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Abstract: In this paper, we investigate the existence of stable standing waves for the nonlinear
Schrédinger equation with inverse-power potential and combined power-type and Choquard-type
nonlinearities

O + oy + W‘” + A + Aol = WD = 0, (1,x) € [0,T%) X RY.
By using concentration compactness principle, when one nonlinearity is focusing and L*-critical, the
other is defocusing and L?-supercritical, we prove the existence and orbital stability of standing waves.
We extend the results of Li-Zhao in paper [14] to the L?-critical and L?-supercritical nonlinearities.
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1. Introduction

In this paper, we consider the following nonlinear Schrédinger equation (NLS) with inverse-power
potential, and combined general power-type nonlinearity and Choquard-type nonlinearity

O + AU + 250 + Y + Dol = DI = 0, (1,x) € [0,T*) X RY, 0
¥(0,x) = Yo(x), x€RY, '
where N > 3, ¢ : [0,T*) Xx R¥Y — C is the complex valued function with 0 < T* < oo, )y € H!,

y € (0,+00), @ € (0,2), 4, e R\ {0} and 2, € R\ {0}, £ <p<m,1+2ﬁ<q<%,*denotesthe
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convolution, /5 : RY — R is the Riesz potential that defined for every x € R \ {0} by
N-B
I'(=>)
TR+

Ig(x) = (1.2)
B €(0,N) and I is the Gamma function.

Because of important applications of (1.1) in physics, it has received much attention both from
physics (see [1-5]) and mathematics (see [6—13]), and has been widely studied for a long time. The
operator —A — % with Coulomb potential provides a quantum mechanical description of the Coulomb
force between two charged particles and corresponds to having an external attractive long-range
potential due to the presence of a positively charged atomic nucleus, see, e.g., [2,3, 14].

We are interested in the standing wave solutions of (1.1), namely solutions of the form (¢, x) =

e“'u(x), where w € R is a frequency and u € H' is a nontrivial solution to the elliptic equation
— AU+ wu — lllu — AilulPu — A(Ig * u|)|u|?"%u = 0. (1.3)
X a
The Eq (1.3) is variational, whose action functional is defined by

w
So(u) = Ey(u) + Ellulliz,

where the corresponding energy E, () is defined by

1 04 |u)? A f ) ﬂzf
E,(u) := - Vuldx - £ —dx - P2y — = I D\ulldx. 1.4
5 (1) szNI ul“dx > e X P RNlul x 2 RN(B*IMI Nul’dx (1.4)

For the evolutional type Eq (1.1), one of the important problems is to consider the stability of standing
waves. Then, we recall the definition of orbital stability of set M.

Definition 1.1. The set M is said to be orbitally stable if, for any € > 0, there exists 6 > 0 such that
for any initial data  satisfying

inf [Yo — ulln <6,

ue

the corresponding solution Y (t) of (1.1) with initial data y satisfies
inf [l(1) = ullm <€,

forallt> 0.

In view of this definition, in order to study the stability, we require that (1.1) has a unique global
solution, at least for initial data ¥, sufficiently close to M. In the L?-subcritical case, all solutions for
NLS exist globally. Hence, the stability of standing waves has been studied extensively in this case,
see, e.g., [11,14-16].

For (1.1), when two nonlinearities are both focusing L?-subcritical, i.e., 4; € (0, +o0), A, € (0, +00),
0<p<4/N,1+pB/N <qg<1+(2+p)/N, or when one nonlinearity is focusing L>-subcritical and
the other is focusing L*-critical, i.e., 4; € (0, +o0), A, € (0,+00),0 < p <4/N,q =1+ (2+p)/N and
0 < [Wollz < 1Q4ll2, Q4 be a ground state of elliptic equation

—AQ+ Q0= L * 1001 2Q inRY, (1.5)
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the solution ¥(#) of (1.1) with the initial data y, exists globally. In these cases, Li and Zhao in [14]
used the concentration compactness principle to study the existence and orbital stability of standing
waves. When one nonlinearity is focusing and L*-critical, the other is defocusing and L?-supercritical,
all solutions of (1.1) exist globally (see Lemma 2.7). Therefore, in this case, whether there exist stable
standing waves is an interesting problem. To the best of our knowledge, there are no stability results
for (1.1) with a defocusing L*-supercritical nonlinearity.

To this purpose, applying the idea by Cazenave and Lions in [17], we consider the following
constrained minimization problem:

G, = inf{E,(u) : u € A(n)}, (1.6)
where E, (u) is defined by (1.4) and

A(m) :={ueH", lull}, =1, n> 0}

We will see later (Lemma 2.8) that the above minimizing problem is well-defined. Let us denote
K(p) = (€ A@). Ey() = G,). (1.7)

Our main results are as follows:

Theorem 1.2. Let N > 3,y € (0,+), @ € (0,2), B € (0,N), 41 € (—0,0), A, € (0, +), 1+ < p < 75,
2

g=1+ # Then, there exists yo > O sufficiently small such that 0 <y < o, for any n € ([[Q,ll;,, ©0),

Q, be a ground state of elliptic Eq (1.5), the set K(n) is not empty and orbitally stable.

Theorem 1.3. Let N > 3, y € (0,+), @ € (0,2), B € (O,N), 4; € (0,+), A, € (-=0,0), p = %,

1+ # < q < % Then, there exists yy > 0 sufficiently small such that 0 < y < vy,, for any

ne (||Wp||i2, o0), where W, is the ground state of the following equation:

—AW + W = L |WPW inR".
Then, the set K(n) is not empty and orbitally stable.
Since the proof of Theorem 1.2 and Theorem 1.3 is similar, we only prove Theorem 1.2.

2. Preliminaries

In this section, we recall some preliminary results that will be used later.

Lemma 2.1. ( [17], Lemma 7.6.1) Let 1 < p < oo. Ifa < N is such that 0 < a < p, then "0 € L' for
every u € W'"(RN). Furthermore,

|l/l|p )4 a -a a
fR dx < (=)l 19wt @1

N |x|a
for every u € W'P(RV),
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Lemma 2.2. ( [14], Lemma 2.2) Let N > 3, a € (0,2), v € R. Then for any € > 0, there exists a
constant § = d(e, ||u||iz) > 0 such that

2
|Vul>dx — 0% de > —d(e, ||u||L2) (2.2)
RN

forany u € H'.

Proof. It obviously holds for y < 0. Now, we use (2.1) to prove the Lemma for y > 0. According to
(2.1) and the Young inequality, we have

Iul2

II"

< (—) (—II [ IIVuII%z)
= el[Vull}, + 6(e, lull7,),

we arrive at the conclusion. O

Lemma 2.3. ([18]) Let N > 3, 8 € (0,N), and q, ¢ > 1 be constants such that

Assume that u € L and v € LY, then there exists a sharp constant C(N, 3, q) independent of u and v,

such that OVO)
u(x)v
——"dxd
fRf -y

By the Hardy-Littlewood-Sobolev inequality above and the Sobolev embedding theorem, we obtain

< C(N, B, llullal V]l o -

f (g * [ul)|ul’dx < C(f Iulmdx) < Cllullqu, (2.3)
RV RV
forany g € [1 + f,, xf] C > 0 is a constant depending only on N, B and q.

Lemma 2.4. ([12,19,20]) Let N > 3, B € (O,N), 1 + £ < g < 2*£, then for all u € H',

f g ul")lut'dx < C(B, DIVull Pl P24, (2.4)
R

the best constant C(B, q) is defined by

Ng-N—-8

2 2g—Ng+ N+ 2
1 (q 1 ﬁ) 10,1135,

C(B,q) =
BD = NG+ N+ B\ Ng-N-5

where Q, is the ground state of elliptic Eq (1.5). In particular, in the L*-critical case, i.e., ¢ = 1 + 2+ﬁ

CB,q) = qIIQqH ) 4 Moreover, the following PohoZaev’s identities hold true:

Ng-N-p

2
. 2.5
2q—Nq+N+,B”Q‘1”L2 (2.5)

Ng— N —
IVO,II7, = qz—ﬁ/bf (g * |Qg|N|Qgldx =
q RV
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Lemma 2.5. ([17]) Let N > 3 and {u,} be a bounded sequence in H' satisfying:

2
Nl di = pa,
R

where u > 0 is fixed. Then there exists a subsequence {u,,} satisfying one of the three possibilities:
(1) (compactness) there exists {y,,} C RN such that |u, (- + y,)* is tight, i.e., for all € > 0, there exists

R < oo, such that
f it (x> i — €,
BR(ynk)

. . . 2 _ .
(2) (vanishing) /}1—{2 yselg fBR(y) |1t (xX)["dx = O for all R < oo,

(3) (dichotomy) there exists o € (0,u) such that for any € > 0, there exist kg > 1, {y,} C RY and
u;i), ufi) bounded in H' satisfying for k > k:

)|+ 12| <

f luty, P dx — f Dl dx - f P dx
RN RN N

lim ”u(l)”Lz =0, lim IIM(Z)IILZ =p-o;

— 0ask —> o forall2 < p” <2N/(N -2);

dy, :=dist(Supp u Supp u(z)) — 0 ask — oo

ng °

lim inf f (Vi [* = VUl = [VulP P)dx > 0.

Lemma 2.6. Let N > 3, 1) € (=0,0), A, € (0,+0), £ < p < =4 g=1+%E or N > 3, A, € (0, +0),
Ay € (=00,0), p = %, 1+ Z%ﬁ <q< % The initial data y, € H', there exzsts T = T(|lyollgr) such that
(1.1) admits a unique solution y € C([0,T], H"). Let [0, T*) be the maximal time interval on which the
solution  is well-defined, if T* < oo, then ||y(t)||;n — o0 ast T T*. Moreover, for all0 <t < T*, the
solution Y(t) satisfies the following conservation of mass and energy:

(1) conservation of mass : ||y (@®)|l2 = llwollz2,

(2) conservation of energy : E,(Y(t)) = E, (o).

Lemma27 Let N > 3, y € (0,+), a € (0,2), B € (0O,N), 41 € (—0,0), /126(0 +o0), & <p<N2,

g=1+2L 0orN 23, y€(0,+), @€ (0,2), 4 € (0,+00), A € (—00,0), p = 1+%<q<%,

then the solutzon w(t) of (1.1) with Y exists globally.

Proof. We prove the first case firstly. By the Hardy-Littlewood-Sobolev and the Young inequalities,
we have

fR g WO (n)ldx < Cliy I Ty < Clly I )l

< ally@Il),% + Cle, Il @)l2), (2.6)
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where 6 = W Under the conservation laws, we deduce that

(1 = OlIVYOII7. < 2E,y(0)) + 6(e, W @l7.) + ( 7+ eNllyIIL2 + Cler, Iw@)li), 2.7)

1

where % + € < 0for4; <0and ¢ > 0 small sufficiently. By choosing € = 5, we deduce from (2.7)

that
1
IVgOIl7, < 4E,(p(0)) + 5(5, e OI7,) + Cler, Il Oll2), (2.8)
which implies the boundedness of ||Vy/(?)||;2.

In the following, we prove the second case. By the Gagliardo-Nirenberg and the Young inequalities,
we have

p+2-2

WO < ClyoI S IVl
< elVyl;, + Cle, Iy Ol2). (2.9)
Under the conservation laws, we get
(1 - € = @)IVYOIE < 2E,(0) + (e, W) + Cle, W Dl.2). (2.10)

By choosing e = 1, 6 =

3 we deduce from (2.10) that

=1

)
1 1

IVg@II?, < 8E,(1(0)) + 5(5, g IZ.) + C(Z’ [l (Ollz2), (2.11)

which implies the boundedness of ||Vy/(?)]|;2.
And we arrive at the conclusion. O

Lemma 2.8. Let N > 3, ¥y € (0,+00), @ € (0,2), 8 € (0,N), A; € (—0,0), A, € (0, +00), —<p<N2,
q=1+ —B, and n € (||Qq||L2,oo), Q, be the ground state of elliptic Eq (1.5), there exists yy > 0
sufficiently small such that 0 <y < yo. Then, there exist i € H' such that G, = E, ().
Proof. We proceed in four steps.
Step 1. For any n € (||Q4||L2’ ), G, = iI/};f)Ey(u) is well-defined and G,, < 0.
ucA(n
We deduce from (2.2) and (2.6) that

p—
m

Lp+2

||
Ey(w) 2 (5 = )IVully, = (e lulff) + " 2||u||p+2 — allull’’? - Cler, llull.2)

P—
N m

A
=G5 IVul?, + (p +1 5 -a 222 = 8Ce, Nlull2.) = Cler, Ilullz2)

—6(6, llull7,) = Clen, llull2) > —oo (2.12)

by choosing € and ¢, sufficiently small. Therefore, E,(u) is bounded from below on A(), that is, G,, is
well defined.

In the following, we show that G,, < O for all y € (||Qq||L2, 00). Forg =1 + 28 , we have
28+ 4 el
N+ﬁ_Nq+2q:—7 Nq_N_B:2a C(ﬁ,Q):unq”LzN

N
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We can obtain from (2.2) and (2.4) that

1 €
Ey(u) 2 (5 = §>||Vu||L2 S(e, llull%,) - —C(B Pl P2 ) Y

: 1 A [ ”M”Lz )N IVull, = 6(e, llull7,) (2.13)
==|l-€e-A, ull7, — o(e, ||ully,), .
2 10,112, o v
by choosing € and A, both sufficiently small, for any u € H' and [lull7, = 1 < ||Q,II%,, we can not judge
that whether E,(u) < 0 or E,(u) > 0.
In fact, for n > ||Q4”L2’ we setv = uQ,, u = ”Q‘qz ||v|| =n. Letv, = A%v(/lx) for 1 > 0,

||V,1||L2 = ||v||L2 = 1. It follows from (2.5) that

1
EIIVVIIiz - f g * WIDIvI*dx = _”VQq”Lz - —;#2‘] fN(I;s # 10l Qyl"dx
R

N
=W gy A fR U 1QNIQ dx <0, (2.14)

where 2 < 2q. Hence, we can deduce from (2.14) that

v? /ll/r o A Azf
E,) = =Wk - 220 | gy == | U= M9)vd
y(va) = || Iz =3 NPT P 2 RN(B*M vl?dx

| 2 o R )Y
:ﬂz(zllvvn;—ﬁfRNuﬁ*ww)lvl%x—%ﬂ f _dx) VL <0 @15)

v |x]®

for A > O sufficiently small and 2 < %. Therefore, we can obtain from (2.15) that G, < 0 for all
1 € (1Q,117,, ).

Step 2. € (||Qq||L2, o) > G, is a continuous mapping.

For any n € (”Qq”LZ’ 00), let N, € (”Qq”LZ’ o) such that , — n as n large enough. From the
definition of G, , for any & > O sufficiently small, let u, € A(1,) such that

E,(u,) < G, +¢&,

(2.12) implies that {u,} is bounded in H'. We set p, := \/nzu 0, € A(l), we have

17y yn |l A 7\
G, < E,(0n) = =V, — £ — " dx - — - (L
1% B = 5 IV~ 3 | Tt p+2(,/nn) o772

2q
oy BV e (Ig * lu|")lun|d x
2q Tn RN g

= Ey(un) + 0,(1)
<G, +e+o0,(1). (2.16)

On the other hand, given a minimizing sequence {v,} C A(n) for E,, we have

E,(v,) <G, +¢. 2.17)
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Sety, = \/%vn, Y. € A(1,), we have
G,, < E,(yn) <G, +e+0,(1), (2.18)
which, together with (2.16), gives that

lim G, = G, foranyne (1Ql17,, ). (2.19)

Step 3. Forn € (”qule’ o), we have G, < G, + G,_,, foralln, € (||Qq||L2,17).
Let {u,} be a minimizing sequence for (1.6) such that E,(u,) — G,. Every minimizing sequence for

(1.6) is bounded in H' and bounded from below in L¥5*2. Since G, < 0, we have E,(u,) < % for n
large enough. It follows from the definition of E,(u,) and (2.6) that

1 G
', > —f g * lua Dty *dx > —Ey(uy) > —— > 0, (2.20)
LN+/3+2 2q RN 2

we set — ” = C'. There exists a constant 7 such that hm [|Vu,|l;2 = 7 > 0. Otherwise, if hm |Vu,ll2 =

0, by the Gagliardo-Nirenberg inequality, we have hm ||un||p 2 = = 0, which, together Wlth (2.1) and
(2.4), yields that 0 > G, = lim E,(u,) = 0, which is 1mp0s51ble Hence, the minimizing problem (1.6)
can be rewritten as o

G, :=1inf{E,(u) : u € A(n), [[Vull,2 > 7}.
Set C° = (ﬁ)“ > 0, we can obtain from (2.1) that
WP gy < oy NVulg, < yoCon 7 IVuly

| |a 12°

and it follows easily that
2 | |2 0 2-a
IVul?, -y dew( Ty C ) > 1 (7 = 9 CO ) > 0
for 0 < y < ¥y and ¥, > 0 small sufficiently, we set 7* (7'2“’ - 70C077277”) = C% For t € (1,00), set
i(x) = u(t %), R, = flull. We have

Gy < liminf E,(it)

o I A WP 1t ot — AR
= hnm_)glf (lEy(u) + ”V””iZ(T - 5) -y . de( >~ 5) + T ‘fRN(I,B * |ul?)u|?dx

-2

t t 2 Aot — pt1*7
= (G, + (- - E)liminf(lqulliz —y f W ) + 2222 iminf f (L * Ittt 9l
n—o0 n—o00 RN

|x|* 2q
<G, + (: - —)c2 + (Dot — L HC! < 1G,). (2.21)
Consequently,
G, < 'Z; :le + %HGU =G + G (2.22)
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for all 1 € (10|12, ).
Step 4. Now, let us apply the concentration compactness principle in H' to the minimizing sequence
{u,}. There exists a subsequence {u,, } such that one of the three possibilities in Lemma 2.5 holds.
First, we prove that the vanishing cannot occur.
Suppose by contradiction that

lim sup f Iunklzdx =0,
Bi(y)

k—o0 yeRN

by Lion’s Lemma, we have u,, — 0in L™ as k — oo forall m € 2,2 - 2) Hence,
f |, |7Hdx — O as k — oo for 2<p+2<2N/(N-2).
RN

By the domain decomposition, the Holder inequality and a € (0, 2), we have

2 2 2
u u u
f | |adx:f |u| dx f |ud] dx
ry x| B0 X B0 X1
- 2 - 2
< ™ X g, o llalllel Nl + 1117 X pe oyl el (2.23)
2 2
= Cillull5, + Callully,

where 1 + L =11+ L =1.a<N/a,b> N/a, NJa —aand b — N/« are both sufficiently small. By
(2.23) and the Sobolev inequality, we have

|tt, |*
——dx —> 0 as k — .
R

It follows from (2.3) that
(Ig * lun | DIty |'dx — 0 as k — oo.
RN
Thus,

|
G, = ]}1_&10 E,(uy) = 1}1_}1110 5 LN |Vunk|2dx >0,

which contradicts G, < 0 in step 1. Therefore, the vanishing cannot occur.

Subsequently, we prove that the dichotomy does not occur.

Suppose by contradiction that the dichotomy can occur. Then there exist a constant ¢ € (0,7) and
two bounded sequences {u(l)} {ufizk)} C H! such that

I, = & P17 = (7= &) ask — oo, (2.24)
4, — U = U2 = 0 as k> 00 for 2< p+2<2N/(N -2), (2.25)
lim inf f (Vi = VUl = [VulPPdx > 0. (2.26)

—00 RN

Similarly, we have
f (Ig * |ttt |9 x — f (I * U1l 1 dx — f U * WD) dx — 0 ask — oo, (2.27)
RN RN RN
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and

M2 )12

i, |* ity | it |

f 2 dx - 2 dx - % _dx —» 0 ask — . (2.28)
Ry X[ ry |x]® Ry [x]®

Indeed, let u,, = ul)) + uy) + v,,, in view of u\u’,) = 0, by the direct calculation, we obtain that

1 2
S A
v [X[ RV ||

— 2
~ |u,,,)|2 + PP + v I + 2Re(ul)v,,) + 2Re(u,2k)v,,k)dx
|x|a
1
|Lt( )|2 + |unk)|2
|x|

where 6(e) — 0 as € — 0. By (2.25)—(2.28), we obtain that

x + 6(e),

G, 2 lim inf E,(ul)) + lim inf Ey(u)
> liminf Gllu(l)llz + liminf Gllu(z)llz s
k— o0 el 2 k—o0 M2
which combine with (2.19) and (2.24), we get
GU > Gg + G,]_g,

which is a contradiction with (2.22). Hence, the dichotomy cannot occur.
Finally, we have ruled out both vanishing and dichotomy, then we deduce that there exists a
sequence {y, } C R" such that for all € > 0, there exists R(e) > 0 such that for all k > 1

f |, (X)*dx > 1 — €. (2.29)
Brie)(ny

Denote i, (x) = u, (x + y,,), we assume that {y,, } is bounded, then there exists a it such that, up to a
subsequence,
{ fL,, — & weakly in H'; (2.30)

iy, — i strongly in LlOC(RN) vV mel[2, 2 3 2

(2.29), together with (2.30), implies that

f la(x)Pdx > 1 — €.
Br(e)(0)

Thus j;% l(x)?dx = p, i. e ﬁm — @i strongly in L?. By the Gagliardo-Nirenberg inequality, &, — i
strongly in L™

’N2

{ fL,, — 0 weakly in H',

ft,, — @t strongly in L™, ¥ m € [2,2 (2.31)

> N- 2
In the following, we claim that {y,, } is bounded. Suppose by contradiction that {y,, } is unbounded. For

i, (O d S f ik, (O

A b RV X+ Yy |”

dx,
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by the domain decomposition and « € (0, 2), R > 0 is fixed, we know
~ 2 ~ 2 ~ 2
Up, (X Up, (X Uy (X
18ty (T dx = f 18ty (T dx + f 18ty (1 dx =1, + L.
BV X+ Y| Br(0) 1% + Y| B0y X + Y|

On Bz(0), we have
1 + Yo | = |yn | = 1x] = [yp| =R — 00 as k — oo,

which, together with (2.31), shows that I; — 0 as k — co. On the other hand, on B%(0), by the Cauchy
convergence of improper integrals and & € L?, for any € > 0, we have

f la(x)|Pdx < e, (2.32)
B3(0)

which, together with (2.31), yields that
f |t (xX) — Gi()]*dx < f |k, (x) — 2(x)*dx — 0 as k — oo,
B3, (0) RV

then we have

f |ﬁnk(x)|2dx - f l(x))Pdx — 0 as k — co.
B3(0) Bo(0)

Consequently, I, — 0 as k — oco. Therefore, we have

N 2
yf O 0 ask - co. (2.33)
RN |x +)’nk|a

Ey(u) := f |Vul 2

Gy = inf{Eo(u) : u € A(n))}.

Denote
2

* [u|?)|ul?dx

and

We know that G0 is attained by a nontrivial function w, that is, GO = 1nf Ey(w). Moreover, the above
weA(n)

steps hold for y = 0. Thus,

1 Pl
G, > liminf(= f Vit [Pdx — =
k—o00 2 RN p +

. A . .
5 fR Ny - % fR gl [l dL )
= liminf Eo(it,) > G,

Hence, G, > Gg. By the definition of G,, we have

st [ Mg > G,,
n 77_5 v |l V(W)

which contradicts G, > G?]. Hence, {y,} is bounded. We may assume, going if necessary to a
subsequence, ,}im Y, = 9 for some $ € RY. Consequently, we have

et (x) = i6Cx = Dl < Mt () = #Cx = yu )l + [l#(x =y ) = #(x = )|
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= len, (x + y,) = Bl + 1A(x = ) — (x = ),
from (2.31) and 1}1—{2 Y, = 9 for some $ € RV, we have
[t (x) — U(x = P)||zn — O as k — oo for anym € [2,2N/(N - 2)).
We define ii(x) = ii(x — §). Consequently,

. 1 Y |Mn|2 A A
G, =lim(z | |Vu,ldx-= | ——dx- f n””a’——fl el Dlety, |7d
7 kir?o(szNl S S Tl BT S T gy ) U Dl [0

1 i Pl A
> = f Valdx - X f Wl g~ A f il 2dx — 2= f (Ip * |l dx
2 RN 2 RN |X|a' P +2 RN 2q RN

= E,(i) > G,.

2
>

in H'. O

By the definition of G,,, we see that i is a minimizer of G, l}im ||Vu,,k||i2 = ||Vul|;,, and hence u,, — u
—00

3. Proof of Theorem 1.2

Proof. By Lemma 2.7, we see that the solution i of (2.1) exists globally. Suppose by contradiction
that there exist sequences {uo,,} C H' and {t,} C R* and a constant € > 0 such that for all n > 1,

. 1
inf flug, = 2zll < —, (3.1
z€K () n

inf - > 2
inf lu(t) = 2l = €. (3.2)

where u,(?) is the solution to (1.1) with initial data u,. From (3.1), there exists {z,} C K(n) such that

inf ”u0,n _ZnHHl < -,
zm€K(n) n

and there exists z € K(n) such that
lim ||z, — zllg = 0.
n—oo

Hence, we get
. 2 2 .
tim lhal: = [ = 7. 1im E, (uo,) = E,(@) = G,

By the conservation of mass and energy, we have
21_{2) ”un(tn)”iz =1, 31_)11; Ey(un(tn)) = E)/(Z) = Gna

then {u,(t,)} is bounded in H'.

v o \/ﬁun(tn) “I2
Set i1, = a2 ||u||L2 = 1, we deduce that
n \n ’ Vi P 4
E (an) =——F (un(tn)) + ( ) - ( ) f |un(tn)|p+2dx
7 ltnCEDIZ, lletn (2112 lletn (2112 p+2 Jpy
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||un(tn)||L2 ”I/tn(tn)”L2 2q
= Ey(un(tn)) + On(l)’

2 2q
+[(i) _(i) )ﬁ f (U * (0Ol (1) x
RN

which implies that

lim E,(ii,) = lim E,(u,(t,)) = G,.

Hence, {it,} C A(n) is a minimizing sequence of E,. There exists Z € K(n7) such that

lim ||it, — 2|l = 0,
n—oo

by the definition of #,, we know

. . N
lim ||it, — u,(t)|l; = lim (
n—oo T nses [l (1)1

- 1) ”un(tn)”H] =0.

We can get that

Tim [J,(1,) =l = 0,

which contradicts (3.2). Hence, K(n) is orbitally stable. This completes the proof. O
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