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1. Introduction

The fractional diffusion equation (FDE), which is obtained by replacing the first-order time
derivative and/or second-order space derivative in the standard diffusion equation by a generalized
derivative of fractional order respectively, were successfully used for modelling relevant physical
processes, see [1, 5, 14, 15, 21]. Recently the research on inverse problems connected with fractional
derivatives becomes more and more popular. Since Cheng in [2] studied an inverse problem on
fractional diffusion equation, many topics are well discussed [11, 12, 23, 26, 27]. For the problem of
fractional numerical differentiation, in [17, 18], the authors give different regularization methods.
In [13, 26, 30], some inverse source problems for fractional diffusion equations are considered.
In [25, 28], Liu et al consider the backward time-fractional diffusion problem. In [4, 8, 10, 16], many
results on inverse coefficient problems are established. For more reference on inverse problems for
fractional diffusion equations, please consult the survey paper [9]. However, in some situation of
anomalous diffusion, the diffusion indexes and the diffusion coefficient are unknown. This leads to
determination of coefficients which is a classical inverse problem. It should be mentioned that most of
the existing literature investigate the determination of only one unknown parameter or functions.

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021350


5910

However, in many practical situations, one wishes to simultaneously reconstruct more than one
physical parameters. To the authors’ knowledge, there are few works on this aspect. For examples,
in [4], the fractional order α in tDα

∗u(x, t) = 4u(x, t) is determined by an analytic method. In [24], the
fractional orders α, β in tDα

∗u(x, t) = −(−4)
β
2 u(x, t) are reconstructed by the classical

Levenberg-Marquardt method based on disrete least squares functional. The simultaneous inversion
for the fractional order α and the space-dependent diffusion coefficient has been considered in [2, 10].
In this paper, we reconstruct three important parameters in the time-space fractional diffusion
equation from only one boundary measurement.

Let us consider the time and space-symmetric fractional diffusion equation in one-dimensional
space

tDα
∗u(x, t) = −κ(−4)

β
2 u(x, t), 0 ≤ t ≤ T, 0 ≤ x ≤ L, (1.1)

subject to homogeneous Neumann boundary conditions

∂u
∂x

(0, t) =
∂u
∂x

(L, t) = 0 (1.2)

and the initial condition
u(x, 0) = f (x), (1.3)

where u is a solute concentration, κ > 0 represents the diffusion coefficient. tDα
∗ is the Caputo time

fractional derivative of order α (0 < α < 1) with the starting point at t = 0 defined as follows [19]:

tDα
∗u(x, t) =

1
Γ(1 − α)

∫ t

0

∂u(x, η)
∂η

dη
(t − η)α

.

The symmetric-space fractional derivative (−4)
β
2 of order β (1 < β ≤ 2) is defined by [3, 6, 7]. For

readability, we reproduce the following definition for (−4)
β
2 , 1 < β ≤ 2:

Definition 1. [29] Suppose the Laplace operator −4 has a complete set of orthonormal
eigenfunctions ϕn corresponding to eigenvalues λ2

n on a bounded domain D, i.e., (−4)ϕn = λ2
nϕn on a

bounded domain D, B(ϕ) = 0 on ∂D is one of the standard three homogeneous boundary conditions.
Let

Gγ =

 f =

∞∑
n=1

cnϕn, cn = ( f , ϕn),
∞∑

n=1

|cn|
2|ϕn|

γ < ∞, γ = max{β, 0}

 ,
then for any f ∈ Gγ: (−4)

β
2 is defined by

(−4)
β
2 f =

∞∑
n=1

cn(λ2
n)

β
2ϕn. (1.4)

In the case of α = 1, β = 2, Eq (1.1) reduces to the classical diffusion equation. For 0 < α < 1, β =

2, Eq (1.1) models subdiffusion due to particles having long-tailed resting times. For α = 1, 1 < β < 2,
Eq (1.1) corresponds to the Lévy process. Hence the solution of (1.1) is important for describing the
competition between these two anomalous diffusion processes.

If α, β, κ, f (x) are given, the solution for the direct problem of Eqs (1.1)–(1.3) can be obtained
analytically by the method of separation of variables: Setting u(x, t) = X(x)T (t) and substituting
into (1.1) yields

tDα
∗X(x)T (t) + κ(−4)

β
2 X(x)T (t) = 0.
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Letting ω is the separation constant, we obtain two fractional ordinary linear differential equations
for X(x) and T (t) as

(−4)
β
2 X(x) − ωX(x) = 0; (1.5)

tDα
∗T (t) + κωT (t) = 0, (1.6)

respectively. Following the definition of fractional Laplacian (−4)
β
2 defined on a bounded domain,

Eq (1.5) can be expressed as
∞∑

n=1

cn(λ2
n)

β
2 xn + ωn

∞∑
n=1

cnxn = 0. (1.7)

Hence under homogeneous Neumann conditions, the eigenvalues are ωn = λ
β
n = ( nπ

L )β(1 < β ≤ 2)
for n = 0, 1, 2, · · · and the corresponding eigenfunctions are xn = cos( nπx

L ). Finally, the analytical
solution of Eqs (1.1)–(1.3) is

u(x, t) =

∞∑
n=0

Tn(t) cos(
nπx
L

)

=
1
2

f0 +

∞∑
n=1

Eα,1(−κ(
nπ
L

)βtα) fn cos(
nπx
L

), (1.8)

where

fn =
2
L

∫ L

0
f (x) cos(

nπx
L

)dx, n = 0, 1, 2, · · · .

Here we have used the result Eα,1(0) = 1, where Eα,β(z) is the Mittag-Leffler function defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C. (1.9)

By a similar method to [22], we can prove that (1.8) certainly gives the weak solution to Eqs (1.1)–
(1.3).

Consider the following inverse problem:
Given g(t) := u(0, t) (or g̃(t) := u(L, t)) with unknown α, β, κ, we want to recover the orders α, β

and the coefficient κ from the data g(t) (or g̃(t) ).
Usually g(t) is measured and only available data on g(t) is its perturbation gδ(t), we assume that

there exists a known noise level δ such that

‖g(·) − gδ(·)‖ ≤ δ,

where the norm ‖ · ‖ denotes L2-norm.
In this paper, our main work is to give the uniqueness result on determination of α, β, κ from the

data g(t) and two numerical methods for solving the inverse problems. Although in the paper [24],
the authors give a uniqueness result on a similar problem, the result holds only for 0 < α < 1/2 and
sufficiently large T . Our result do not require this restriction and holds for 0 < α < 1 and a finite T .
This is done by adding some more smoothness assumption on the initial data f (x).

Throughout this paper, sometimes we denote the solution of the problem as u(x, t) = u(α, β, κ, x, t)
to show its dependence on α, β, κ.
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2. Inverse problem and its uniqueness

Now from (1.8), we have the relationship:

g(t) := u(0, t) =
1
2

f0 +

∞∑
n=1

Eα,1(−κ(
nπ
L

)βtα) fn. (2.1)

The uniqueness of the inverse problem is stated as follows:
Theorem 1. Suppose that u1(α1, β1, κ1; x, t) and u2(α2, β2, κ2; x, t) represent the solutions of the

inverse problem with α = α1, β = β1, κ = κ1 and α = α2, β = β2, κ = κ2 respectively. We assume that
the initial data satisfies

f ∈ H4(0, L), f
′′

(0) < 0, f ′(0) = f ′(L) = 0 (Comapatible condition), (2.2)
fn > 0, n = 0, 1, 2, · · · . (2.3)

If u1(α1, β1, κ1; 0, t) = u2(α2, β2, κ2; 0, t) (0 < t < T ), then

α1 = α2, β1 = β2, κ1 = κ2.

Proof. From Eq (2.1), we have

u1(α1, β1, κ1; 0, t) =
1
2

f0 +

∞∑
n=1

Eα1,1(−κ(
nπ
L

)β1tα1) fn,

u2(α2, β2, κ2; 0, t) =
1
2

f0 +

∞∑
n=1

Eα2,1(−κ(
nπ
L

)β2tα2) fn.

By assumption u1(α1, β1, κ1; 0, t) = u2(α2, β2, κ2; 0, t), it yields that

∞∑
n=1

Eα1,1(−κ1(
nπ
L

)β1tα1) fn =

∞∑
n=1

Eα2,1(−κ2(
nπ
L

)β2tα2) fn, (2.4)

for 0 < t < T .
As an initial step, we will prove that α1 = α2.
By the definition of Mittag-Leffler function, we have

Eα1,1(−κ1(
nπ
L

)β1tα1) = 1 +
1

Γ(α1 + 1)

(
−κ1(

nπ
L

)β1tα1

)
+

∞∑
k=2

(−κ1(nπ
L )β1tα1)k

Γ(α1k + 1)

= 1 −
1

Γ(α1 + 1)

(
κ1(

nπ
L

)β1tα1

)
+ t2α1(−κ1(

nπ
L

)β1)2
∞∑

k=2

(−κ1( nπ
L )β1tα1)(k−2)

Γ(α1(k − 2) + 2α1 + 1)

= 1 −
1

Γ(α1 + 1)

(
κ1(

nπ
L

)β1tα1

)
+ t2α1(−κ1(

nπ
L

)β1)2Eα1,2α1+1(−κ1(
nπ
L

)β1tα1). (2.5)

And by the same argument, we obtain

Eα2,1(−κ2(
nπ
L

)β2 tα2)
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=1 −
1

Γ(α2 + 1)

(
κ2(

nπ
L

)β2tα2

)
+ t2α2(−κ2(

nπ
L

)β2)2Eα2,2α2+1(−κ2(
nπ
L

)β2tα2). (2.6)

From Eq (2.4), the following result

∞∑
n=1

fn −
tα1

Γ(α1 + 1)

∞∑
n=1

κ1(
nπ
L

)β1 fn + t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2Eα1,2α1+1(−κ1(
nπ
L

)β1tα1) fn

=

∞∑
n=1

fn −
tα2

Γ(α2 + 1)

∞∑
n=1

κ2(
nπ
L

)β2 fn + t2α2

∞∑
n=1

(κ2(
nπ
L

)β2)2Eα2,2α2+1(−κ2(
nπ
L

)β2tα2) fn, (2.7)

holds true. Now, we need to estimate the terms:

t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2Eα1,2α1+1(−κ1(
nπ
L

)β1tα1) fn

and

t2α2

∞∑
n=1

(κ2(
nπ
L

)β2)2Eα2,2α2+1(−κ2(
nπ
L

)β2tα2) fn.

According to the inequality

|Eα,β(−η)| ≤
C0

1 + |η|
, η ∈ C, | arg η| <

π

2
+ δ0, 0 < α < 2, β > 0, (2.8)

where δ0,C0 are some positive constants, we get

|t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2Eα1,2α1+1(−κ1(
nπ
L

)β1tα1) fn|

≤ t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2|Eα1,2α1+1(−κ1(
nπ
L

)β1tα1)|| fn|

≤ C0t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2 1
1 + κ1( nπ

L )β1tα1
| fn|. (2.9)

Furthermore, we recall that f (x) ∈ H4(0, L), then

‖ f (4)(x)‖L2(0,L) =‖

∞∑
n=0

fn(
nπ
L

)4 cos(
nπx
L

)‖L2(0,L)

= C1

 ∞∑
n=0

| fn|
2(

nπ
L

)8


1
2

< ∞, (2.10)

where C1 is a constant independent on n.
For the term on the right-side hand of Eq (2.9),

t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2 1
1 + κ1(nπ

L )β1tα1
| fn|
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=tα1+ε
∞∑

n=1

(κ1( nπ
L )β1)2

κ1(nπ
L )β1−ε0

κ1(nπ
L )β1−ε0tα1−ε

1 + κ1( nπ
L )β1tα1

| fn|, (2.11)

holds, when 0 < ε0 < 3/2 and 0 < ε < α1. Since

sup
n∈N,t≥0

κ1( nπ
L )β1−ε0tα1−ε

1 + κ1(nπ
L )β1tα1

:= C2 < ∞,

then

t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2 1
1 + κ1(nπ

L )β1tα1
| fn|

≤C2tα1+ε
∞∑

n=1

κ1(
nπ
L

)β1+ε0 | fn|. (2.12)

On the other hand, by Cauchy-Schwarz inequality

∞∑
n=1

κ1(
nπ
L

)β1+ε0 | fn| =

∞∑
n=1

κ1(
nπ
L

)β1+ε0−4(
nπ
L

)4| fn|

≤

 ∞∑
n=1

(
nπ
L

)8| fn|
2


1
2
 ∞∑

n=1

κ2
1(

nπ
L

)2(β1+ε0−4)


1
2

. (2.13)

Noting that ε0 < 3/2 and 1 < β1 < 2, then 2(1 + ε0 − 4) < 2(β1 + ε0 − 4) < −1. Combining (2.10),
we can conclude that

∞∑
n=1

κ1(
nπ
L

)β1+ε0 | fn| < ∞. (2.14)

Therefore,

|t2α1

∞∑
n=1

(κ1(
nπ
L

)β1)2Eα1,2α1+1(−κ1(
nπ
L

)β1tα1) fn| = O(tα1+ε), for t → 0 (2.15)

with small ε > 0. Similarly, we can verify that

|t2α2

∞∑
n=1

(κ2(
nπ
L

)β2)2Eα2,2α2+1(−κ2(
nπ
L

)β2tα2) fn| = O(tα2+ε), for t → 0 (2.16)

with small ε > 0.
Inserting the above two equalities into (2.7), we have

−
tα1

Γ(α1 + 1)

∞∑
n=1

κ1(
nπ
L

)β1 fn + O(tα1+ε) = −
tα2

Γ(α2 + 1)

∞∑
n=1

κ2(
nπ
L

)β2 fn + O(tα2+ε). (2.17)
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If α2 < α1, then

−
tα1−α2

Γ(α1 + 1)

∞∑
n=1

κ1(
nπ
L

)β1 fn + O(tα1−α2+ε) = −
1

Γ(α2 + 1)

∞∑
n=1

κ2(
nπ
L

)β2 fn + O(tε),

holds for t → 0. That means

−
1

Γ(α2 + 1)

∞∑
n=1

κ2(
nπ
L

)β2 fn → 0. (2.18)

for t → 0. However, this is impossible. Because if
∑∞

n=1 κ2( nπ
L )β2 fn = 0, then due to fn > 0, 1 < β2 ≤ 2,

0 =

∞∑
n=1

κ2(
nπ
L

)β2 fn =

∞∑
n=1

κ2(
nπ
L

)2(
nπ
L

)β2−2 fn

≤ (
π

L
)β2−2

∞∑
n=1

κ2(
nπ
L

)2 fn = κ2(
π

L
)β2−2 f

′′

(0) < 0. (2.19)

This is a contradiction. Hence α2 < α1 does not hold. Similarly, α2 > α1 does not hold, too. As a
result, we get α1 = α2.

Next, we will prove that β1 = β2, κ1 = κ2.
Now we have the following equation from (2.4)

∞∑
n=1

Eα,1(−κ1(
nπ
L

)β1tα) fn =

∞∑
n=1

Eα,1(−κ2(
nπ
L

)β2tα) fn, (2.20)

for α1 = α2 = α. By the analytic proposition of Eα,1(t), the above equation holds for t > 0. First for
0 < α < 1, we have the Laplace transform of Mittag-Leffler function:∫ ∞

0
e−ztEα,1(−κ(

nπ
L

)βtα)dt =
zα−1

zα + κ(nπ
L )β

, <z > 0. (2.21)

Taking Laplace transform on both sides of Eq (2.20), we have

∞∑
n=1

fn
zα−1

zα + κ1(nπ
L )β1

=

∞∑
n=1

fn
zα−1

zα + κ2(nπ
L )β2

, <z > 0, (2.22)

i.e.,
∞∑

n=1

fn

zα + κ1(nπ
L )β1

=

∞∑
n=1

fn

zα + κ2(nπ
L )β2

, <z > 0. (2.23)

That is
∞∑

n=1

fn

η + κ1( nπ
L )β1

=

∞∑
n=1

fn

η + κ2( nπ
L )β2

, <η > 0. (2.24)

We can analytically continue both sides of (2.24) in η. So (2.24) holds for

η ∈ C/({−κ1(
nπ
L

)β1}n≥1 ∪ {−κ2(
nπ
L

)β2}n≥1).
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Now we deduce that κ1(nπ
L )β1 = κ2( nπ

L )β2 . From (2.24), W. L. O. G., we assume that
κ1(nπ

L )β1 < κ2( nπ
L )β2 . Then we can take a suitable disc R1 which includes −κ1(nπ

L )β1 |n=1 but does not
include {−κ1(nπ

L )β1}n≥2 ∪ {−κ2(nπ
L )β2}n≥1. According to (2.24) and the analyticity of both sides of (2.24),

we have
∞∑

n=1

∫
R1

fn

η + κ1( nπ
L )β1

dη =

∞∑
n=1

∫
R1

fn

η + κ2(nπ
L )β2

dη, (2.25)

and hence, the Cauchy integral formula and Cauchy integral theorem yield

2πi f1 = 0. (2.26)

However, f1 , 0, i.e., 2πi f1 , 0. Therefore κ1( nπ
L )β1 < κ2(nπ

L )β2 does not hold.
By the same argument, κ1( nπ

L )β1 > κ2(nπ
L )β2 does not hold, either. Therefore, there holds

κ1(nπ
L )β1 = κ2(nπ

L )β2 . Now, we are in the position to prove κ1 = κ2, β1 = β2 from κ1( nπ
L )β1 = κ2(nπ

L )β2 . It is
easy to see that if κ1 , κ2 or β1 , β2 then there must exist at least a constant n such that
κ1(nπ

L )β1 , κ2( nπ
L )β2 . By analysis of its contrapositivity, we easily have κ1 = κ2, β1 = β2. �

In general, the conditions (2.2) is not easy for one to verify. Therefore we give the weak conditions
for the uniqueness:

Theorem 2. Suppose that u1(α1, β1, κ1; x, t) and u2(α2, β2, κ2; x, t) represent the solutions of the
inverse problem with α = α1, β = β1, κ = κ1 and α = α2, β = β2, κ = κ2 respectively. We assume that
the initial data satisfies

f ∈ H2(0, L), f ′(0) = f ′(L) = 0 (Comapatible condition), (2.27)
(−4)βk/2 f (0) , 0, k = 1, 2. (2.28)

If u1(α1, β1, κ1; 0, t) = u2(α2, β2, κ2; 0, t) for 0 < t < T, then
α1 = α2, β1 = β2, κ1 = κ2.

Proof. W. L. O. G, let L = 1, ϕn(x) =
√

2 cos nπx for n ∈ N and ϕ0(x) = 1. Then we consider
tDα
∗u(x, t) = −κ(−4)β/2u(x, t), 0 < x < 1, 0 < t < T,

ux(0, t) = ux(1, t), t > 0,
u(x, 0) = f (x), 0 < x < 1.

Then

u(x, t) =

∞∑
n=0

Eα,1(−k(nπ)βtα)( f , ϕn)ϕn(x).

Setting fn = ( f , ϕn)
√

2 for n ∈ N and f0 = ( f , 1), we have

u(0, t) = f0 +

∞∑
n=1

Eα,1(−k(nπ)βtα) fn.

Assume
uα1,β1,k1(0, t) = uα2,β2,k2(0, t), t > 0.
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Then due to Podlubny [19] (p.34),

−
tα1

Γ(α1 + 1)

∞∑
n=1

k1(nπ)β1( f , ϕn)ϕn(0) + O(t2α1)

= −
tα2

Γ(α2 + 1)

∞∑
n=1

k2(nπ)β2( f , ϕn)ϕn(0) + O(t2α2), as t → 0.

Since f ∈ D((−4)βk/2) and (−4)βk/2 is self-adjoint for k = 1, 2, we have
∞∑

n=1

(nπ)β1( f , ϕn)ϕn(0) =

∞∑
n=0

(nπ)β1( f , ϕn)ϕn(0)

=

∞∑
n=0

( f , (nπ)β1ϕn)ϕn(0) =

∞∑
n=0

( f , (−4)β1/2ϕn)ϕn(0)

=

∞∑
n=0

((−4)β1/2 f , ϕn)ϕn(0) = (−4)β1/2 f (0).

Hence we have

−
κ1tα1

Γ(α1 + 1)
(−4)β1/2 f (0) + O(t2α1) = −

κ2tα2

Γ(α2 + 1)
(−4)β2/2 f (0) + O(t2α2). (2.29)

Now we can prove that α1 = α2.
Indeed we assume that α1 < α2. Dividing (2.29) by tα1 , we obtain

−
k1

Γ(α1 + 1)
(−4)β1/2 f (0) + O(tα1) = −

k2

Γ(α2 + 1)
(−4)β2/2 f (0)tα2−α1 + O(t2α2−α1).

By α1 < α2, letting t → 0, we obtain k1
Γ(α1+1) (−4)β1/2 f (0) = 0, which contradicts (2.29).

The uniqueness proof on β and κ is the same as that in Theorem 1. �

Remark on (2.29). We can satisfy (2.29) by a generous condition by the comparison principle of
(−4)β/2.

3. Two numerical methods

In this section, we propose two numerical methods for solving this problem based least squares
functional. The first is based on Tikhonov method in the function space. The second method is based
on the classical Levenberg-Marquardt optimization method in the discrete Euclid space.

3.1. Tikhonov method combined with the gradient flow

Denote a =


α

β

κ

 ∈ R3, let u(x, t; a) := u(α, β, κ)(x, t) be the unique solution of forward problem.

A feasible way to numerical computation for the unknown a is to solve the following minimization
problem.

min
a∈R3

J(a) := min
a∈R3

1
2

(
‖u(a; 0, t) − gδ(t)‖2L2(0,T ) + λ‖a‖2

R3

)
. (3.1)
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The gradient ∇J(a) of the functional J(a) is given by
∫ T

0
∂u(α,β,κ,0,t)

∂α
(u(α, β, κ, 0, t) − gδ(t))dt + λα∫ T

0
∂u(α,β,κ,0,t)

∂β
(u(α, β, κ, 0, t) − gδ(t))dt + λβ∫ T

0
∂u(α,β,κ,0,t)

∂κ
(u(α, β, κ, 0, t) − gδ(t))dt + λκ

 .
If let∇J(a)=0, then we can get the Euler equation for the minimizer. However, it is a nonlinear equation
and is not easily be solved directly. Here we turn to the approximate solution by the iterative method.
Using the gradient flow method with an initial value a0, we get

da
dt

= −∇J(a), (3.2)

where t is the artificial time. Using a simple method, i.e. the explicit Euler method, we arrives the
following iteration schemes with a time step size τ:

a j+1 = a j − τ∇J(a j), (3.3)

i.e.,

α j+1 = α j − τα

(∫ T

0

∂u(α, β, κ, 0, t)
∂α

∣∣∣
α=α j, β=β j, κ=κ j(u(α j, β j, κ j, 0, t) − gδ(t))dt + λα j

)
;

β j+1 = β j − τβ

(∫ T

0

∂u(α, β, κ, 0, t)
∂β

∣∣∣
α=α j, β=β j, κ=κ j(u(α j, β j, κ j, 0, t) − gδ(t))dt + λβ j

)
;

κ j+1 = κ j − τκ

(∫ T

0

∂u(α, β, κ, 0, t)
∂κ

∣∣∣
α=α j, β=β j, κ=κ j(u(α j, β j, κ j, 0, t) − gδ(t))dt + λκ j

)
. (3.4)

3.2. Levenberg-Marquardt method

Because in most of the practical applications, the data are measured at discrete times. Assume the
measured data is given by gδ(ti), i = 0, 1, · · · , q. Let us consider the minimization problem in discrete
case:

‖u(a; 0, ti) − gδ(ti)‖2Rq ,

where u(a; 0, ti) is the computed data from the forward problem with a given a, which is used to fit the
measured data. A standard method for solving this least squares problem is the Levenberg-Marquardt
method with a damped parameter λ̃ which plays the same role as the regularization parameter λ in
Tikhonov method. For readability, we give the details of this algorithm:

A updated sequences is given by

a j+1 = a j + ∆a j, j = 1, 2, · · · , (3.5)

where ∆a j is the updated stepsize of a j in each iteration step j. We consider the the minimization
problem about ∆a j at each iteration step j:

F(∆a j) := ‖u(a j + ∆a j; 0, ti) − gδ(ti)‖2Rq . (3.6)
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Make the Taylor expansion for u(a j + ∆a j; 0, ti) at a j and take a linear approximation, we have

u(a j + ∆a j; 0, ti) ≈ u(a j; 0, ti) + ∇tr
a u(a; 0, ti) · a j.

Plus this into (3.6), we get

F(∆a j) := ‖∇tr
a u(a; 0, ti) · a j − (gδ(ti) − u(a j; 0, ti))‖2Rq . (3.7)

However, this least square problem is ill-posed due to the original problem, therefore we consider
the Tikhonov method:

F(∆a j) := ‖∇tr
a u(a; 0, ti) · a j − (gδ(ti) − u(a j; 0, ti))‖2Rq + λ̃‖∆a j‖R3 , (3.8)

where ∇tr
a u(a; 0, ti) · a j is computed by finite difference method and is given by ∇tr

a u(a; 0, ti) · a j ≈∑3
k=1

u(a j
k+h;0,ti)−u(a j

k;0,ti)
h ∆a j

k. Now the minimization problem (3.8) is a linear problem and can be easily
solved for the updated stepsize ∆a j with a regularization λ̃.

3.3. Numerical test

In this section, we consider a simple example to show the effectiveness of the aforementioned
two algorithms, i.e., Tikhonov method and Levenberg-Marquardt method. We want to determine the
parameters (α, β, κ) in the following problem

tDα
∗u(x, t) = −κ(−4)

β
2 u(x, t), 0 ≤ t ≤ T, 0 ≤ x ≤ π, (3.9)

∂u
∂x

(0, t) =
∂u
∂x

(π, t) = 0, (3.10)

u(x, 0) := f (x) = −x2(3π/2 − x). (3.11)

The exact solution is given by

u(x, t) = −
π3

4
+

∞∑
n=1

Eα,1(−κnβtα)[
12(1 + (−1)n+1)

πn4 ] cos(nx). (3.12)

Now the input data g(t) := u(0, t) is obtained and the noisy data gδ(t) is generated in the following
way:

gδ(t) = g(t) + σ(t), (3.13)

where σ(t) = θr(t) and r(t) is a random number between [0, 1] and θ = max{g(t)} ∗ η% is the noise
level. In the numerical experiment, we fix the parameters T = 1, η = 1. The algorithm of calculating
Mittag Leffler function is given in [20]. First we plot the solution u(x, t = 1) of direct problem when
α = 0.5, β = 1.2, κ = 0.10, which is shown in Figure 1. The input exact data g(t) is displayed in
Figure 2.
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Figure 1. The solution u(x, t) at the time t = 1 for the direct problem.
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Figure 2. The input data for reconstruction.

The exact fractional orders and diffusion coefficient are α = 0.5, β = 1.2, κ = 0.10.
In the numerical test for the Tikhonov method, the parameters and their values in the computation

are listed below:
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1. Summing idex of u(x, t) in (3.12): n = 20 is taken.
2. The number of ti = i/q ∈ [0, 1], (i = 0, · · · , q) and q = 20 in two methods (q is the total points

for trapezoidal rule of the numerical integral in (3.4)).
3. Stepsizes τs(s = α, β, κ) in (3.4) for coputing the derivatives ∂u

∂α
, ∂u
∂β

and ∂u
∂κ

by finite difference
method: τα = τβ = τκ = 0.01.

4. The initial guess for (α, β, κ) = (0.4, 1.0, 0.05).
5. The regularization parameter λ = 0.001.
6. The iterative step size is τ = (0.07, 0.01, 0.02).
6. Stop criterion: when ‖a j+1 − a j‖ ≤ 0.01.
Finally we obtain the approximate value (α, β, κ) = (0.5289, 1.1836, 0.0943). Keep the same

parameters with the damped parameter λ̃ = 0.001, we use the Levenberg-Marquardt method to get the
approximate value where we don’t use the Matlab optimization toolbox on Levenberg-Marquardt
method.

(α, β, κ) = (0.4933, 1.1968, 0.0998).

This result shows the numerical methods are effective. Here we list more results using the above
parameters for the Levenberg-Marquardt method. First we fix the initial guess for α = 0.1, κ = 0.05
and let β range from 1 to 1.4. The numerical results are displayed in Table 1.

Table 1. Numerical results for different initial guesses with fixed α = 0.1, κ = 0.05.

β Approximation for (α, β, κ)
1 (0.4992;1.2012;0.1001)
1.1 (0.5015;1.2016;0.1002)
1.2 (0.49995;1.2014;0.1002)
1.3 (0.5011;1.19999;0.09953)
1.4 (0.4981;1.202;0.09999)

The numerical results show that the methods are stable.

4. Conclusions

In this paper, we give the proof of uniqueness for determining three parameters in a time-space
fractional diffusion equation by means of observation data from accessible boundary. By our
uniqueness result a Tikhonov method and the Levenberg-Marquardt method are tested preliminarily.
Some further research on the stability of the proposed methods will be investigated in the future.
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