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Abstract: In this paper, we investigate the existence of stable standing waves for the nonlinear
Schrödinger equation with inverse-power potential and combined power-type and Choquard-type
nonlinearities

i∂tψ + 4ψ +
γ

|x|α
ψ + λ1|ψ|

pψ + λ2(Iβ ∗ |ψ|q)|ψ|q−2ψ = 0, (t, x) ∈ [0,T?) × RN .

By using concentration compactness principle, when one nonlinearity is focusing and L2-critical, the
other is defocusing and L2-supercritical, we prove the existence and orbital stability of standing waves.
We extend the results of Li-Zhao in paper [14] to the L2-critical and L2-supercritical nonlinearities.

Keywords: concentration compactness principle; orbital stability; inverse-power potential; standing
waves
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1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation (NLS) with inverse-power
potential, and combined general power-type nonlinearity and Choquard-type nonlinearity{

i∂tψ + 4ψ +
γ

|x|αψ + λ1|ψ|
pψ + λ2(Iβ ∗ |ψ|q)|ψ|q−2ψ = 0, (t, x) ∈ [0,T?) × RN ,

ψ(0, x) = ψ0(x), x ∈ RN ,
(1.1)

where N ≥ 3, ψ : [0,T?) × RN → C is the complex valued function with 0 < T? ≤ ∞, ψ0 ∈ H1,
γ ∈ (0,+∞), α ∈ (0, 2), λ1 ∈ R \ {0} and λ2 ∈ R \ {0}, 4

N ≤ p < 4
N−2 , 1 +

2+β

N ≤ q < N+β

N−2 , ∗ denotes the
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convolution, Iβ : RN → R is the Riesz potential that defined for every x ∈ RN \ {0} by

Iβ(x) =
Γ( N−β

2 )

Γ(β2 )πN/22β|x|N−β
, (1.2)

β ∈ (0,N) and Γ is the Gamma function.
Because of important applications of (1.1) in physics, it has received much attention both from

physics (see [1–5]) and mathematics (see [6–13]), and has been widely studied for a long time. The
operator −4 − γ

|x| with Coulomb potential provides a quantum mechanical description of the Coulomb
force between two charged particles and corresponds to having an external attractive long-range
potential due to the presence of a positively charged atomic nucleus, see, e.g., [2, 3, 14].

We are interested in the standing wave solutions of (1.1), namely solutions of the form ψ(t, x) =

eiωtu(x), where ω ∈ R is a frequency and u ∈ H1 is a nontrivial solution to the elliptic equation

− 4u + ωu −
γ

|x|α
u − λ1|u|pu − λ2(Iβ ∗ |u|q)|u|q−2u = 0. (1.3)

The Eq (1.3) is variational, whose action functional is defined by

S ω(u) := Eγ(u) +
ω

2
‖u‖2L2 ,

where the corresponding energy Eγ(u) is defined by

Eγ(u) :=
1
2

∫
RN
|∇u|2dx −

γ

2

∫
RN

|u|2

|x|α
dx −

λ1

p + 2

∫
RN
|u|p+2dx −

λ2

2q

∫
RN

(Iβ ∗ |u|q)|u|qdx. (1.4)

For the evolutional type Eq (1.1), one of the important problems is to consider the stability of standing
waves. Then, we recall the definition of orbital stability of setM.

Definition 1.1. The setM is said to be orbitally stable if, for any ε > 0, there exists δ > 0 such that
for any initial data ψ0 satisfying

inf
u∈M
‖ψ0 − u‖H1 < δ,

the corresponding solution ψ(t) of (1.1) with initial data ψ0 satisfies

inf
u∈M
‖ψ(t) − u‖H1 < ε,

for all t > 0.

In view of this definition, in order to study the stability, we require that (1.1) has a unique global
solution, at least for initial data ψ0 sufficiently close toM. In the L2-subcritical case, all solutions for
NLS exist globally. Hence, the stability of standing waves has been studied extensively in this case,
see, e.g., [11, 14–16].

For (1.1), when two nonlinearities are both focusing L2-subcritical, i.e., λ1 ∈ (0,+∞), λ2 ∈ (0,+∞),
0 < p < 4/N, 1 + β/N < q < 1 + (2 + β)/N, or when one nonlinearity is focusing L2-subcritical and
the other is focusing L2-critical, i.e., λ1 ∈ (0,+∞), λ2 ∈ (0,+∞), 0 < p < 4/N, q = 1 + (2 + β)/N and
0 < ‖ψ0‖L2 < ‖Qq‖L2 , Qq be a ground state of elliptic equation

− ∆Q + Q = λ2(Iβ ∗ |Q|q)|Q|q−2Q in RN , (1.5)
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the solution ψ(t) of (1.1) with the initial data ψ0 exists globally. In these cases, Li and Zhao in [14]
used the concentration compactness principle to study the existence and orbital stability of standing
waves. When one nonlinearity is focusing and L2-critical, the other is defocusing and L2-supercritical,
all solutions of (1.1) exist globally (see Lemma 2.7). Therefore, in this case, whether there exist stable
standing waves is an interesting problem. To the best of our knowledge, there are no stability results
for (1.1) with a defocusing L2-supercritical nonlinearity.

To this purpose, applying the idea by Cazenave and Lions in [17], we consider the following
constrained minimization problem:

Gη := inf{Eγ(u) : u ∈ A(η)}, (1.6)

where Eγ(u) is defined by (1.4) and

A(η) := {u ∈ H1, ‖u‖2L2 = η, η > 0}.

We will see later (Lemma 2.8) that the above minimizing problem is well-defined. Let us denote

K(η) := {u ∈ A(η), Eγ(u) = Gη}. (1.7)

Our main results are as follows:

Theorem 1.2. Let N ≥ 3, γ ∈ (0,+∞), α ∈ (0, 2), β ∈ (0,N), λ1 ∈ (−∞, 0), λ2 ∈ (0,+∞), 4
N < p < 4

N−2 ,
q = 1 +

2+β

N . Then, there exists γ0 > 0 sufficiently small such that 0 < γ < γ0, for any η ∈ (‖Qq‖
2
L2 ,∞),

Qq be a ground state of elliptic Eq (1.5), the set K(η) is not empty and orbitally stable.

Theorem 1.3. Let N ≥ 3, γ ∈ (0,+∞), α ∈ (0, 2), β ∈ (0,N), λ1 ∈ (0,+∞), λ2 ∈ (−∞, 0), p = 4
N ,

1 +
2+β

N < q < N+β

N−2 . Then, there exists γ0 > 0 sufficiently small such that 0 < γ < γ0, for any
η ∈ (‖Wp‖

2
L2 ,∞), where Wp is the ground state of the following equation:

−∆W + W = λ1|W |pW in RN .

Then, the set K(η) is not empty and orbitally stable.

Since the proof of Theorem 1.2 and Theorem 1.3 is similar, we only prove Theorem 1.2.

2. Preliminaries

In this section, we recall some preliminary results that will be used later.

Lemma 2.1. ( [17], Lemma 7.6.1) Let 1 ≤ p < ∞. If α < N is such that 0 ≤ α ≤ p, then |u(·)|p

|·|α
∈ L1 for

every u ∈ W1,p(RN). Furthermore,∫
RN

|u|p

|x|α
dx ≤ (

p
N − α

)α‖u‖p−α
Lp ‖∇u‖αLp (2.1)

for every u ∈ W1,p(RN).
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Lemma 2.2. ( [14], Lemma 2.2) Let N ≥ 3, α ∈ (0, 2), γ ∈ R. Then for any ε > 0, there exists a
constant δ = δ(ε, ‖u‖2L2) > 0 such that

ε

∫
RN
|∇u|2dx − γ

∫
RN

|u|2

|x|α
dx ≥ −δ(ε, ‖u‖2L2) (2.2)

for any u ∈ H1.

Proof. It obviously holds for γ ≤ 0. Now, we use (2.1) to prove the Lemma for γ > 0. According to
(2.1) and the Young inequality, we have∫

RN

|u|2

|x|α
dx ≤ (

2
N − α

)α(
2 − α

2
‖u‖2L2 +

α

2
‖∇u‖2L2)

= ε‖∇u‖2L2 + δ(ε, ‖u‖2L2),

we arrive at the conclusion. �

Lemma 2.3. ( [18]) Let N ≥ 3, β ∈ (0,N), and q, q′ > 1 be constants such that

1
q

+
N − β

N
+

1
q′

= 2.

Assume that u ∈ Lq and v ∈ Lq′ , then there exists a sharp constant C(N, β, q) independent of u and v,
such that ∣∣∣∣∣∫

RN

∫
RN

u(x)v(y)
|x − y|N−β

dxdy
∣∣∣∣∣ ≤ C(N, β, q)‖u‖Lq‖v‖Lq′ .

By the Hardy-Littlewood-Sobolev inequality above and the Sobolev embedding theorem, we obtain∫
RN

(Iβ ∗ |u|q)|u|qdx ≤ C
(∫
RN
|u|

2Nq
N+β dx

)1+
β
N

≤ C‖u‖2q
H1 (2.3)

for any q ∈ [1 +
β

N ,
N+β

N−2 ], C > 0 is a constant depending only on N, β and q.

Lemma 2.4. ( [12, 19, 20]) Let N ≥ 3, β ∈ (0,N), 1 +
β

N < q < N+β

N−2 , then for all u ∈ H1,∫
RN

(Iβ ∗ |u|q)|u|qdx ≤ C(β, q)‖∇u‖Nq−N−β
L2 ‖u‖N+β−Nq+2q

L2 , (2.4)

the best constant C(β, q) is defined by

C(β, q) =
2q

2q − Nq + N + β

(
2q − Nq + N + β

Nq − N − β

) Nq−N−β
2

‖Qq‖
2−2q
L2 ,

where Qq is the ground state of elliptic Eq (1.5). In particular, in the L2-critical case, i.e., q = 1 +
2+β

N ,
C(β, q) = q‖Qq‖

2−2q
L2 . Moreover, the following Pohožaev’s identities hold true:

‖∇Qq‖
2
L2 =

Nq − N − β
2q

λ2

∫
RN

(Iβ ∗ |Qq|
q)|Qq|

qdx =
Nq − N − β

2q − Nq + N + β
‖Qq‖

2
L2 . (2.5)
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Lemma 2.5. ( [17]) Let N ≥ 3 and {un} be a bounded sequence in H1 satisfying:∫
RN
|un|

2dx = µ,

where µ > 0 is fixed. Then there exists a subsequence {unk} satisfying one of the three possibilities:
(1) (compactness) there exists {ynk} ⊂ R

N such that |unk(· + ynk)|
2 is tight, i.e., for all ε > 0, there exists

R < ∞, such that ∫
BR(ynk )

|unk(x)|2dx ≥ µ − ε;

(2) (vanishing) lim
k→∞

sup
y∈RN

∫
BR(y)
|unk(x)|2dx = 0 for all R < ∞;

(3) (dichotomy) there exists σ ∈ (0, µ) such that for any ε > 0, there exist k0 ≥ 1, {ynk} ⊂ R
N and

u(1)
nk , u(2)

nk bounded in H1 satisfying for k ≥ k0:

|u(1)
nk
| + |u(2)

nk
| ≤ |unk |;∣∣∣∣∣∫

RN
|unk |

p′dx −
∫
RN
|u(1)

nk
|p
′

dx −
∫
RN
|u(2)

nk
|p
′

dx
∣∣∣∣∣→ 0 as k → ∞ f or all 2 ≤ p′ < 2N/(N − 2);

lim
k→∞
‖u(1)

nk
‖2L2 = σ, lim

k→∞
‖u(2)

nk
‖2L2 = µ − σ;

dnk := dist(S upp u(1)
nk
, S upp u(2)

nk
)→ ∞ as k → ∞;

lim inf
k→∞

∫
RN

(|∇unk |
2 − |∇u(1)

nk
|2 − |∇u(2)

nk
|2)dx ≥ 0.

Lemma 2.6. Let N ≥ 3, λ1 ∈ (−∞, 0), λ2 ∈ (0,+∞), 4
N < p < 4

N−2 , q = 1 +
2+β

N , or N ≥ 3, λ1 ∈ (0,+∞),
λ2 ∈ (−∞, 0), p = 4

N , 1 +
2+β

N < q < N+β

N−2 . The initial data ψ0 ∈ H1, there exists T = T (‖ψ0‖H1) such that
(1.1) admits a unique solution ψ ∈ C([0,T ],H1). Let [0,T?) be the maximal time interval on which the
solution ψ is well-defined, if T? < ∞, then ‖ψ(t)‖H1 → ∞ as t ↑ T?. Moreover, for all 0 ≤ t < T?, the
solution ψ(t) satisfies the following conservation of mass and energy:

(1) conservation o f mass : ‖ψ(t)‖L2 = ‖ψ0‖L2 ,

(2) conservation o f energy : Eγ(ψ(t)) = Eγ(ψ0).

Lemma 2.7. Let N ≥ 3, γ ∈ (0,+∞), α ∈ (0, 2), β ∈ (0,N), λ1 ∈ (−∞, 0), λ2 ∈ (0,+∞), 4
N < p < 4

N−2 ,
q = 1 +

2+β

N , or N ≥ 3, γ ∈ (0,+∞), α ∈ (0, 2), λ1 ∈ (0,+∞), λ2 ∈ (−∞, 0), p = 4
N , 1 +

2+β

N < q < N+β

N−2 ,
then the solution ψ(t) of (1.1) with ψ0 exists globally.

Proof. We prove the first case firstly. By the Hardy-Littlewood-Sobolev and the Young inequalities,
we have ∫

RN
(Iβ ∗ |ψ(t)|q)|ψ(t)|qdx ≤ C‖ψ(t)‖2q

L
2Nq
N+β

≤ C‖ψ(t)‖2q(1−θ)
L2 ‖ψ(t)‖2qθ

Lp+2

≤ ε1‖ψ(t)‖p+2
Lp+2 + C(ε1, ‖ψ(t)‖L2), (2.6)
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where θ =
(p+2)(Nq−N−β)

Nqp . Under the conservation laws, we deduce that

(1 − ε)‖∇ψ(t)‖2L2 ≤ 2Eγ(ψ(0)) + δ(ε, ‖ψ(t)‖2L2) + (
2λ1

p + 2
+ ε1)‖ψ(t)‖p+2

Lp+2 + C(ε1, ‖ψ(t)‖L2), (2.7)

where 2λ1
p+2 + ε1 < 0 for λ1 < 0 and ε1 > 0 small sufficiently. By choosing ε = 1

2 , we deduce from (2.7)
that

‖∇ψ(t)‖2L2 ≤ 4Eγ(ψ(0)) + δ(
1
2
, ‖ψ(t)‖2L2) + C(ε1, ‖ψ(t)‖L2), (2.8)

which implies the boundedness of ‖∇ψ(t)‖L2 .
In the following, we prove the second case. By the Gagliardo-Nirenberg and the Young inequalities,

we have

‖ψ(t)‖p+2
Lp+2 ≤ C‖ψ(t)‖p+2− pN

2
L2 ‖∇ψ(t)‖

pN
2

L2

≤ ε2‖∇ψ(t)‖2L2 + C(ε2, ‖ψ(t)‖L2). (2.9)

Under the conservation laws, we get

(1 − ε − ε2)‖∇ψ(t)‖2L2 ≤ 2Eγ(ψ(0)) + δ(ε, ‖ψ(t)‖2L2) + C(ε2, ‖ψ(t)‖L2). (2.10)

By choosing ε = 1
2 , ε2 = 1

4 , we deduce from (2.10) that

‖∇ψ(t)‖2L2 ≤ 8Eγ(ψ(0)) + δ(
1
2
, ‖ψ(t)‖2L2) + C(

1
4
, ‖ψ(t)‖L2), (2.11)

which implies the boundedness of ‖∇ψ(t)‖L2 .
And we arrive at the conclusion. �

Lemma 2.8. Let N ≥ 3, γ ∈ (0,+∞), α ∈ (0, 2), β ∈ (0,N), λ1 ∈ (−∞, 0), λ2 ∈ (0,+∞), 4
N < p < 4

N−2 ,
q = 1 +

2+β

N , and η ∈ (‖Qq‖
2
L2 ,∞), Qq be the ground state of elliptic Eq (1.5), there exists γ0 > 0

sufficiently small such that 0 < γ < γ0. Then, there exist ū ∈ H1 such that Gη = Eγ(ū).

Proof. We proceed in four steps.
Step 1. For any η ∈ (‖Qq‖

2
L2 ,∞), Gη = inf

u∈A(η)
Eγ(u) is well-defined and Gη < 0.

We deduce from (2.2) and (2.6) that

Eγ(u) ≥ (
1
2
−
ε

2
)‖∇u‖2L2 − δ(ε, ‖u‖2L2) +

|λ1|

p + 2
‖u‖p+2

Lp+2 − ε1‖u‖
p+2
Lp+2 −C(ε1, ‖u‖L2)

= (
1
2
−
ε

2
)‖∇u‖2L2 +

(
|λ1|

p + 2
− ε1

)
‖u‖p+2

Lp+2 − δ(ε, ‖u‖
2
L2) −C(ε1, ‖u‖L2)

≥ −δ(ε, ‖u‖2L2) −C(ε1, ‖u‖L2) > −∞ (2.12)

by choosing ε and ε1 sufficiently small. Therefore, Eγ(u) is bounded from below on A(η), that is, Gη is
well defined.

In the following, we show that Gη < 0 for all η ∈ (‖Qq‖
2
L2 ,∞). For q = 1 +

2+β

N , we have

N + β − Nq + 2q =
2β + 4

N
, Nq − N − β = 2, C(β, q) = q‖Qq‖

−(2β+4)
N

L2 .
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We can obtain from (2.2) and (2.4) that

Eγ(u) ≥ (
1
2
−
ε

2
)‖∇u‖2L2 − δ(ε, ‖u‖2L2) −

λ2

2q
C(β, q)‖u‖N+β−Nq+2q

L2 ‖∇u‖Nq−N−β
L2

=
1
2

1 − ε − λ2

 ‖u‖2L2

‖Qq‖
2
L2


β+2
N

 ‖∇u‖2L2 − δ(ε, ‖u‖2L2), (2.13)

by choosing ε and λ2 both sufficiently small, for any u ∈ H1 and ‖u‖2L2 = η ≤ ‖Qq‖
2
L2 , we can not judge

that whether Eγ(u) < 0 or Eγ(u) > 0.
In fact, for η > ‖Qq‖

2
L2 , we set v = µQq, µ =

√
η

‖Qq‖L2
> 1 , ‖v‖2L2 = η. Let vλ = λ

N
2 v(λx) for λ > 0,

‖vλ‖2L2 = ‖v‖2L2 = η. It follows from (2.5) that

1
2
‖∇v‖2L2 −

λ2

2q

∫
RN

(Iβ ∗ |v|q)|v|qdx =
µ2

2
‖∇Qq‖

2
L2 −

λ2

2q
µ2q

∫
RN

(Iβ ∗ |Qq|
q)|Qq|

qdx

=
N

2(N + β + 2)
(λ2µ

2 − λ2µ
2q)

∫
RN

(Iβ ∗ |Qq|
q)|Qq|

qdx < 0, (2.14)

where 2 < 2q. Hence, we can deduce from (2.14) that

Eγ(vλ) =
λ2

2
‖∇v‖2L2 −

γ

2
λα

∫
RN

|v|2

|x|α
dx −

λ1λ
N p
2

p + 2
‖v‖p+2

Lp+2 −
λ2λ

2

2q

∫
RN

(Iβ ∗ |v|q)|v|qdx

= λ2
(
1
2
‖∇v‖2L2 −

λ2

2q

∫
RN

(Iβ ∗ |v|q)|v|qdx −
γ

2
λα−2

∫
RN

|v|2

|x|α
dx

)
+
|λ1|λ

N p
2

p + 2
‖v‖p+2

Lp+2 < 0 (2.15)

for λ > 0 sufficiently small and 2 < N p
2 . Therefore, we can obtain from (2.15) that Gη < 0 for all

η ∈ (‖Qq‖
2
L2 ,∞).

Step 2. η ∈ (‖Qq‖
2
L2 ,∞) 7→ Gη is a continuous mapping.

For any η ∈ (‖Qq‖
2
L2 ,∞), let ηn ∈ (‖Qq‖

2
L2 ,∞) such that ηn → η as n large enough. From the

definition of Gηn , for any ε > 0 sufficiently small, let un ∈ A(ηn) such that

Eγ(un) ≤ Gηn + ε,

(2.12) implies that {un} is bounded in H1. We set ρn :=
√

η

ηn
un, ρn ∈ A(η), we have

Gη ≤ Eγ(ρn) =
1
2
η

ηn
‖∇un‖

2
L2 −

γ

2
η

ηn

∫
RN

|un|
2

|x|α
dx −

λ1

p + 2

(√
η

ηn

)p+2

‖un‖
p+2
Lp+2

−
λ2

2q

(√
η

ηn

)2q ∫
RN

(Iβ ∗ |un|
q)|un|

qdx

= Eγ(un) + on(1)
≤ Gηn + ε + on(1). (2.16)

On the other hand, given a minimizing sequence {vn} ⊂ A(η) for Eγ, we have

Eγ(vn) ≤ Gη + ε. (2.17)
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Set yn :=
√

ηn
η

vn, yn ∈ A(ηn), we have

Gηn ≤ Eγ(yn) ≤ Gη + ε + on(1), (2.18)

which, together with (2.16), gives that

lim
n→∞

Gηn = Gη f or any η ∈ (‖Qq‖
2
L2 ,∞). (2.19)

Step 3. For η ∈ (‖Qq‖
2
L2 ,∞), we have Gη < Gη1 + Gη−η1 for all η1 ∈ (‖Qq‖

2
L2 , η).

Let {un} be a minimizing sequence for (1.6) such that Eγ(un)→ Gη. Every minimizing sequence for
(1.6) is bounded in H1 and bounded from below in L

4
N+β+2. Since Gη < 0, we have Eγ(un) ≤ Gη

2 for n
large enough. It follows from the definition of Eγ(un) and (2.6) that

‖u‖2q

L
4

N+β +2
≥

1
2q

∫
RN

(Iβ ∗ |un|
q)|un|

qdx ≥ −Eγ(un) ≥ −
Gη

2
> 0, (2.20)

we set −Gη

2 = C1. There exists a constant τ such that lim
n→∞
‖∇un‖L2 ≥ τ > 0. Otherwise, if lim

n→∞
‖∇un‖L2 =

0, by the Gagliardo-Nirenberg inequality, we have lim
n→∞
‖un‖

p+2
Lp+2 = 0, which, together with (2.1) and

(2.4), yields that 0 > Gη = lim
n→∞

Eγ(un) = 0, which is impossible. Hence, the minimizing problem (1.6)
can be rewritten as

Gη := inf{Eγ(u) : u ∈ A(η), ‖∇u‖L2 ≥ τ}.

Set C0 = ( 2
N−α )α > 0, we can obtain from (2.1) that

γ

∫
RN

|u|2

|x|α
dx ≤ γC0η

2−α
2 ‖∇u‖αL2 < γ0C0η

2−α
2 ‖∇u‖αL2 ,

and it follows easily that

‖∇u‖2L2 − γ

∫
RN

|u|2

|x|α
dx ≥ τα

(
τ2−α − γC0η

2−α
2
)
> τα

(
τ2−α − γ0C0η

2−α
2
)
> 0

for 0 < γ < γ0 and γ0 > 0 small sufficiently, we set τα
(
τ2−α − γ0C0η

2−α
2

)
= C2. For t ∈ (1,∞), set

ũ(x) := u(t−
1
N x), ‖ũ‖2L2 = t‖u‖2L2 . We have

Gtη ≤ lim inf
n→∞

Eγ(ũ)

= lim inf
n→∞

tEγ(u) + ‖∇u‖2L2(
t1− α

N

2
−

t
2

) − γ
∫
RN

|u|2

|x|α
dx(

t1− α
N

2
−

t
2

) +
λ2t − λ2t1+

β
N

2q

∫
RN

(Iβ ∗ |u|q)|u|qdx


= tGη + (

t1− α
N

2
−

t
2

) lim inf
n→∞

(
‖∇u‖2L2 − γ

∫
RN

|u|2

|x|α
dx

)
+
λ2t − λ2t1+

β
N

2q
lim inf

n→∞

∫
RN

(Iβ ∗ |un|
q)|un|

qdx

≤ tGη + (
t1− α

N

2
−

t
2

)C2 + (λ2t − λ2t1+
β
N )C1 < tGη. (2.21)

Consequently,
Gη <

η1

η

η

η1
Gη1 +

η − η1

η

η

η − η1
Gη−η1 = Gη1 + Gη−η1 (2.22)
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for all η1 ∈ (‖Qq‖
2
L2 , η).

Step 4. Now, let us apply the concentration compactness principle in H1 to the minimizing sequence
{un}. There exists a subsequence {unk} such that one of the three possibilities in Lemma 2.5 holds.

First, we prove that the vanishing cannot occur.
Suppose by contradiction that

lim
k→∞

sup
y∈RN

∫
B1(y)
|unk |

2dx = 0,

by Lion’s Lemma, we have unk → 0 in Lm as k → ∞ for all m ∈ (2, 2N
N−2 ). Hence,∫

RN
|unk |

p+2dx→ 0 as k → ∞ f or 2 < p + 2 < 2N/(N − 2).

By the domain decomposition, the Hölder inequality and α ∈ (0, 2), we have∫
RN

|u|2

|x|α
dx =

∫
B1(0)

|u|2

|x|α
dx +

∫
Bc

1(0)

|u|2

|x|α
dx

≤ ‖|x|−αXB1(0)‖a‖|u|2‖a′ + ‖|x|−αXBc
1(0)‖b‖|u|2‖b′ (2.23)

= C1‖u‖22a′ + C2‖u‖22b′

where 1
a + 1

a′ = 1, 1
b + 1

b′ = 1. a < N/α, b > N/α, N/α − a and b − N/α are both sufficiently small. By
(2.23) and the Sobolev inequality, we have∫

RN

|unk |
2

|x|α
dx→ 0 as k → ∞.

It follows from (2.3) that ∫
RN

(Iβ ∗ |unk |
q)|unk |

qdx→ 0 as k → ∞.

Thus,

Gη = lim
k→∞

Eγ(unk) = lim
k→∞

1
2

∫
RN
|∇unk |

2dx ≥ 0,

which contradicts Gη < 0 in step 1. Therefore, the vanishing cannot occur.
Subsequently, we prove that the dichotomy does not occur.
Suppose by contradiction that the dichotomy can occur. Then there exist a constant ξ ∈ (0, η) and

two bounded sequences {u(1)
nk }, {u

(2)
nk } ⊂ H1 such that

‖u(1)
nk
‖2L2 → ξ, ‖u(2)

nk
‖2L2 → (η − ξ) as k → ∞, (2.24)

‖unk − u(1)
nk
− u(2)

nk
‖Lp+2 → 0 as k → ∞ f or 2 < p + 2 < 2N/(N − 2), (2.25)

lim inf
k→∞

∫
RN

(|∇unk |
2 − |∇u(1)

nk
|2 − |∇u(2)

nk
|2)dx ≥ 0. (2.26)

Similarly, we have∫
RN

(Iβ ∗ |unk |
q)|unk |

qdx −
∫
RN

(Iβ ∗ |u(1)
nk
|q)|u(1)

nk
|qdx −

∫
RN

(Iβ ∗ |u(2)
nk
|q)|u(2)

nk
|qdx→ 0 as k → ∞, (2.27)
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and ∫
RN

|unk |
2

|x|α
dx −

∫
RN

|u(1)
nk |

2

|x|α
dx −

∫
RN

|u(2)
nk |

2

|x|α
dx→ 0 as k → ∞. (2.28)

Indeed, let unk = u(1)
nk + u(2)

nk + vnk , in view of u(1)
nk u(2)

nk = 0, by the direct calculation, we obtain that∫
RN

|unk |
2

|x|α
dx =

∫
RN

|u(1)
nk + u(2)

nk + vnk |
2

|x|α
dx

=

∫
RN

|u(1)
nk |

2 + |u(2)
nk |

2 + |vnk |
2 + 2Re(u(1)

nk v̄nk) + 2Re(u(2)
nk v̄nk)

|x|α
dx

=

∫
RN

|u(1)
nk |

2 + |u(2)
nk |

2

|x|α
dx + δ(ε),

where δ(ε)→ 0 as ε → 0. By (2.25)–(2.28), we obtain that

Gη ≥ lim inf
k→∞

Eγ(u(1)
nk

) + lim inf
k→∞

Eγ(u(2)
nk

)

≥ lim inf
k→∞

G
‖u(1)

nk ‖
2
L2

+ lim inf
k→∞

G
‖u(2)

nk ‖
2
L2
,

which combine with (2.19) and (2.24), we get

Gη ≥ Gξ + Gη−ξ,

which is a contradiction with (2.22). Hence, the dichotomy cannot occur.
Finally, we have ruled out both vanishing and dichotomy, then we deduce that there exists a

sequence {ynk} ⊂ R
N such that for all ε > 0, there exists R(ε) > 0 such that for all k ≥ 1∫

BR(ε)(ynk )
|unk(x)|2dx ≥ µ − ε. (2.29)

Denote ûnk(x) = unk(x + ynk), we assume that {ynk} is bounded, then there exists a û such that, up to a
subsequence, {

ûnk ⇀ û weakly in H1;
ûnk → û strongly in Lm

loc(R
N), ∀ m ∈ [2, 2N

N−2 ).
(2.30)

(2.29), together with (2.30), implies that∫
BR(ε)(0)

|û(x)|2dx ≥ µ − ε.

Thus
∫
RN |û(x)|2dx = µ, i.e., ûnk → û strongly in L2. By the Gagliardo-Nirenberg inequality, ûnk → û

strongly in Lm for m ∈ [2, 2N
N−2 ). Then (2.30) can be rewritten as{

ûnk ⇀ û weakly in H1;
ûnk → û strongly in Lm, ∀ m ∈ [2, 2N

N−2 ).
(2.31)

In the following, we claim that {ynk} is bounded. Suppose by contradiction that {ynk} is unbounded. For

γ

∫
RN

|unk(x)|2

|x|α
dx

set x=y+ynk
========== γ

∫
RN

|ûnk(x)|2

|x + ynk |
α

dx,
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by the domain decomposition and α ∈ (0, 2), R > 0 is fixed, we know∫
RN

|ûnk(x)|2

|x + ynk |
α

dx =

∫
BR(0)

|ûnk(x)|2

|x + ynk |
α

dx +

∫
Bc

R(0)

|ûnk(x)|2

|x + ynk |
α

dx := I1 + I2.

On BR(0), we have
|x + ynk | ≥ |ynk | − |x| ≥ |ynk | − R→ ∞ as k → ∞,

which, together with (2.31), shows that I1 → 0 as k → ∞. On the other hand, on Bc
R(0), by the Cauchy

convergence of improper integrals and û ∈ L2, for any ε > 0, we have∫
Bc

R(0)
|û(x)|2dx < ε, (2.32)

which, together with (2.31), yields that∫
Bc

R(0)
|ûnk(x) − û(x)|2dx ≤

∫
RN
|ûnk(x) − û(x)|2dx→ 0 as k → ∞,

then we have ∫
Bc

R(0)
|ûnk(x)|2dx −

∫
Bc

R(0)
|û(x)|2dx→ 0 as k → ∞.

Consequently, I2 → 0 as k → ∞. Therefore, we have

γ

∫
RN

|ûnk(x)|2

|x + ynk |
α

dx→ 0 as k → ∞. (2.33)

Denote
E0(u) :=

1
2

∫
RN
|∇u|2dx −

λ1

p + 2

∫
RN
|u|p+2dx −

λ2

2q

∫
RN

(Iβ ∗ |u|q)|u|qdx

and
G0
η := inf{E0(u) : u ∈ A(η)}.

We know that G0
η is attained by a nontrivial function w, that is, G0

η = inf
w∈A(η)

E0(w). Moreover, the above

steps hold for γ = 0. Thus,

Gη ≥ lim inf
k→∞

(
1
2

∫
RN
|∇ûnk |

2dx −
λ1

p + 2

∫
RN
|ûnk |

p+2dx −
λ2

2q

∫
RN

(Iβ ∗ |ûnk |
q)|ûnk |

qdx)

= lim inf
k→∞

E0(ûnk) ≥ G0
η.

Hence, Gη ≥ G0
η. By the definition of Gη, we have

G0
η > G0

η −
γ

2

∫
RN

|w|2

|x|α
dx = Eγ(w) ≥ Gη,

which contradicts Gη ≥ G0
η. Hence, {ynk} is bounded. We may assume, going if necessary to a

subsequence, lim
k→∞

ynk = ŷ for some ŷ ∈ RN . Consequently, we have

‖unk(x) − û(x − ŷ)‖Lm ≤ ‖unk(x) − û(x − ynk)‖Lm + ‖û(x − ynk) − û(x − ŷ)‖Lm
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= ‖unk(x + ynk) − û(x)‖Lm + ‖û(x − ynk) − û(x − ŷ)‖Lm ,

from (2.31) and lim
k→∞

ynk = ŷ for some ŷ ∈ RN , we have

‖unk(x) − û(x − ŷ)‖Lm → 0 as k → ∞ f or any m ∈ [2, 2N/(N − 2)).

We define ū(x) = û(x − ŷ). Consequently,

Gη = lim
k→∞

(
1
2

∫
RN
|∇unk |

2dx −
γ

2

∫
RN

|unk |
2

|x|α
dx −

λ1

p + 2

∫
RN
|unk |

p+2dx −
λ2

2q

∫
RN

(Iβ ∗ |unk |
q)|unk |

qdx)

≥
1
2

∫
RN
|∇ū|2dx −

γ

2

∫
RN

|ū|2

|x|α
dx −

λ1

p + 2

∫
RN
|ū|p+2dx −

λ2

2q

∫
RN

(Iβ ∗ |ū|q)|ū|qdx

= Eγ(ū) ≥ Gη.

By the definition of Gη, we see that ū is a minimizer of Gη, lim
k→∞
‖∇unk‖

2
L2 = ‖∇ū‖2L2 , and hence unk → ū

in H1. �

3. Proof of Theorem 1.2

Proof. By Lemma 2.7, we see that the solution ψ of (2.1) exists globally. Suppose by contradiction
that there exist sequences {u0,n} ⊂ H1 and {tn} ⊂ R

+ and a constant ε > 0 such that for all n ≥ 1,

inf
z∈K(η)

‖u0,n − z‖H1 <
1
n
, (3.1)

inf
z∈K(η)

‖un(tn) − z‖H1 ≥ ε, (3.2)

where un(t) is the solution to (1.1) with initial data u0,n. From (3.1), there exists {zn} ⊂ K(η) such that

inf
zn∈K(η)

‖u0,n − zn‖H1 <
2
n
,

and there exists z ∈ K(η) such that
lim
n→∞
‖zn − z‖H1 = 0.

Hence, we get
lim
n→∞
‖u0,n‖

2
L2 = ‖z‖2L2 = η, lim

n→∞
Eγ(u0,n) = Eγ(z) = Gη.

By the conservation of mass and energy, we have

lim
n→∞
‖un(tn)‖2L2 = η, lim

n→∞
Eγ(un(tn)) = Eγ(z) = Gη,

then {un(tn)} is bounded in H1.
Set ŭn =

√
ηun(tn)

‖un(tn)‖L2
, ‖ŭ‖2L2 = η, we deduce that

Eγ(ŭn) =
η

‖un(tn)‖2
L2

Eγ(un(tn)) +

( √
η

‖un(tn)‖L2

)2

−

( √
η

‖un(tn)‖L2

)p+2 λ1

p + 2

∫
RN
|un(tn)|p+2dx
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+

( √
η

‖un(tn)‖L2

)2

−

( √
η

‖un(tn)‖L2

)2q λ2

2q

∫
RN

(Iβ ∗ |un(tn)|q)|un(tn)|qdx

= Eγ(un(tn)) + on(1),

which implies that
lim
n→∞

Eγ(ŭn) = lim
n→∞

Eγ(un(tn)) = Gη.

Hence, {ŭn} ⊂ A(η) is a minimizing sequence of Eγ. There exists z̆ ∈ K(η) such that

lim
n→∞
‖ŭn − z̆‖H1 = 0,

by the definition of ŭn, we know

lim
n→∞
‖ŭn − un(tn)‖H1 = lim

n→∞

( √
η

‖un(tn)‖2
− 1

)
‖un(tn)‖H1 = 0.

We can get that
lim
n→∞
‖un(tn) − z̆‖H1 = 0,

which contradicts (3.2). Hence, K(η) is orbitally stable. This completes the proof. �
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