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1. Introduction

It is well known that the classical boundary conditions cannot describe certain peculiarities of
physical, chemical, or other processes occurring within the domain. In order to overcome this
situation, the concept of nonlocal conditions was introduced by Bicadze and Samarskii [1]. These
conditions are successfully employed to relate the changes happening at nonlocal positions or
segments within the given domain to the values of the unknown function at end points or boundary of
the domain. For a detailed account of nonlocal boundary value problems, for example, we refer the
reader to the articles [2—6] and the references cited therein.

Computational fluid dynamics (CFD) technique directly deals with the boundary data [7]. In case
of fluid flow problems, the assumption of circular cross-section is not justifiable for curved structures.
The idea of integral boundary conditions serves as an effective tool to describe the boundary data on
arbitrary shaped structures. One can find application of integral boundary conditions in the study of
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thermal conduction, semiconductor, and hydrodynamic problems [8—10]. In fact, there are numerous
applications of integral boundary conditions in different disciplines such as chemical engineering,
thermoelasticity, underground water flow, population dynamics, etc. [11-13]. Also, integral boundary
conditions facilitate to regularize ill-posed parabolic backward problems, for example, mathematical
models for bacterial self-regularization [14]. Some recent results on boundary value problems with
integral boundary conditions can be found in the articles [15-19] and the references cited therein.

The non-uniformities in form of points or sub-segments on the heat sources can be relaxed by
using the integro multi-point boundary conditions, which relate the sum of the values of the unknown
function (e.g., temperature) at the nonlocal positions (points and sub-segments) and the value of the
unknown function over the given domain. Such conditions also find their utility in the diffraction
problems when scattering boundary consists of finitely many sub-strips (finitely many edge-scattering
problems). For details and applications in engineering problems, for instance, see [20-23].

The subject of fractional calculus has emerged as an important area of research in view of
extensive applications of its tools in scientific and technical disciplines. Examples include neural
networks  [24, 25], immune  systems  [26], chaotic ~ synchronization  [27, 28],
Quasi-synchronization [29, 30], fractional diffusion [31-33], financial economics [34], ecology [35],
etc. Inspired by the popularity of this branch of mathematical analysis, many researchers turned to it
and contributed to its different aspects. In particular, fractional order boundary value problems
received considerable attention. For some recent results on fractional differential equations with
multi-point and integral boundary conditions, see [36,37]. More recently, in [38, 39], the authors
analyzed boundary value problems involving Riemann-Liouville and Caputo fractional derivatives
respectively. A boundary value problem involving a nonlocal boundary condition characterized by a
linear functional was studied in [40]. In a recent paper [41], the existence results for a dual
anti-periodic boundary value problem involving nonlinear fractional integro-differential equations
were obtained.

On the other hand, fractional differential systems also received considerable attention as such
systems appear in the mathematical models associated with physical and engineering
processes [42-46]. For theoretical development of such systems, for instance, see the articles [47-52].

Motivated by aforementioned applications of nonlocal integral boundary conditions and fractional
differential systems, in this paper, we study a nonlinear mixed-order coupled fractional differential
system equipped with a new set of nonlocal multi-point integral boundary conditions on an arbitrary
domain given by
“Dix(t) = (2, x(1), Y1), 0 < £ <1, 1€ a,bl,

D y(t) = Yt x(0), y(1), 1 < <2, t€la,bl,
b
px(a) + qy(b) = yo + Xo f (x(s) + y(s))ds, (1.1)
m a b
Y@ =0,y 0) = Y i)+ A [ a(sxds,
i=1 T

A< <03<...<0,<T<b,

where ‘DY 1s Caputo fractional derivative of order y € {£,{},¢,¥ : [a,b] X R X R — R are given
functions, p, g, ;, x0,y0 € R,i =1,2,...,m.
Here we emphasize that the novelty of the present work lies in the fact that we introduce a coupled
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system of fractional differential equations of different orders on an arbitrary domain equipped with
coupled nonlocal multi-point integral boundary conditions. It is imperative to notice that much of the
work related to the coupled systems of fractional differential equations deals with the fixed domain.
Thus our results are more general and contribute significantly to the existing literature on the topic.
Moreover, several new results appear as special cases of the work obtained in this paper.

We organize the rest of the paper as follows. In Section 2, we present some basic concepts of
fractional calculus and solve the linear version of the problem (1.1). Section 3 contains the main
results. Examples illustrating the obtained results are presented in Section 4. Section 5 contains the
details of a variant problem. The paper concludes with some interesting observations.

2. Preliminaries

Let us recall some definitions from fractional calculus related to our study [53].

Definition 2.1. The Riemann—Liouville fractional integral of order @ € R (a > 0) for a locally
integrable real-valued function o of order a € R, denoted by I}, 0, is defined as

a—1

I'(@)

13+Q(I)Z(Q>k )(t)—r( )f(t—s)“ Yo(s)ds, —c0o <a<t<b< +oo,

where I denotes the Euler gamma function.

Definition 2.2. The Riemann—Liouville fractional derivative D0 of order a €lm — 1,m], m € N is
defined as

m

Do(t)=—1"0@) = f(t—s)m 0o (s)ds, —o <a<t<b<+oo,

m

T (m—a)dm

while the Caputo fractional derivative “D¢.u is defined as

( )m 1
(m— 1!

(a)

‘Do) = [Q (0 —o(a)—¢ (a) 0" V(@) ———

for o, Q(’”) € L'[a,b].

Remark 2.1. The Caputo fractional derivative “D¢. o is also defined as

cny _ 1 ' _ ym—a—1_(m)
Do) = s fo (1= 9" o™ (s)ds.

In the following lemma, we obtain the integral solution of the linear variant of the problem (1.1).
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Lemma 2.1. Let ®,¥ € C([a, b],R). Then the unique solution of the system
‘DE.x(t) = D(1), 0<£< 1, t€la,bl,
‘DS.y(t)=Y(t), 1 <L <2, te[ab),

b

px(a) + qy(b) = yo + xo f (x(s) + y(s))ds,

a

m b
y@) =0, y(b) = ) (o) + 2 f x(s)ds,
i=1

T

a<01<07<...<0,<T<b,

is given by a pair of integral equations

1 P (b - s)
) = I§+(D(t)+x{y0+x0 a ; (§+s)1)(l)(s)ds
Yoo b=9f (b= (b=
+f (x°r(§+1>+‘9‘ fe-n ¢ T )T
(o — 5)*! (s —u)™!
e f T W mad f f I
- b (b = g
w0 = Fwn+ Y “){82y0+.92x0 a é(g +s)1)(I)(s)ds

b _ oY _ -l )
+ f (82x0 k) szq(b ) - 3(b 9) )‘I’(s)ds

L+1) I') -1

m o] _ -1 _ &-1
+83Z (U’r@) D(s)ds + £31 f f %@(u)duds},

where

(b - a)?
, &

&1 =q(b-a)=x—F7

i=1
and it is assumed that
A:83+8281 # 0.

q)(u)duds},

= > 6+ A=), & =p-(b-a)x,

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

Proof. Applying the integral operators Ij+ and I(i respectively on the first and second fractional

differential equations in (2.1), we obtain

x(1) = de)(t) +c; and y(¢) = I§+‘I’(t) + ¢y + c3(t — a),

(2.6)

where ¢; € R,i = 1,2, 3 are arbitrary constants. Using the condition y(a) = 0 in (2.6), we get ¢c; = 0.
Making use of the conditions px(a) + qy(b) = yo + Xo fa b(x(s) + y(s))ds and y'(b) = Y, 6:;x(0) +

A fT ’ x(s)ds in (2.6) after inserting ¢, = 0 in it leads to the following system of equations in the unknown

constants ¢; and c3:

(p —(b- a)xo)01 + (q(b —a)— Xy c3 = Yo + Xo

2

(b - a)z) P b-rf
o« TE+1
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b—r)
+ % é - r)l)‘I’(r)dr—q (D), 2.7)
m b
(D 6+ A = 0))er = c3 = I W(b) - Zaﬁ (o) - f £, d(s)ds. (2.8)

i=1 i=1

Solving (2.7) and (2.8) for ¢; and c¢3 and using the notation (2.5), we find that

-1 b £ b (b—’”)§
o = { (15w b) - Z(s D) - 1 f I.0(s)ds) + yo + xo f F(§+l)®(r)dr

" (b=rf
o T(C+1)

1 A3 b b—r)
¢ = K{gz(y”f ;@“ ))(D(FWHO . é(g +r)1)T(r)dr_q1§*lP(b))

b
—e3(15"W(b) - Z(s L D(0y) - A f Ij+(l)(s)ds)}.

+Xo Y(r)dr — qu\lf(b)},

Inserting the values of ¢y, ¢;, and c¢3 in (2.6) leads to the solution (2.2) and (2.3). One can obtain the
converse of the lemma by direct computation. This completes the proof. O

3. Main results

Let X = C([a, b],R) be a Banach space endowed with the norm ||x|| = sup{|x(?)|, ¢ € [a, b]}.
In view of Lemma 2.1, we define an operator 7 : X X X — X by:

T (x(1), (1)) = (T1(x(0), y(1)), T2(x(2), y(1))),

where (X X X, ||(x, y)||) is a Banach space equipped with norm ||(x, y)|| = [|x]| + |[yIl, x,y € X,

6O = Ll x(1) y<r>>+l(y +xf e
o T\ N A (T

m

@(s, x(s), y(s5))ds

’ (o — s
+ f PUW(s, X(5), s =21 ) 8 | = els x(s),y(9)ds
a i=1 a

b s _ £-1
—slxlfT L %(p(u, x(u),y(u))duds),

" (b-s)
. TE+D
7 (o = 5!

b
+ f PS5, X(5). YN + &5 )01 | ol d(5),y()ds
a i=1 a

b X AV
+83/1j; j; %gp(u, x(u),y(u))duds),

T )(t) = [t x(0),y(0) + =

A o(s, x(5), y(s))ds

a)
(82)’0 + E2X0

m
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For computational convenience we put:

_ -ay b-aft &
BT TEen |A|(' T2y '”Z"'r@

e = a)i*(lg;(;)— a)‘f“l),
e
b= Ol |3|Z|,|F(§

el (b - a)f'“r*(lf—Jr (;)— a)f”l),

Our first existence result for the system (1.1) relies on Leray-Schauder alternative [54].

Theorem 3.1. Assume that:

(Hy) ¢, : [a,b] X R X R — R are continuous functions and there exist real constants k;,y; > 0, (i =

1,2) and ko > 0,y > O such that Vx,y € R,

lo(t, x, )| < ko + kilx| + kalyl,
(2, x, V)| < yo + yilxl + yalyl.

Then there exists at least one solution for the system (1.1) on [a, b] if

(Ll + Lg)kl + (Ml + Mz)’)/l <1 and (L] + Lg)kz + (M] + Mz)’)/z < 1,

where L;, M;,i = 1,2 are given by (3.1).

(3.2)

Proof. Let us note that continuity of the functions ¢ and ¢ implies that of the operator 7 : XXX — XxX.

Next, let Q € X X X be bounded such that

(2, x(2), y(O)| < K1,

for positive constants K; and K,. Then for any (x,y) € Q, we have

T O < It x(2), y(0)] + —(Iyol + IxOlf

Al F(f

AIMS Mathematics

|lr//(t7 x(t)’y(t))l < K27 V(x,)’) € Q’

Iso(s, x(s), y(s))lds
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b
+f lo1 ()l (s, x(s), y(s)lds

o] _ &-1
+|sl|Z|6| [ et x50

— é1
el f %ww,x(m,y(wmduds)

lvol [ (D a)"“ (b —a)**!
E+{r<§+1> |A|(' ey 'I'Z"'r@f

IA

(b= @) = (r — @]
+le | fé+2) )}Kl
1 b - a)“l b - a){_l (b - a)»f
{|A|(' W Ty Pl P irEs 1))}K2
= % + L]Kl + M1K2,

which implies that

Iyol
1Ty (x, )| < y—° + LK, + M\K>.

In a similar manner, one can obtain that

b —
||T2(x,y)|| < |82y()|(—a) + LK) + M2K2

|A|

In consequence, the operator 7T is uniformly bounded as

[yol N lexyol(b — a)

T
17 (x, Yl < A A

+ (L1 + Lz)Kl + (Ml + M2)K2.

Now we show that T is equicontinuous. Let #1, #, € [a, b] with t; < t,. Then we have

IT'1(x(12), y(12)) — T1(x(t1), y(t1))I

L e !
< Kl‘r(f)ﬁ(lz s ds F(f)f(tl ) 'ds

1 f
< Kl{@ f [(t, — s)5 ! = (1 —s)f—‘]ds+r(§) f (ty — 5)°~ ‘ds}

[2(t — 1)f + |65 = £5]1.

K
<
I'E+1)
Analogously, we can obtain
IT2(x(22), y(22)) — To(x(1), y(21))|

ol gy 21l (b-ay"
T+ 1)[2(l2 1)+ 15 =11+ A {|82x0| TE+ D) K,

(3.3)

(3.4)
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(b — a)*"! (b-af  (b—a)’
+<|82X0|m + |82q'I‘(§ D + les] o) )Kz
O (o — b)E (b - a)*! = (7 — &)
+lé&s] Z |5i|mK1 + |e3A F&+2) Kl}-

From the preceding inequalities, it follows that the operator 7'(x,y) is equicontinuous. Thus the
operator 7'(x,y) is completely continuous.

Finally, we consider the set ¥ = {(x,y) € X X X : (x,y) = vT(x,y),0 < v < 1} and show that it is
bounded.

Let (x,y) e P with (x,y) = vT(x,y). For any ¢ € [a,b], we have
x(t) = vT1(x,y)(t), y(t) = vT1(x,y)(t). Then by (H;) we have

0] < DE 4 LG+l + )+ M0+ kel + 72bi)
= % + Liko + Myyo + (Liky + Myyplxl + (Liky + Miy2)lyl,
and
@l < W + Lo(ko + kilx| + ka[yl) + Ma(yo + yilx| + yalyD)
R0 Lak + Mayo + (Laky + May)ll + (Lo + My

In consequence of the above inequalities, we deduce that

ol
st%FI%+MW+@%+MWMm+mb+MnM%
and 20l — @)
E —d
|Ms—%tr—+um+m%+@m+Mwmm+@m+Mwmm
which imply that
ol leayol(® — a)
|Mﬂws-%+i%f—+m+mmum+%m
H[(Ly + LoYky + (M, + Moy DAl + (L + Loks + (My + Moyl
Thus 1ol leayol(s — a)
Yo EVol(b—a
IS —|—=+——"——+ L+ L)ko+ (M, + M. ,
[1Ce, W M0[|A| A (Ly 2)ko + (M, 2))’0]

where My = min{l — [(L; + Ly)k; + (M; + Mz)’yl], 1 —=[(Ly + Lk, + (M, + Mz)’)/z]} Hence the set
P is bounded. As the hypothesis of Leray-Schauder alternative [54] is satisfied, we conclude that the
operator T has at least one fixed point. Thus the problem (1.1) has at least one solution on [a,b]. O

By using Banach’s contraction mapping principle we prove in the next theorem the existence of a
unique solution of the system (1.1).
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Theorem 3.2. Assume that:

(Hy) ¢, ¥ : [a,b] X RXR — R are continuous functions and there exist positive constants l, and [, such
that for all t € [a,b] and x;,y; € R, i = 1,2, we have

lo(t, x1, x2) — @(t, y1,¥2)I < Li(lx1 = yil + |x2 = yal),

(2, x1, X2) = (2, y1, y2)| < L(x1 = yil + |x2 = y2).

If
(L] + Lz)l] + (M] + Mz)lz < 1, (35)

where L;, M;,i = 1,2 are given by (3.1) then the system (1.1) has a unique solution on |a, b].

Proof. Define sup,¢, 5 ¢(2,0,0) = Ny < 00, sup,,, ¥(2,0,0) = N; < o0 and r > 0 such that

(|yo|/|A|)(1 + (b —a)le) + (L + Ly)Ny + (M, + Mz)Nz
1= (L + Lo)ly — (M + My)l,

Let us first show that TB, C B,, where B, = {(x,y) € X X X : ||(x,y)|| < r}. By the assumption (H,), for
(x,y) € B,, t € [a, b], we have

IA

|90(t7 X(l), )’(I)) - (P(t’ O’ 0)| + |‘10(t’ O, O)l (36)
L(x@] + [yl + Ny
Ldlxdl + Iyl + Ny < Lir + Ny

(2, x(0), y(D)

INIA

Similarly, we can get
(2, x(2), y(O)I < L(lIxl| + lIyll) + N2 < Lr + Na. (3.7)

Using (3.6) and (3.7), we obtain

b —_ ¢
T )0l < I le(t, x(0), y(f))|+m(|yo| ™ f I(,[Z§+)l)|<p(s,x(s),y(s))|ds

b
+f lo1 ()l (s, x(s), y(s)lds

+'81'Z|‘5' [ (”’F(f) (p(s. 3(5). Y()lds

(s —wf!
+le1 | f f |¢(u,X(u),y(u))ldudS)

re
< (R ey - S
e “);;— o a>f+1|)} s
{Iil(| OI% + Isll% + Iqlgzé;aii)}(lzr +Ny)
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= % +L1(llr+N1) +M1(127+N2)

= % + (L]l] + Mllz)l"-i- LiN; + M{N,. (38)

Taking the norm of (3.8) for ¢ € [a, b], we get

[yol

T (x, Il < Al + (Lily + Mil)r + LiNy + M| N,.
Likewise, we can find that
IT2(x, yIl < W + (Laly + Malo)r + LNy + Mo Ns.
Consequently,
ITepIl < % + W + [(Ly + Loy + (M) + M) |r
+(L; + Ly)N; + (M, + M)N,
< r

Now, for (x1,y1), (x2,y2) € X X X and for any ¢ € [a, b], we get

71 (x2, y2)(#) = T1(x1, y1)(D)]

b-af 1(_ (b-a" (o —af
{r<§+ n* E('x(" fe+2 o LTy

IA

b —a)t! — _ \é+L
L a)r(g +(;) a) |)}11(||x2 = xill+ [ly2 = il
1 (b—a)*! (b - a)*! b - a)f
+{m(|x0| rz+2) + lei ro + |61|F(§ " 1))}lz(||x2 —xill + [ly2 = y1lD

= (Lily + Mib)([lx2 = x1ll + [[y2 = 11D,
which implies that
T\ (x2, y2) = T (x1, yOI < (Lily + Maba)(llx2 — xall + [ly2 = yilD. (3.9)
Similarly, we find that
IT2(x2, y2) = To(x1, yDIl < (Laly + Mabo)(|lx2 — xil] + lly2 = yall). (3.10)
It follows from (3.9) and (3.10) that
T (x2, y2) = T (x1, yOIl < [(Ly + Lo)ly + (M7 + Ma)L](lx2 — xill + [ly2 = y1lD).

From the above inequality, we deduce that T is a contraction. Hence it follows by Banach’s fixed point
theorem that there exists a unique fixed point for the operator T, which corresponds to a unique solution
of problem (1.1) on [a, b]. This completes the proof. O

AIMS Mathematics Volume 6, Issue 6, 5801-5816.
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3.1. Example

Consider the following mixed-type coupled fractional differential system
3
D . x(t) = ¢(t, x(2), y(1)), 1 € [1,2],

Diy(r) = 46,050, 1€ [1.2)
1 1 1 (3.11)
x(1)+ 53(2) = 00 f (x(s) + Y(s))ds,

2
W(1) =0, (@) = Zl Six(or) + 1—10 f *(s)ds,

where & = 3/4, = 7/4,p = 1/5,q = 1/10,x9 = 1/1000,y, = 0,6, = 1/10,6, = 1/100, o,
5/4,0, = 3/2,7 = 7/4,4 = 1/10. With the given data, it is found that L; =~ 3.5495 x 1072, L,
6.5531 x 1072, M, ~ 1.0229, M, ~ 0.90742.

(1) In order to illustrate Theorem 3.1, we take

1 e’

1R

ot,x,y) = e+ gy cosy+ =y siny,
1
Ut x,y) = tVP+3+ —x tan~'y + . (3.12)

)
V48 + 12

It is easy to check that the condition (H,) is satisfied with kg = 1/e*,k; = 1/8,ky = 1/(3e),yo =
2\/7, v1 = 1/(6e),y, = 1/7. Furthermore, (L, + Ly)k; + (M; + M,)y; ~ 0.13098 < 1, and (L; +
L)k, + (M + My)y, ~ 0.28815 < 1. Clearly the hypotheses of Theorem 3.1 are satisfied and hence the
conclusion of Theorem 3.1 applies to problem (3.11) with ¢ and ¢ given by (3.12).

(2) In order to illustrate Theorem 3.2, we take

-t

1
o(t,x,y) = cosx+cost, Yt x,y) = =7 (sinx + [y]) + e, (3.13)

3412

which clearly satisfy the condition (H,) with /; = 1/(2e) and /, = 1/6. Moreover (L; + L)y + (M, +
M,)l, ~ 0.3403 < 1. Thus the hypothesis of Theorem 3.2 holds true and consequently there exists a
unique solution of the problem (3.11) with ¢ and ¢ given by (3.13) on [1, 2].

4. A variant problem

In this section, we consider a variant of the problem (1.1) in which the nonlinearities ¢ and  do not
depend on x and y respectively. In precise terms, we consider the following problem:

‘Dix(t) = gt y(1), 0< &< 1, t€[a,bl,
‘DS.y(1) = Y(t, x(1)), 1 < <2, telabl,
pr(@) +q¥(b) = Yo+ X f (x(5) + Y()ds, @

b
y@) =0, y(b) = Z Six(e) + A f x(s)ds,
i=1 T

A<01<02<...<0,<T7T<...<b,

AIMS Mathematics Volume 6, Issue 6, 5801-5816.
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where ¢, ¢ : [a,b] X R — R are given functions. Now we present the existence and uniqueness results
for the problem (4.1). We do not provide the proofs as they are similar to the ones for the problem

(1.1).

Theorem 4.1. Assume that o, ¥ : [a, b]XR — R are continuous functions and there exist real constants
ki,y; 20, (i=0,1)and ky > 0,7y, > 0 such that, Vx,y € R,

[p(t, )| < ko + kilyl, [W(t, X)| < ¥y + 7,14l

Then the system (4.1) has at least one solution on [a, b] provided that (M, +M,)y, < 1 and (L, +L2)§1 <
1, where L, My and L,, M, are given by (3.1).

Theorem 4.2. Let o, ¥ [a,b] X R — R be continuous functions and there exist positive constants I,
and I, such that, for allt € [a,b] and x;,y; € R, i = 1,2,

@t x1) — @ty < il = yil. Wt x0) = Wt y)| < bl = yil.
If (L) + Lz)zl + (M, + Mz)zz < 1, where L, M, and L,, M, are given by (3.1) then the system (4.1) has
a unique solution on [a, b].

5. Conclusions

We studied the solvability of a coupled system of nonlinear fractional differential equations of
different orders supplemented with a new set of nonlocal multi-point integral boundary conditions on
an arbitrary domain by applying the tools of modern functional analysis. We also presented the
existence results for a variant of the given problem containing the nonlinearities depending on the
cross-variables (unknown functions). Our results are new not only in the given configuration but also
yield some new results by specializing the parameters involved in the problems at hand. For example,
by taking 6; = 0,i = 1,2,...,m in the obtained results, we obtain the ones associated with the coupled
systems of fractional differential equations in (1.1) and (4.1) subject to the boundary conditions:

b b
px(a) + qy(b) = yo + Xo f (x(s) + y(s)ds, y(a) =0, y'(b)=2 f x(s)ds.

For A = 0, our results correspond to the boundary conditions of the form:
b m
px(a) + gy(b) = yo + Xo f (x(s) + y(s)ds, y(a) =0, y'(b) = Z 6;x(0y). (5.1)
a i=1

Furthermore, the methods employed in this paper can be used to solve the systems involving fractional
integro-differential equations and multi-term fractional differential equations complemented with the
boundary conditions considered in the problem (1.1).
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