1. Fractional-order equations

The obtained unit-free model is transmuted to fractional form by substituting the integer-order
time derivative (%) with Atangana-Baleanu fractional derivative (AB@,‘” ) This substitution gives the
following version of Egs (2.12)—(2.14)

2
a "7/ ()} = ?942 a¥ + Gri® + Gr,® — E;e ™ - {AB@‘”(Z;)} (3.1)

AIMS Mathematics Volume 6, Issue 6, 5942-5976.



5951

0’0 9’0

Pr{* g/ @)} = 3t Ra—g2 +(QPr)0, (3.2)
2
Sc{* 7! (@)} = ‘;? — (CrS ). (3.3)

For any fractional order ¢ and an arbitrary function F(¢), expressions for Atangana-Baleanu
derivative and its Laplace transform (LT) are presented as [45]

: —_ SV
B () = ﬁ f F'(Z)Ew[ ¢(1 Z{; ]dz, for0 <y <1,
0

VLIF@D)} - pP F(0)
‘Z[AB‘@W{F( )” . j24¢! _¢;9+¢ ’

where generalized Mittag-Leffler function is presented as

t)kl’q
R = Z [0 +9g)

3.2. Solutions of fractional equations

Applying the LT on Eq (3.2) and solving as

2
27/ ©) =2 {@% i Q@},

j7id 1 |- - d*e
0 - Q® =az—_
v — 2
[pﬁl’-f - 1 w dé
e 1 b -
—=—(22-0)e
dfz as p‘/’+b1
d_gz_/\/l(pw-f-bl)@:o. (34)

The general solution of Eq (3.4) is determined by employing the method of undetermined

coefficients as
v — b, v _ b
0. p) = C eXP{{\/)apw +bl)+CzeXp[ {\/Xlzw +ij- (3.5)

The Laplace transformed boundary conditions are used to find the following values of involved
constants C; and C,
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C1:0 and C2: >
p

Providing the values of C; and C, in Eq (3.5), we acquire

— e_p

_ 1 v —b
o p=— exp[— 2 24} (3.6)

p¥ + b,

Similar steps are adapted to construct a solution of the concentration field (Eq (3.3)) however,
avoiding the writing repetition, the final form of general concentration solution is presented as

f pY +as
- ) 3.7

- 1—e7?
CD({, p) = p2 eXp

where

1+R b 1
as = , ay=CgSc, as= = by = ——,
Pr X2 1—('0
b bo —
by =yby, by 10 St Q, X, =boSc+ ay.

= . X
by — Q 1 as

Now incorporating the LT into Eq (3.1) gives us the following velocity equation

b4p¢ + by ¥ b3p¢ + axb; \ - E, _ _ -
— Y= ="~ Gri® - Grd. 3.8
( p’+by ) d? p’ + b p ‘ " " G8

Plugging Eqs (3.6) and (3.7) in Eq (3.8) and solving the consequent equation, the following general
velocity expression is evaluated

: _ pY +bs pY +bs
lI’(§9p)_DleXp X3pw+b6§]+DzeXp - X3pw+b6
Gry(1 —e ) (p” + b)) pY = by

(T p + Top? —T3) p? A pY+ b1§

Gry(1 = e P)(p” + by)* pY +as

(Cap® +Tsp¥ —=T6) p p¥ + b,
Eo(p” + bpe™*

{p¥ + bs —br(p¥ —ae)}p’

(3.9)

Determining the constants D; and D, through related boundary conditions and substituting them in
Eq (3.9) yields
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where

b3 = boal + ap, b4 =1- b()Wf, b5 =

Eo(p” + by)

{pY +bs — br(p? — ae)} p

_ Grs(1 - e ) p¥ + by)*
(p¥ + m)(p¥ + my)p?

_ Gre(1 - eP)(p” + by)?
(p¥ + m3)(p? + my)p?
Eo(p? + by)

{p¥ + bs — br(p? —ae)} p

b]Clz
by’

- 1-¢e7? plp + bs
T = P P [_ X0+ b ]
Grs(1 —e™P)(p¥ + by)? p¥ + bs
(p¥ + my)(p? + my)p? ‘pY+ bg
N Gre(1 — e P)(p” + by)? pY + bs
(p? + m3)(p¥ + my)p? *p¥ + b

p¥ + bs
EXp| =1 |X;

p¥ + bg
p/—b,
1 w g
p¥ + by
pY +as
‘pY+ by
exp (—k3{),
b, bs
be = P b; = P )

¢

4]

[y =x, = x5 T2 = bex, — bax, — bixy — bsxs, I3 = babex, + bibsy,,
F4 =X, —Xs» 1—‘5 = b6)(2 +asy, — les - b5)(3’ F6 = bleXs - b6a5)(2’

Equation (3.10) can be simplified as

I N 1 -
lF(éV,P)—lﬂ

AIMS Mathematics

-p exp (_ \//\/_ p'ﬁ —+ b5§] N

P\ pY + b

Y2 1-e?
2 b v my P\

E Gr, Gr, Gr;
Eo= =, Gry= 2L Gry= 22 Gry = 22
0 b4K3 3 b4 4 b4 > F1
Gl"4 Fz F3 FS
Gro= —* B =—, By=-—, By= —,
T'e T, 1 T, 2 T, 3 T,
r6 _ B] + 1,B% - 432 ~ B] - B% —432
F4’ 1= ) , My = >
B; + 1,B§—4B4 B; — B%—4B4
ms = 3 , My = 5 , dg —

VX

P\ p¥ +bs

(3.10)
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vy 1—e? pY +b5 vy 1—e? pY + bs
P amy P Ve p’+ b P P Ve pw + b6{
vs 1—e? N~ pY +b5 Y6 l—ep T +b5
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P>y pY + my Xp| = VX: p¢+b1 p2¢p¢+m ~Vr. p¢+b
v7 1 Y3

+ P exp (—«3{) + S b exp (—«3{) (3.11)

where
p _Dorahr Grsby  Grs(by —-T'))>  Grs(b) —T»)?
8——,)’1—1 s Y2 = s Y3 = 5
1 -b; i’ T, —Iy) LI, -T)
Greb? Gro(b, — T3)? Gro(by = Ty)
Ya = ,» V5 = > Y6 = )
TR YT LG -Ty T L@ -Ty)

E()b] 1—b7
= 20 =Bt - —T .
4 b6+616b7 s 0( 1l76'|'a6b7)

The more adequate form of Eqgs (3.6), (3.7), and (3.11) for Laplace inversion is stated as

O 1) = = R(= TLp.0, 1, —ba. b)), (3.12)
(¢, p) = %%(— VX4 p,0,1,as,by), (3.13)
V¢, p) = L%(—v—f .0 1.bs. o) + 2R (= VT o s, bo)
LR (= VG poms 1 be) + EE IR (= VTL 0,1, s, bo)
+% (- vm,p,ms,l,bs,bﬁ) + YU DR~ L, poma, 1,bs, bo)
p sR(— V¢, p,0,1, b5,b6)— sR( V)Z{,p,bg,l,b5,b(,)
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71—(; R(— V& P 0,1, by, b 1)—L%(— VX4 psmas 1, =y, by)
m(; R(— UL pomas 1, —b, by) — Lm_ VX4 p,0,1,as,by)
% (= VG poms, 1, as,b)—L R(— \VGL pama, 1, as, by)

’ 131/740 plab exp (—k34) + 1 = b p(=k3d). G4

Equations (3.12), (3.13), and (3.14) are transmuted back in primary coordinates (£, ) by employing
the Laplace inversion technique. The real-time solutions are furnished as

O 1) = Fi(t) * R(= ), 1,0, 1, =by, by) = H){Fi(11) * R(= i4- 1,0, 1,—ba, by)}.  (3.15)
O, 1) = Fi() * R( = )4 1.0, Las, by) = HD{Fi(t) = R( = V)& 1,0, 1,as, by), (3.16)
W(Z,1) = Fi(0) * yoR( = VXG4 1,0, 1,bs, bg) = Ht){Fi(t1) % veR( = Vi34 11,0, 1, bs, be)
+ Fi () 2 R( = VX4 t,mi, 1, bs, be) — H(l‘l){Fl(fl) * Y2 R(= Vx4, ti,mi, 1, bs, be)
+ F1(1)  v3R( = IGL- t.ma, 1,bs, be) — Ht){Fi(t1) % v3R( = VG4 tioma, 1, bs, bg)
+ F1(t) * ysR( = VX3¢ t.m3, 1, bs, be) — H(l‘l){Fl(fl) *ysR(— V¢, ti,m3, 1, bs, be)
+ F1(1) % v6R( = IGL 1.1, 1,bs, be) — Ht){Fi(t1) % veR( = VA4 troma, 1, bs, bg)
— Fo(0) # y1R( = V41,0, 1, bs, b) — Fa(1) * v R( = \x2¢s 1, bg, 1, bs, bg)
= F1(@) *viR(= Vx,{:1,0,1,=by, by) + H(tl){Fl(tl) *Y1R(= Vx4, 4,0, 1, —bz,bl)}
= Fi(t) * 7aR( = XG4ty 1, =ba, by) + HD{Fi(t) + v R( = V4 t1mi, 1, —bo, b))
= F1(®) + 73R (= \),4ot,m, 1, =, by) + H){Fi(t) = ysR( = NI f1,ma, 1, =ba, b))
= Fi(t) * 7aR( = VG410, Las, by) + Ht){F1(t) + 4R (= )4 11,0, 1, a5, by))
- F1(t) *ysR( = VX ¢, t.m3, 1,as,by) + H(l‘l){Fl(tl) *yYsR(— Vx4 ti,ms, 1, as, b1)}
= Fi(t) * v6R( = VXG4 t-ma, 1oas, by) + HD{Fi(t) = veR( = VIGE foma, 1, as, b))
+ F5(1) x y7exp (=k38) R(y,0)(0, 1) + F»(t) * yg exp (—=k3) Ry 0)(—bg, 1), (3.17)

where * denotes the convolution product and

}
}
}
}

1 1
Yo=y +ys, L7 (p ) Ru0(0,1), £ ( ; ) Ry 0)(=bs, 1),

+ bg
)y 1
o (pz-w)‘Fl(”‘r(z—w’ ( ) SO —g)

| 00 o0
9{(4/7 t’ w1, W), a)3,w4) = 7_1_ ffgl(ga t5 w1, Wy, (L)},(J)4)
0 0
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x exp(—vn” cos my — nt) sin(va? sin my)dndv,

o t
B 3 b9§ e—ant

Q 7t7 D) D) D) = @it \/GTZZ_ __ff I 2 b t
1(( w1w2w3w4) e \/ﬂz \/; 1( \/—9V)

0 0

2

X exp (a)lt — WV — Wyt — 4—) dtdv, by = w3 — wyrwy.
\Y

3.3. Some significant quantities

Proceeding for the effective measurement of shear stress and rates of mass and heat transmission,
the coefficient of skin friction (Cy), Sherwood number (S /), and Nusselt number (Nu) are described as

0\ ou
1= =) 3

where mass flux 4" and heat flux g* are expressed as

h*y qv
, Sh=—-—-—, Nu=——T-—, (3.18)
V=0 D(AD")T K (A®) T}

oy’ 00’
h"=-D , g =—-Kkh—| . (3.19)
(9)" y'=0 3)" y'=0
Providing relevant values from Eq (2.11) and substituting Eq (3.19), Eq (3.18) becomes
0\ oY 00 00
Cf:(l—Wf—)— , Sh=—-——| , Nu=-—| . (3.20)
ot) d¢ I 9 lz=0 94 le=0

4. Results and discussion

In this investigation, the concept of time-fractional Atangana-Baleanu derivative is applied to
achieve the purpose of improved thermal efficiency of the electro-osmotic flow of Walters’ B fluid
over a permeable upright wall that expresses a ramped motion. This study also encounters thermal
radiation, MHD, and heat injection/absorption phenomena. Besides this, the mass diffusion
mechanism is also explored under first-order chemical reaction. After reviewing the literature, it is
important to mention that ramped velocity, concentration, and energy boundary conditions are first
time simultaneously employed for a non-Newtonian fluid. Operating these non-uniform conditions at
the same time produces multiple intricate functions in terms of Laplace frequency, which sometimes
restricts the execution of analytic Laplace inversion. However, in this work, exact real domain
versions of all the primary functions (velocity, concentration, and temperature) are procured in
integral form employing the analytic Laplace reversal technique. In this section, results of numerical
simulations are provided through graphical illustrations and tabular arrangements to deeply probe the
computational and physical attributes of the under observation problem. Some physical arguments are
discussed to justify the portrayed fluctuations in behaviors of velocity, concentration, and temperature
distributions subject to changes in correlated parameters. Since the levied boundary conditions are
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piece-wise functions of time, therefore, all the tables and plots are constructed for a wide range of
time values. In the end, the prominent contribution of fractional and other associated parameters in
determining the shear stress and mass and heat transfer rates is anatomized by precisely computing
the velocity, concentration, and energy gradients at the bounding wall.

Figures 2—4 respectively display the velocity, concentration, and energy solution profiles for
fractional and classical models. These profiles are graphed and discussed for three values of the time.
The first value of time is selected as + = 0.7, which highlights the behavior of functions for the
time-dependent part of the corresponding boundary condition i.e., t < 1. The other two values of time
are t = 2.0 and r = 5.0. These values account for that time portion of the boundary conditions for
which the functions are independent of time and have constant value 1 i.e., # > 1. It is evident from
Figures 2—4 that fractional parameter ¢ declines the profiles of all three functions for # < 1 whereas,
for + > 1, this trend reverses completely and functions exhibit increasing profiles. Moreover, it is
witnessed that for smaller values of time, the fundamental functions involved in this study are
maximum for the fractional model whereas, for r > 1, the classical model provides the highest profiles
of these functions. The primary reason behind the aforementioned observations is that ¢ exerts a dual
nature influence on boundary layer thicknesses. For ramped condition, it attenuates the momentum
boundary layer but for uniform surface condition, it causes to expand the thickness of the momentum
boundary layer. This interpretation is also true for the expansion and attenuation of thermal and
concentration boundary layers. These explanations certify that the graphical illustrations are in
accordance with physical behaviors. The changes produced in the flow pattern due to the presence of
magnetic lines of action are portrayed in Figure 5. Unlike ¢, the parameter M has uniform effects for
all three values of ¢. It is recognized that the imposition of a magnetic field causes to slow down the
flow of Walters’ B fluid. The physical argument for this retardation is the generation of a highly
effective viscous force, which drags the fluid in an anti-flow direction. This force is commonly termed
as Lorentz force. The Lorentz force enables the viscous forces to eliminate the impacts of flow
supportive forces, which leads to contract the momentum boundary layer thickness. In consequence,
the curve associated with the velocity function continuously declines for enhancing domain of M.

The response of the velocity function for alteration in Gr; and Gr; is reported in Figures 6 and 7,
respectively. It is deduced that both parameters have an identical influence on the flow pattern. The
Walters’ B fluid gets accelerated due to a rise in the magnitudes of Gr; and Gr,. In the physical sense,
Gr, and Gr, share an inverse correspondence with viscous effects and direct relation with buoyancy
forces. In an alternative way, the Grashof number is a means of quantifying the two opposite forces.
The buoyancy forces are credited as flow accelerated forces, which depend upon the temperature and
concentration gradients. The rising values of Gr; and Gr, signify these gradients, and consequently,
the buoyancy forces vanquish the control of viscous effects on the velocity function. These phenomena
expand the thickness of corresponding boundary layers, and accelerated flow patterns are witnessed.
Figure 8 features the velocity function to inspect the influence of the material parameter of Walters’
B fluid W, on the flow profile. The parameter W, characterizes the elastic and viscous features of
the material, and it is one of the key factors for the intensified viscoelastic nature of the Walters’ B
fluid. Hence, the rising magnitude of W; increases the viscoelasticity of the fluid, which diminishes
the flow speed and brings down the corresponding curve. The respective figure describes another
stimulating result that the flow of the Newtonian fluid (W, = 0) is more expeditious as equated to
the flow of Walters” B fluid (W, # 0). The specific factor responsible for this outcome is the lower
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viscosity of a Newtonian fluid. With the aid of Figure 9, ramifications of nesting the upright ramped
wall in a porous medium are discussed for the flow phenomenon. This figure indicates the existence of
direct proportionality between fluid velocity and permeability parameter K. It means that the speed of
the flow enhances for growing inputs of K, and there is a continuous rise in the associated curve. An
enlargement in diameter of the permeable holes of the medium provides the physical supportive ground
for this rise in the velocity. Additionally, one of the reasons for speedy flow is that more amount of
fluid can penetrate through the porous medium due to the increased size of the holes. The observed
outcome is also justified by the fact that the fluid confronts weak resistance type forces because of
the greater volume capacity of the medium. The modulating consequences of R; on flow patterns
are analyzed through Figure 10. The anticipation of heat radiative gradient by means of Rosseland
approximation communicates that the extended domain of R, restricts the considered fluid to discharge
the energy. Subsequently, the fluid particles possess high energy due to a greater amount of heat
transmitted at the solid-fluid interface. The augmented energy level excites the particles, due to which
they start performing rapid collisions. As a consequence of such collisions, cohesive forces become
ineffective because of the breakage of inter-particle bonds. The existence of this mechanism implies
that the resistive potential of fluid particles is weak. Hence, the fluid performs a high-speed motion for
amplified inputs of R;.

Figures 11 and 12 are drawn to feature the influences of Sc¢ and Cg on the flow profile. These
parameters appear in the velocity term because of the partial coupling of the flow and concentration
equations. These figures describe that both the considered parameters have similar impacts on fluid
velocity. Particularly these parameters lead to slow down the flow speed. Since S ¢ and viscous forces
are directly linked to each other, therefore the deceleration in the flow is pretty obvious for this
parameter because it signifies the viscous strength of the fluid and dwindles the mass diffusion.
Identically, raising the value of the parameter Cy associated with corrosive chemical reaction
minimizes the species concentration, which results in weaker solutal buoyancy forces. In this way, the
velocity of the fluid is suppressed and a decaying profile is observed from the relevant figure. Figure
13 is a graphical demonstration of the contribution of Pr in setting the fluid flow. The thicknesses of
momentum and thermal boundary layer are significantly influenced by Pr and also it is considered
one of the vital parameters to examine the heat transfer problems. Physically, it inculcates the relative
effects of viscosity and fluid’s heat conduction capacity. From Figure 13, a decelerating flow field is
witnessed for a rising variation of Pr. This is because the conduction capacity of fluids with large Pr
is dominated by those having small Pr values. Moreover, the larger Pr values have the tendency to
augment the momentum diffusivity, which enhances the thickness of fluids and make them more
viscous. Taking everything into account, it can be stated that viscous influence permits the fluids to
exhibit a controlled flow with restraint velocity. Hence, we perceive a dropping velocity profile in
response to Pr maximization. The changes produced in the flow field for modification of E; are
recorded in Figure 14. It is discovered that the application of electro-osmotic force on Walters’ B fluid
provokes decelerating effects on the flow. From a physical view, the electric double layer attains more
charges in consequence of the enhanced strength of the imposed electric field. Because of this charge
intensification, the fluid gathers dominant resistive forces that restrict the fluid velocity. This control
of electro-osmosis on the liquid flow has gathered vital applications in sub-branches of medical
sciences, biochemical, and engineering. For example, separated fluids through electro-osmosis are
effective as drug carriers, electronic controlling of liquid motions, minimizing the deterioration and
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dampness of very thick wall structures [52], and materials processing [53]. The consequences of
including a heat injector in the considered model on the velocity function are evaluated in Figure 15.
This evaluation is conducted by choosing diverse values for the injection parameter Q, while
magnitudes of other parameters are considered fixed. It is found that the velocity function escalates
for growing values of Q. Since the energy of fluid particles is augmented for the boosted rate of heat
injection at the solid-fluid interface, therefore the temperature of the particles rises. Following this
reason, the forces functioning against the separation of fluid particles from each other become
inefficient. Accordingly, the fluid describes a swift flow velocity.
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The computations for Nu and Sh are arranged in Tables 1 and 2 to perform a detailed numerical
study about rates of heat transfer and mass transfer respectively. To clearly observe the impacts of
imposed boundary conditions and fractional parameter ¢, these tables showcase the results for a wide
range of values of time ¢ and ¢. The reported results show that ¢ and ¢ offer dual nature contribution
to the aforementioned processes. Precisely stating, subject to ramped conditions (¢ < 1), augmented
values of ¢ result in enhancement of Nu and S /4, and maximum values are obtained for integer-order
expressions. Whereas, for isothermal conditions (¢ > 1), completely opposite trends are witnessed,
which indicate that Nu and S/ decline for rising values of y. In this case, integer-order expressions
produce minimum values. In a likewise manner, time advancement up to t < 1 augments the transfer
rates, and after that, they keep reducing for ¢+ > 1. These results suggest that the combination of
isothermal conditions with a fractional model is more efficient to attain the improved transfer rates
as equated to classical model and ramped conditions. Table 3 is bestowed to perceive and interpret
the variations in S/ and Nu for the physical and thermal parameters. It is noticed that the parameters
Cr and S ¢ act in a similar fashion for S/ and diminish the mass transfer rate. Nusselt number follows
inverse trends for extending domains of R; and Pr. Extensively, Nu is a decelerating function of R, and
an escalating function of Pr. Besides this, the induction of a heat injector depreciates the Nu, whereas
the existence of a heat absorbent helps to transfer the heat more swiftly. The numerical outcomes for
C; are enumerated in Tables 4 and 5 for extensive inspection of the shear stress. Shear stress is a key
feature for several practical problems, and usually, boosted shear stress is seen as a leading deficiency
for technical analyses. To determine an adequate solution of this drawback for the considered problem,
the behavior of shear stress for several pertinent parameters is discussed with the help of Tables 4
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and 5. Table 4 indicates that the use of ramped boundary condition is more suitable to control the shear
stress. Moreover, it is recognized from Table 5 that dominant magnetic and electro-osmotic forces can
suppress shear stress. Simultaneously, a favorable choice of the parameters Gry, Gr,, and K is another
effective method to serve the desired cause. Finally, it is viewed that the response of C under variation
of ¥ and r is exactly opposite to the responses of Nu and Sh. In the end, some key advantages of
conducting this analysis are briefly elaborated. For instance, the current work is purely based on exact
solutions and they can be utilized for verification of the several numerical techniques. Moreover, the
considered problem is modeled in terms of fractional derivative, which leads to providing more general
results. A suitable adjustment of the fractional parameter not only yields a perfect agreement between
experimental data and theoretical outcomes but also the results for classical models can be evaluated.
Several existing results can be traced through a simple modification of some parameters. Furthermore,
simultaneous application of piece-wise time-dependent boundary conditions to capture flow, mass, and
heat transfer dynamics through Atangana-Baleanu fractional derivative is not yet investigated. So, in
this context, this study contributes to the literature extensively. However, it is also significant to discuss
some limitations of this study, which will help readers to easily understand this work. Based on these
limitations, this work can be modified and extended in the future. The limitations and assumptions of
this work are as follows:

e The flow is incompressible, laminar, and one-dimensional.

e A linear chemical reaction is considered for the mass equation.

e Induced magnetic effects are ignored. Moreover, the influence of thermal radiation and the
magnetic field is assumed negligible along the vertical axis.

e Impacts of viscous dissipation are considered insignificant for the energy equation.

Table 1. A detailed investigation of impacts of ¢ and ¢ on heat transfer rate through numerical
computations.

Nusselt number

t=0.2 t=0.5 t=0.8 t=14 r=1.8 1=22
0.1 0.4950 1.2361 1.9933 2.4548 2.4329 2.4241
0.2 0.5094 1.2579 2.0159 2.4424 2.4026 2.3911
0.3 0.5324 1.2940 2.0539 2.4235 2.3530 2.3195
0.4 0.5648 1.3451 2.1076 2.3963 2.2820 2.2176
0.5 0.6083 1.4132 2.1779 2.3560 2.1844 2.0817
0.6 0.6668 1.5014 2.2651 2.2930 2.0520 1.9070
0.7 0.7474 1.6138 2.3682 2.1912 1.8743 1.6910
0.8 0.8648 1.7541 2.4803 2.0251 1.6437 1.4398
0.9 1.0486 1.9122 2.5798 1.7690 1.3747 1.1793
1.0 1.2921 2.0282 2.6228 1.4555 1.1443 0.9646

¥
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Table 2. A detailed investigation of impacts of ¢ and 7 on mass transfer rate through
numerical computations.

Sherwood number

t=02 t=05 t=0.8 t=14 t=138 t=22
0.1 0.6983 1.7455 2.8163 3.4733 3.4444 3.4275
0.2 0.7136 1.7687 2.8403 3.4600 3.4121 3.4018
0.3 0.7384 1.8072 2.8806 3.4392 3.3588 3.3254
0.4 0.7735 1.8621 2.9378 3.4083 3.2815 3.2160
0.5 0.8214 1.9359 3.0128 3.3613 3.1738 3.0688
0.6 0.8868 2.0322 3.1061 3.2864 3.0256 2.8783
0.7 0.9783 2.1564 3.2163 3.1640 2.8240 2.6411
0.8 1.1137 2.3123 3.3352 2.9634 2.5605 2.3652
0.9 1.3287 2.4879 3.4363 2.6541 2.2529 2.0819
1.0 1.6166 2.6107 3.4657 2.2768 1.9670 1.8313

Table 3. A detailed investigation of impacts of related parameters on Sherwood and Nusselt

numbers through numerical computations.

Sherwood number

Nusselt number

Sc Cr Sh R, Pr (0] Nu
10 0.5 2.8887 1.0 10 0.1 1.6471
- 1.5 3.6358 2.0 - - 1.3449
- 2.5 4.2542 3.0 - - 1.1647
2.0 - 1.1734 0.5 10 - 1.9019
3.0 - 1.4371 - 15 - 2.3294
5.0 - 1.8553 - 20 - 2.6897
- 10 -0.2 2.1423
- - -0.4 2.2887
- - 0.0 1.9852
- - 0.2 1.8149
- - 0.4 1.6273
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Table 4. A detailed investigation of impacts of ¢ and ¢ on shear stress through numerical

computations.
Skin friction coeflicient
v t=02 t=05 t=028 t=14 t=138 t=22
0.1 —-0.2298 -0.3910 —-0.5550 -0.6510 —-0.6441 —0.6433
0.2 —0.2373 —-0.4030 —-0.5677 —-0.6446 —-0.6280 -0.6199
0.3 —-0.2493 -0.4226 —-0.5887 -0.6351 -0.6016 —-0.5813
0.4 —0.2658 —-0.4500 —-0.6184 —-0.6225 -0.5649 -0.5270
0.5 —0.2873 —-0.4861 —-0.6571 —-0.6050 —-0.5157 —-0.4554
0.6 —-0.3151 -0.5321 —-0.7052 -0.5794 -0.4509 —-0.3646
0.7 —0.3519 —-0.5897 —-0.7627 —-0.5393 —-0.3664 —-0.2531
0.8 —-0.4032 -0.6611 -0.8274 -0.4745 —-0.2580 -0.1220
0.9 —0.4810 —-0.7444 -0.8920 —-0.3744 -0.1292 0.0203
1.0 —0.5824 -0.8126 —-0.9370 -0.2592 —-0.0117 0.1476
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Table 5. A detailed investigation of impacts of related parameters on shear stress through
numerical computations.

Skin friction coeflicient

Gr1

Gl’z

M

E;

Wy

2.0
3.0
5.0
4.0

4.0

3.0
5.0
7.0
4.0

1.0

1.5
3.0
4.5
1.0

0.5

2.0
3.0
4.0
0.5

0.1

0.1
0.2
0.3
0.1

0.4

0.2
0.4
0.6

-0.8796
—-0.7378
—-0.4539
-0.7132
-0.4785
-0.2439
-0.6916
-0.9510
—-1.1790
-0.9590
-1.2013
—1.4436
—-0.5841
-0.5613
-0.5277
-1.0347
—-0.5958
-0.4202

5. Summary and conclusions

The core motive of this research piece is to examine the influence of electro-osmotic forces on
MHD fractional flow of a Walters’ B fluid close to a vertical wall nested in a porous material. Besides
this, mass transfer rate and radiative thermal performance are analyzed subject to ramped
concentration and energy of the bounding wall. The impacts of first-order chemical reaction and heat
injection/absorption are also evaluated in this work. A time-controlled velocity condition is imposed,
which leads to develop the flow of the considered fluid. The unit-less conventional equations of the
considered problem are generalized to the fractional form operating the non-singular and non-local
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kernel-based Atangana-Baleanu derivative. The consequent equations are solved analytically, and
exact solutions are determined by exercising the Laplace transform technique. To analyze the features
of influential parameters, effects of generalizing the model, and advantages of using the ramped
surface conditions, a comprehensive tabular and graphical study is performed. The extracted key
results of the current work are summarized as

The velocity of flow drops due to extension in the domain of the parameter E,. This behavior of
the velocity profile has exceptional applications in minimizing the deterioration and dampness of
wall structures [52]. At the atomic level, the electro-osmosis phenomenon is also used in fluids’
separation processes, which can be efficiently utilized as medication dischargers [54].

Heat and mass transfer rates reveal interesting features for variation in ¢ and . More specifically,
for ¢t < 1, an escalation in ¢ and ¢ enhances the observed rates. Later, for # > 1, mass and heat
transfer rates act in a reverse fashion and show decreasing behavior for an upsurge in ¢ and .
Application of the ramping strategy on the bounding wall is more efficient when augmentation of
the heat transfer rate and reduction of shear stress are the primary goals.

The fractional parameter ¢ specifies a dual role for ramped and isothermal conditions. Precisely,
for ¢t < 1, it declines the velocity, concentration, and energy profiles, but for ¢ > 1, these quantities
keep increasing as a result of a rise in .

For ¢ < 1, the fundamental functions involved in this study are maximum for the fractional model,
whereas, for > 1, the classical model provides the highest profiles of these functions.
Electro-osmotic and magnetic effects cause to reduce the shear stress at the bounding wall.

The comparative analysis of solutions for isothermal and ramped conditions indicate that curves
representing concentration, velocity, and energy functions are higher for isothermal conditions.
Time-controlled boundary conditions possess vital significance in order to gain the swiftest
cooling rate and improved flow control.
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Appendix

The velocity vector for the problem under observation is described as
q =[u'(',1),0,0].
The momentum equation under Boussinesq’s approximation [55] is developed as [56,57]
dq

pﬁ = I_€)+V-T+pg{ﬁ](®’—G)’OO)+,82((D’—(D’OO)}+ 7><A7+E,pr

where J x M is the product of current density and net magnetic field, E: deals with the externally
imposed electric field, 8; and S, are the thermal and mass expansion coefficients respectively, R shows
the force of porous medium’s resistance, and p, specifies the total electric charge density. The terms p,
and T are described as [57]

Pe = —EthﬁW exp (—«.y’), T =uBy+kBy* - kB, — pl.
Here, the kinematic tensors B; and B, are defined as [58]

dB,
dr -’

Bi=Vg+(q)", By=B(Vq)+B (V" +
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Some of the terms in flow equation have the following form
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dr — or’

XM =—-oMju,
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