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1. Introduction

Over the past few decades, neural networks have been widely applied in the field of smart grid,
secure communication, machine learning, among many others [1–6]. Such applications heavily depend
on their dynamical behaviors such as stability, synchronization, periodicity, passivity, to name just a
few. Among them, the input-to-state stability (ISS), which is originally developed by E. D. Sontag in
the late 1980s [7] and measures the influence of external input to stability, is of comparable significance
in the dynamical analysis of nonlinear systems including neural networks. Extensions of ISS have also
been proposed for various kinds of nonlinear systems and ignited plenty of valuable works [8–15].

In the ISS analysis of neural networks, the time delays are usually involved in neural networks,
since the finite speed of signal transmission and amplifier switching inevitably causes the hysteresis
of neural networks. There are usually two kinds of time delays considered in neural networks: the
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time-varying delays and the infinite distributed delays [16–21]. For instance, the exponential ISS of
recurrent neural networks with multiple time-varying delays was studied by the Lyapunov method
in [18], whose results were further extended to the stochastic case with both time-varying delays and
infinite distributed delays [19]. In [20], the pth moment exponential ISS of stochastic recurrent neural
networks with time-varying delay was investigated by the vector Lyapunov function to reduce the
conservatism caused by the scalar Lyapunov function used in previous literature.

Recently, the reaction-diffusion is introduced in neural-network models because the electrons
sometimes have the diffusive shift trajectory in nonuniform electromagnetic field. Different from the
delayed neural networks (DNNs) without reaction-diffusion, the delayed reaction-diffusion neural
networks (DRDNNs) are described by PDEs because their dynamics depends on both the spatial
derivative and the time derivative. Therefore, the dynamical analysis of DRDNNs has attracted the
interest of plenty of researchers and the extension of ISS has also been carried out from DNNs to
DRDNNs [22–30]. In addition, the ISS is used not only for DRDNNs, but is in fact a key concept in
robust control of infinite-dimensional systems, with the expectation that ISS will enable similar
advances in the control theory of infinite-dimensional systems as it has for finite-dimensional
systems. See [31, 32] and the references therein.

On the other hand, the impulsive effects may occur in the hardware implementation of neural
networks since the nodes may be shocked by defective connections, sudden attacks, and abrupt
changes [24], so the impulsive delayed neural networks (IDNNs) have been massively
studied [33–37] where the impulses are classified into two kinds: the stabilising impulses which force
the trajectory of neural network into desirable pattern, and the destabilising impulses which bring
fluctuation to neural networks. However, the multiple impulses containing both stabilising impulses
and destabilising impulses are more elegant to model the instantaneous shocks of the neural networks.
Even though some ISS properties of impulsive nonlinear system with multiple impulses are unveiled
in recent literature [38, 39], the ISS of DNNs with multiple impulses, is rarely investigated, not to
mention the ISS of DRDNNs with multiple impulses, because the multiple impulses are difficult to
handle with the infinite distributed delays included in neural networks.

Motivated by the above discussion, the aim of this paper is to establish the ISS criteria of
DRDNNs with multiple impulses. The contributions lie in the following aspects: (1) The multiple
impulses, infinite distributed delays, and reaction-diffusion are considered simultaneously in
neural-network model; (2) The ISS conditions of the DRDNNs with multiple impulses are obtained
by the direct estimate of mild solution and an integral inequality; (3) It show that the ISS property of
continuous dynamics can be retained under certain multiple impulsive disturbance and the unstable
continuous dynamics can be stabilised by multiple impulsive control, if the intervals between the
multiple impulses are bounded.

The remainder of this paper is organized as follows. Section 2 introduces the neural-network model
and preliminaries. Section 3 gives the sufficient conditions for ISS of the DRDNNs with multiple
impulses. Section 4 presents the numerical simulation of two examples. Finally, the conclusions are
drawn in Section 5.
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2. Model description and preliminaries

In this paper, unless otherwise specified, the following notations are used. n̄ = {1, 2, · · · , n} and
N = {1, 2, 3, · · · }. For a, b ∈ R, a ∧ b denotes the minimum of a and b. L , (L2(O))n and L2(O)
is a Hilbert space with inner product 〈z1, z2〉 =

∫
O

z1(x)z2(x)dx and norm ‖z‖2 = 〈z, z〉, where O =

{x|x = (x1, · · · , xw)T , |x j| ≤ ρ j, ρ j ∈ R+, j ∈ w̄}. Here, we also use the same symbol ‖ · ‖ to denote
the usual norm of linear bounded operators from L to L. H , (H)n where H = {z ∈ L2(O) :
(∂z)/(∂xi), (∂2z)/(∂xi∂x j) ∈ L2(O), z(t, x)|x∈∂O = 0, i, j = 1, 2, · · · ,w}. Let F0 = {t1, t2, t3, · · · } be the
sequences of impulse times satisfying 0 = t0 < t1 < t2 < · · · < tk < · · · to prevent the occurrence of
accumulation points. For ή > 0 and ὴ > 0, F +(ὴ), F−(ή), and F (ή, ὴ) denote the sets of admissible
sequences of impulse times in F0 satisfying 0 < tk− tk−1 ≤ ὴ, ή ≤ tk− tk−1 < ∞, and ή ≤ tk− tk−1 ≤ ὴ for
any k ∈ N, respectively. PC(R, J) represents the space of functions f : R→ J which are continuous on
(tk−1, tk) for k ∈ N and f (t+) = f (t) for ∀t ∈ R where R = R or R = R+ and J is an Euclidean space or a
Hilbert space. U , PC(R+,H∩L). PC represents the space of functions f : (−∞, 0]→ L∩H which
have at most a finite number of jump discontinuities on (−∞, 0] and f (t+) = f (t) for ∀t ∈ (−∞, 0].
PC

b = { f | f ∈ PC and f (t) is bounded on (−∞, 0]} with norm ‖ f ‖PCb = sup−∞<t≤0 ‖ f (t)‖. A function
z(t, x) is said to be piecewise continuous if z(t, x) is piecewise continuous for all x ∈ O. K represents
the class of continuous strictly increasing function κ : R+ → R+ with κ(0) = 0. K∞ is the subset of K
functions that are unbounded. A function β is said to belong to the class of KL, if β(·, t) is of class K
for each fixed t > 0 and β(s, t) decreases to 0 as t → +∞ for each fixed s ≥ 0.

Consider the following DRDNNs with multiple impulses
∂ẑi(t,x)
∂t = di

w∑
j=1

∂2 ẑi(t,x)
∂x2

j
− aiẑi(t, x) +

n∑
j=1

bi j f̂ j(ẑ j(t, x)) +
n∑

j=1
pi j f̂ j(ẑ j(t − τ, x))

+
n∑

j=1
qi j

∫ +∞

0
k(r) f̂ j(ẑ j(t − r, x))dr + ûi(t, x), t ≥ 0, t , tk,

ẑi(tk, x) = (1 + ck)ẑi(t−k , x) + ûi(t−k , x), k ∈ N,

(2.1)

where x ∈ O, i ∈ n̄, ẑi(t, x) is the state variable of the ith neuron at time t and space x, di represents
the positive transmission diffusion coefficient of the ith neuron,

∑w
j=1

∂2 ẑi(t,x)
∂x2

j
represents the reaction-

diffusion term, ai > 0 stands for the recovery rate, bi j > 0, pi j > 0, and qi j > 0 are the connection
weight strengths of the jth neuron on the ith neuron, f̂ j stands for the activation function, ûi is the
external input, i, j ∈ n̄. The delay kernel k : [0,+∞) → R+ is a nonnegative continuous function
satisfying that there exists a positive constant λ∗ such that k(s) ≤ e−λ

∗s for s ≥ 0. Then, the neural-
network model (2.1) can be rewritten in terms of the following vector form

∂ẑ(t,x)
∂t = D∆ẑ(t, x) − Aẑ(t, x) + B f̂ (ẑ(t, x)) + P f̂ (ẑ(t − τ, x))

+Q
∫ +∞

0
k(r) f̂ (ẑ(t − r, x))dr + û(t, x), t ∈ [tk−1, tk),

ẑ(tk, x) = (1 + ck)ẑ(t−k , x) + û(t−k , x), k ∈ N,
(2.2)

where ẑ = (ẑ1, ẑ2, · · · , ẑn)T , ∆ =
∑w

j=1
∂2

∂x2
j
, D = diag(d1, d2, · · · , dn), A = diag(a1, a2, · · · , an), B =

(bi j)n×n, P = (pi j)n×n, Q = (qi j)n×n, f̂ (z) = ( f̂1(z1), f̂2(z2), · · · , f̂n(zn))T , and û = (û1, û2, · · · , ûn)T . The
Dirichlet boundary condition and initial condition, associated with (2.1) or (2.2), are given by

ẑ(t, x)|x∈∂O = 0, t ∈ R, (2.3)
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ẑ(t, x) = φ̂(t, x) ∈ PCb, t ≤ 0, x ∈ O. (2.4)

As standard hypotheses, we assume that
(H1) there exist positive constants li such that, for ∀ẑ1, ẑ2 ∈ R, i ∈ n̄,

| f̂i(ẑ1) − f̂i(ẑ2)| ≤ li|ẑ1 − ẑ2|;

(H2) there exist constants N ∈ N and σk > 0, k ∈ N such that σk+N = σk and |1 + ck| ≤ σk.
In this paper, we always assume that (H1) and (H2) are satisfied. The sets of stabilising strengths

and destabilising strengths are denoted by {σ̀i}
p
i=1 and {σ́i}

N−p
i=1 , respectively. Define a linear operator

D from H to L by D ẑ = D∆ẑ − Aẑ, then D is an infinitesimal generator of a strongly continuous
C0-semigroup S (t) [40]. Furthermore, the neural networks (2.2)–(2.4) can be reformulated in terms of
the following abstract impulsive functional differential equation

dz(t)
dt = Dz(t) + B f (z(t)) + P f (z(t − τ))

+Q
∫ +∞

0
k(r) f (z(t − r))dr + u(t), t ∈ [tk−1, tk),

z(tk) = (1 + ck)z(t−k ) + u(t−k ), k ∈ N,
z0 = φ ∈ PCb,

(2.5)

where z(t) = ẑ(t, x) ∈ L, f : L → L, u(t) = û(t, x) ∈ L, and z0(θ) = φ(θ) = φ̂(θ, x) ∈ PCb, θ ∈ (−∞, 0].

Definition 1. An L-valued functional z(t) = z(t)(x, φ, u) is said to be a mild solution of (2.5), if z(t)
satisfies the following equation

z(t) = S (t)φ(0) +

∫ t

0
S (t − s)B f (z(s))ds +

∫ t

0
S (t − s)P f (z(s − τ))ds

+

∫ t

0
S (t − s)Q

∫ +∞

0
k(r) f (z(s − r))drds +

∫ t

0
S (t − s)u(s)ds +

∑
tk≤t

S (t − tk)(ckz(t−k ) + u(t−k )).

(2.6)

Remark 1. From Lemma 2.2 and Theorem 5.3 of [41], we can obtain the local existence and
uniqueness of mild solution under (H1) and (H2), and the mild solution is continuous between the
impulse intervals. If the system (2.5) is input-to-state stable, the mild solution can not explode in
finite time, which implies the global existence and uniqueness.

Definition 2 ( [9]). For a given sequence {tk}k∈N of impulse times, the DRDNNs with multiple impulses
(2.5) are called input-to-state stable, if there exist functions β ∈ KL and γ ∈ K∞ such that ∀φ ∈ PCb,
∀u ∈ U it holds that

‖z(t)‖ ≤ β(‖φ‖PCb , t) + sup
s≤t

γ(‖u(s)‖).

The DRDNNs with multiple impulses (2.5) are called uniformly input-to-state stable (UISS) over a
given set F of admissible sequences of impulse times if it is input-to-state stable for every sequence in
F with β and γ independent of the choice of the sequence from the class F .

Lemma 1 ( [23]). Let O be a cube |x j| ≤ ρ j ( j ∈ w̄) and let h(x) be a real-valued function belonging to
C1(O), which vanishes on the boundary ∂O, that is, h(x)|∂O = 0. Then∫

O

h2(x)dx ≤ ρ2
j

∫
O

(
∂h(x)
∂x j

)2

dx, j ∈ w̄. (2.7)
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Lemma 2. Assume that (H1) holds. Then, the mild solution of (2.5) can be represented by

z(t) = T (t, 0)φ(0) +

∫ t

0
T (t, s)B f (z(s))ds +

∫ t

0
T (t, s)P f (z(s − τ))ds

+

∫ t

0
T (t, s)Q

∫ +∞

0
k(r) f (z(s − r))drds +

∫ t

0
T (t, s)u(s)ds +

∑
tk≤t

T (t, tk)u(t−k ), t ≥ 0,
(2.8)

where

T (t, s) =


S (t − s), t, s ∈ [tk−1, tk),
(1 + ck)S (t − s), tk−1 ≤ s < tk ≤ t < tk+1,

Πk
j=i(1 + c j)S (t − s), ti−1 ≤ s < ti < tk ≤ t < tk+1.

Proof. The proof is analogous to the proof of Lemma 2.2 in [43] so as to be omitted. �

Lemma 3. Consider the following abstract Cauchy problem{ dz(t)
dt = Dz(t), t ≥ 0,

z(0) = ψ,
(2.9)

where ψ ∈ H . Then, the strongly continuous semigroup S (t) generated byD is contractive and satisfies
‖S (t)‖2 ≤ e−2ϑt for t ≥ 0 where ϑ = mini{di}

∑w
j=1(1/ρ2

j) + mini{ai}.

Proof. Recalling that the solution of (2.9) is z(t) = S (t)ψ. Combining the Gaussian theorem, the
homogeneous Dirichlet boundary condition, and Lemma 1, we obtain

〈z,Dz〉 =

n∑
i=1

di

w∑
j=1

∫
O

zi(t, x)
∂2zi(t, x)
∂x2

j

dx −
n∑

i=1

ai

∫
O

(zi(t, x))2dx

= −

n∑
i=1

di

w∑
j=1

∫
O

(
∂zi(t, x)
∂x j

)2

dx −
n∑

i=1

ai

∫
O

(zi(t, x))2dx

≤ −

n∑
i=1

w∑
j=1

di

ρ2
k

∫
O

(zi(t, x))2dx −
n∑

i=1

ai

∫
O

(zi(t, x))2dx ≤ −ϑ‖z‖2,

(2.10)

which implies that
d‖z(t)‖2

dt
= 2〈z(t),Dz(t)〉 ≤ −2ϑ‖z(t)‖2. (2.11)

Therefore, ‖z(t)‖2 ≤ e−2ϑt‖ψ‖2 for all ψ ∈ H . By the density of H in L [Theorem 1.2, 42], the result
holds for all ψ ∈ L so as to complete the proof. �

Lemma 4 ( [43]). If ή ≤ tk − tk−1 < ∞ for ∀k ∈ N, it holds that
∑

tk≤t e−c(t−tk) < 1
1−e−cή , where c > 0 and

t ≥ t1.

3. Input-to-state stability of DRDNNs with multiple impulses

In this section, the ISS of the DRDNNs with multiple impulses will be investigated by the direct
estimate of the mild solution. First, let us consider the following integral inequality with infinite
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distributed delay:
v(t) ≤ ρ1e−ct + ρ2

∫ t

0
e−c(t−s)v(s)ds + ρ3

∫ t

0
e−c(t−s)v(s − τ)ds

+ρ4

∫ t

0
e−c(t−s)

∫ +∞

0
k(r)v(s − r)drds + ρ5

∫ t

0
e−c(t−s)w(s)ds

+ρ6
∑

tk≤t e−c(t−tk)w(t−k ), t ≥ 0,
v(t) ≤ M, t ≤ 0,

(3.1)

where v ∈ PC(R,R+), w ∈ PC(R+,R+), c > 0, ρ1 ≥ M > 0, ρi > 0, i ∈ 6̄, and ή ≤ tk − tk−1 < ∞ for
∀k ∈ N.

Lemma 5. If µ = c − ρ2 − ρ3 − ρ4/λ
∗ > 0, then there exists constant 0 < λ < c ∧ λ∗ such that Θ(λ) < 1

and
v(t) < Ne−λt + κ sup

0≤s≤t
w(s), (3.2)

where κ = c
µ
(ρ5

c +
ρ6

1−e−cή ), N =
2ρ1

1−Θ(λ) + M, and

Θ(λ) =
ρ2

c − λ
+

ρ3

c − λ
eλτ +

ρ4

(c − λ)(λ∗ − λ)
. (3.3)

Proof. Let us consider the function Θ(a) where a ∈ [0, c ∧ λ∗). Since µ > 0, Θ(0) < 1 and Θ(a)
converges to positive infinity or a constant as a → c ∧ λ∗. Additionally, Θ(a) is monotonous and
continuous with respect to a. Thus, there exists λ ∈ (0, c ∧ λ∗) such that Θ(λ) < 1, which further
indicates that

ρ1

N
+

ρ2

c − λ
+

ρ3

c − λ
eλτ +

ρ4

(c − λ)(λ∗ − λ)
=
ρ1

N
+ Θ(λ)

=
ρ1

2ρ1
1−Θ(λ) + M

+ Θ(λ) <
ρ1
2ρ1

1−Θ(λ)

+ Θ(λ) =
1 − Θ(λ)

2
+ Θ(λ) =

1 + Θ(λ)
2

< 1. (3.4)

If (3.2) is not true, there exists t∗ > 0 such that

v(t∗) ≥ Ne−λt∗ + κ sup
0≤s≤t∗

w(s), (3.5)

and
v(t) < Ne−λt + κ sup

0≤s≤t
w(s), t < t∗. (3.6)

However, it follows from integral inequality (3.1) and Lemma 4 that

v(t∗) ≤ ρ1e−ct∗ + ρ2

∫ t∗

0
e−c(t∗−s)v(s)ds + ρ3

∫ t∗

0
e−c(t∗−s)v(s − τ)ds

+ ρ4

∫ t∗

0
e−c(t∗−s)

∫ +∞

0
k(r)v(s − r)drds + ρ5

∫ t∗

0
e−c(t∗−s)w(s)ds

+ ρ6

∑
tk≤t∗

e−c(t∗−tk)w(t−k ) ,
6∑

i=1

Ii(t∗). (3.7)
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From (3.6), we get that

I2(t∗) ≤ ρ2

∫ t∗

0
e−c(t∗−s)

[
Ne−λs + κ sup

0≤p≤s
w(p)

]
ds

≤ ρ2N
∫ t∗

0
e−c(t∗−s)e−λsds + ρ2κ sup

0≤p≤t∗
w(p)

∫ t∗

0
e−c(t∗−s)ds

≤
ρ2

c − λ
Ne−λt∗ +

ρ2κ

c
sup

0≤s≤t∗
w(s), (3.8)

I3(t∗) ≤ ρ3

∫ t∗

0
e−c(t∗−s)

[
Ne−λ(s−τ) + κ sup

0≤p≤s−τ
w(p)

]
ds

≤ ρ3eλτN
∫ t∗

0
e−c(t∗−s)e−λsds + ρ3κ sup

0≤p≤t∗
w(p)

∫ t∗

0
e−c(t∗−s)ds

≤
ρ3

c − λ
eλτNe−λt∗ +

ρ3κ

c
sup

0≤s≤t∗
w(s), (3.9)

I5(t∗) ≤ ρ5

∫ t∗

0
e−c(t∗−s)ds sup

0≤s≤t∗
w(s) ≤

ρ5

c
sup

0≤s≤t∗
w(s). (3.10)

From Cauchy-Schwarz inequality, we obtain

I4(t∗) ≤ ρ4

∫ t∗

0
e−c(t∗−s)

∫ +∞

0
k(r)

[
Ne−λ(s−r) + κ sup

0≤p≤s−r
w(p)

]
drds

≤ ρ4N
∫ +∞

0
k(r)eλrdr

∫ t∗

0
e−c(t∗−s)e−λsds + ρ4κ sup

0≤p≤t∗
w(p)

∫ t∗

0
e−c(t∗−s)ds

≤
ρ4

c − λ
Ne−λt∗

∫ +∞

0
k(r)eλrdr +

ρ4κ

c
sup

0≤s≤t∗
w(s)

≤
ρ4

(c − λ)(λ∗ − λ)
Ne−λt∗ +

ρ4κ

c
sup

0≤s≤t∗
w(s). (3.11)

From Lemma 4, we have

I6(t∗) ≤ ρ6

∑
tk≤t∗

e−c(t∗−tk) sup
0≤s≤t∗

w(s) ≤
ρ6

1 − e−cή sup
0≤s≤t∗

w(s). (3.12)

Combining (3.4) and (3.7)–(3.12), we obtain that

v(t∗) ≤
(ρ1

N
+ Θ(λ)

)
Ne−λt∗ +

( (ρ2 + ρ3 + ρ4)κ
c

+
ρ5

c
+

ρ6

1 − e−cή

)
sup

0≤s≤t∗
w(s) < Ne−λt∗ + κ sup

0≤s≤t∗
w(s),

(3.13)

which contradicts (3.5) so as to complete the proof. �

Theorem 1. Assume that µ = δ2 − 6nχ
∑n

i=1
∑n

j=1(|bi j|
2 + |pi j|

2 + |qi j|
2/λ∗)l2

j > 0, where δ = ϑ −
1
N

∑p
i=1

ln σ̀i
ὴ
− 1

N

∑N−p
i=1

ln σ́i
ή

> 0 and χ =
∏N−p

i=1 σ́i/
∏p

i=1 σ̀i. Then, the DRDNNs with multiple impulses
(2.5) are UISS over the class F (ή, ὴ).
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Proof. From inequality (
∑n

i=1 ai)2 ≤ n
∑n

i=1 a2
i and Lemma 2, the moment of mild solution is estimated

by

‖z(t)‖2 ≤ 6
(
‖T (t, 0)φ(0)‖2 + ‖

∫ t

0
T (t, s)B f (z(s))ds‖2 + ‖

∫ t

0
T (t, s)P f (z(s − τ))ds‖2

+ ‖

∫ t

0
T (t, s)Q

∫ +∞

0
k(r) f (z(s − r))drds‖2 + ‖

∫ t

0
T (t, s)u(s)ds‖2 + ‖

∑
tk≤t

T (t, tk)u(t−k )‖2
)

, 6
6∑

i=1

Γi(t). (3.14)

It follows from (H2), Lemma 3, and the class F (ή, ὴ) that

‖T (t, s)‖2 ≤
∏

s<tk≤t

(1 + ck)2‖S (t − s)‖2 ≤
∏

s<tk≤t

σ2
ke−2ϑ(t−s) ≤ χ

p∏
i=1

σ̀
t−s
ὴ ·

2
N

i

N−p∏
i=1

σ́
t−s
ή ·

2
N

i e−2ϑ(t−s) ≤ χe−2δ(t−s).

(3.15)
Combining the Cauchy-Schwarz inequality, it yields

Γ1(t) ≤ χe−2δt‖φ‖2
PCb ≤ χe−δt‖φ‖2

PCb , (3.16)

Γ2(t) =

n∑
i=1

‖

n∑
j=1

∫ t

0
T (t, s)bi j f̂ j(ẑ j(s, x))ds‖2

≤ n
n∑

i=1

n∑
j=1

( ∫ t

0
‖T (t, s)bi j f̂ j(ẑ j(s, x))‖ds

)2

≤ nχ
n∑

i=1

n∑
j=1

( ∫ t

0
e−δ(t−s)|bi j|l j‖ẑ j(s, x))‖ds

)2

= nχ
n∑

i=1

n∑
j=1

( ∫ t

0
e−

δ
2 (t−s)e−

δ
2 (t−s)|bi j|l j‖ẑ j(s, x))‖ds

)2

≤ nχ
n∑

i=1

n∑
j=1

|bi j|
2l2

j

∫ t

0

(
e−

δ
2 (t−s))2ds

∫ t

t0

(
e−

δ
2 (t−s))2

‖ẑ j(s, x))‖2ds

≤
nχ
δ

n∑
i=1

n∑
j=1

|bi j|
2l2

j

∫ t

0
e−δ(t−s)‖z(s))‖2ds, (3.17)

Γ3(t) =

n∑
i=1

‖

n∑
j=1

∫ t

0
T (t, s)pi j f̂ j(ẑ j(s − τ, x))ds‖2

≤ n
n∑

i=1

n∑
j=1

( ∫ t

0
‖T (t, s)pi j f̂ j(ẑ j(s − τ, x))‖ds

)2

≤ nχ
n∑

i=1

n∑
j=1

( ∫ t

0
e−δ(t−s)|pi j|l j‖ẑ j(s − τ, x))‖ds

)2
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≤ nχ
n∑

i=1

n∑
j=1

|pi j|
2l2

j

∫ t

0
e−δ(t−s)ds

∫ t

t0
e−δ(t−s)‖ẑ j(s − τ, x))‖2ds

≤
nχ
δ

n∑
i=1

n∑
j=1

|pi j|
2l2

j

∫ t

0
e−δ(t−s)‖z(s − τ)‖2ds, (3.18)

Γ4(t) ≤
nχ
δ

n∑
i=1

n∑
j=1

|qi j|
2l2

j

∫ t

0
e−δ(t−s)

( ∫ +∞

0
k(r)‖ẑ j(s − r, x)‖dr

)2
ds

=
nχ
δ

n∑
i=1

n∑
j=1

|qi j|
2l2

j

∫ t

0
e−δ(t−s)

( ∫ +∞

0
(k(r))

1
2 (k(r))

1
2 ‖ẑ(s − r, x)‖dr

)2
ds

≤
nχ
δ

n∑
i=1

n∑
j=1

|qi j|
2l2

j

∫ t

0
e−δ(t−s)

∫ +∞

0
k(r)dr

∫ +∞

0
k(r)‖ẑ(s − r, x)‖2drds

≤
nχ
δ

n∑
i=1

n∑
j=1

|qi j|
2l2

j

∫ t

0
e−δ(t−s)

∫ +∞

0
k(r)‖z(s − r)‖2drds, (3.19)

Γ5(t) =

n∑
i=1

‖

∫ t

0
T (t, s)ûi(s, x)ds‖2 ≤

n∑
i=1

( ∫ t

0
‖T (t, s)ûi(s, x)‖ds

)2
≤ χ

n∑
i=1

n∑
j=1

( ∫ t

0
e−δ(t−s)‖ûi(s, x)‖ds

)2

≤ χ

n∑
i=1

∫ t

0
e−δ(t−s)ds

∫ t

0
e−δ(t−s)‖ûi(s, x)‖2ds =

χ

δ

∫ t

0
e−δ(t−s)‖u(s)‖2ds. (3.20)

Similarly, it follows from Lemma 4 that

Γ6(t) ≤
n∑

i=1

‖
∑
tk≤t

T (t, tk)ûi(t−k )‖2 ≤
n∑

i=1

(∑
tk≤t

‖T (t, tk)ûi(t−k )‖
)2
≤ χ

n∑
i=1

(∑
tk≤t

e−δ(t−tk)‖ûi(t−k )‖
)2

= χ

n∑
i=1

(∑
tk≤t

e−
δ
2 (t−tk)e−

δ
2 (t−tk)‖ûi(t−k )‖

)2
≤ χ

n∑
i=1

(∑
tk≤t

(
e−

δ
2 (t−tk))2

)(∑
tk≤t

(
e−

δ
2 (t−tk))2

‖ûi(t−k )‖2
)

≤ χ
(∑

tk≤t

e−δ(t−tk)
)(∑

tk≤t

e−δ(t−tk)
n∑

i=1

‖ûi(t−k )‖2
)
≤

χ

1 − e−δη
∑
tk≤t

e−δ(t−tk)‖u(t−k )‖2. (3.21)

Combining (3.14)–(3.21), we have

‖z(t)‖2 ≤ ρ1e−δt + ρ2

∫ t

0
e−δ(t−s)‖z(s)‖2ds + ρ3

∫ t

0
e−δ(t−s)‖z(s − τ)‖2ds

+ ρ4

∫ t

0
e−δ(t−s)

∫ +∞

0
k(r)‖z(s − r)‖2drds + ρ5

∫ t

0
e−δ(t−s)‖u(s)‖2ds

+ ρ6

∑
tk≤t

e−δ(t−tk)‖u(t−k )‖2, (3.22)
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where ρ1 = 6χ‖φ‖2
PCb , ρ2 =

6nχ
δ

∑n
i=1

∑n
j=1 |bi j|

2l2
j , ρ3 =

6nχ
δ

∑n
i=1

∑n
j=1 |pi j|

2l2
j , ρ4 =

6nχ
δ

∑n
i=1

∑n
j=1 |qi j|

2l2
j ,

ρ5 =
6χ
δ

, ρ6 =
6χ

1−e−δή . Combining ‖z(t)‖2 ≤ ‖φ‖2
PCb for t ≤ 0, it follows from Lemma 5 that there exist

constants 0 < λ < δ ∧ λ∗ such that Θ(λ) < 1

‖z(t)‖2 ≤ Ne−λt + κ sup
0≤s≤t
‖u(s)‖2, (3.23)

where N = ( 2χ
1−Θ(λ) + 1)‖φ‖2

PCb and κ =
χ

µ
(1 + δ2

(1−eδή)2 ). Therefore, the DRDNNs with multiple impulses
are UISS over the class F (ή, ὴ). �

Remark 2. In [28], the ISS property of stochastic delayed neural networks are investigated to show
that the ISS of continuous dynamics can be retained under certain destabilising impulses. Then, the
ISS criteria of DRDNNs with impulses were established by an impulsive delay inequality in [27],
where two scenarios are considered: stabilising continuous dynamics with destabilising impulses and
destabilising continuous dynamics with stabilising impulses. One can notice that these results
in [27, 28] focused on the single impulse effect (stabilising or destabilising impulses), and ignored the
hybrid effect of multiple impulses. In comparison, the results established here indicate that the ISS
property of continuous dynamics can be retained under certain multiple impulsive disturbance and the
unstable continuous dynamics can be stabilised by multiple impulsive control, if the intervals between
the multiple impulses are bounded.

Remark 3. In most of the existing works on ISS of neural networks [20, 27, 28], the ISS criteria are
usually established by the Lyapunov method and extended Halanay-type inequalities. In comparison,
the ISS criteria in this paper are established by direct estimate of mild solution and an integral inequality
to handle the multiple impulses and infinite distributed delays.

If the multiple impulses degenerate into single impulses, that is, stabilising impulses or destabilising
impulses, we have the following corollaries from Theorem 1.

Corollary 1. Assume that µ̀ = δ̀2 − 6n
σ̀

∑n
i=1

∑n
j=1(|bi j|

2 + |pi j|
2 + |qi j|

2/λ∗)l2
j > 0, where δ̀ = ϑ − ln σ̀

ὴ
> 0,

σ̀ = σ̀k < 1, k ∈ N, and N = 1. Then, the DRDNNs with stabilising impulses (2.5) are UISS over the
class F +(ὴ) ∩ F−(ή) for arbitrary ή > 0.

Corollary 2. Assume that µ́ = δ́2−6nσ́
∑n

i=1
∑n

j=1(|bi j|
2 + |pi j|

2 + |qi j|
2/λ∗)l2

j > 0, where δ́ = ϑ− ln σ́
ή
> 0,

σ́ = σ́k > 1, k ∈ N, and N = 1. Then, the DRDNNs with destabilising impulses (2.5) are UISS over
the class F−(ή).

Remark 4. The corollaries with stabilising or destabilising impulses accord with the results in [27,43].
But the infinite distributed delays are additionally included in neural-network model, so our results are
more general.

4. Numerical examples

In this section, the effectiveness of theoretical results are demonstrated by two numerical examples.

Example 1. Consider the DRDNNs with multiple impulses which consist of two neurons on O =

{x| − 1 ≤ x ≤ 1}, where the parameters are given by B = 0, and

D =

(
0.2 0
0 0.3

)
, A =

(
0.3 0
0 0.4

)
, P =

(
1 −0.5

0.5 1

)
, Q =

(
0.2 0.3
0.1 0.4

)
,
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and τ = 0.1, k(s) = e−s, f (s) = tanh(s)/3. The initial condition is given by

z1(t, x) =

{ 1
10 cos( xπ

2 ), t ∈ [−5, 0],
0, t ∈ (−∞,−5),

z2(t, x) =

{ 1
10 sin(xπ), t ∈ [−5, 0],
0, t ∈ (−∞,−5),

where x ∈ O, and the boundary condition is the homogeneous Dirichlet boundary condition. Then we
have the following result from Theorem 1 and Corollary 1.

Corollary 3. The DRDNNs (2.5) with the above parameters are input-to-state stable via the following
multiple impulsive control (I) or stabilising impulsive control (II):
(I): ln 4

ὴ
−

ln 4/3
ή

> 7.9244, σ2k−1 = 4
3 , σ2k = 1

4 , k ∈ N;
(II): ὴ < 0.3499, ή > 0, σk = 1

4 , k ∈ N.

Figure 1 illustrates the state norms of the DRDNNs via the impulsive control (I) and (II) under the
external input by u1(t, x) = sin(xπ) and u2(t, x) = 1

t+1 cos(tπ/2). We can see that the DRDNNs are
bounded under the bounded spatiotemporal external input, which corresponds to the ISS property.
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Figure 1. The state norms of the DRDNNs via the multiple impulsive control (I) and
stabilising impulsive control (II) in Example 1.

Example 2. Consider the DRDNNs with multiple impulses which consist of two neurons on O =

{x| − 1 ≤ x ≤ 1}, where the parameters are given by

D =

(
0.4 0
0 0.5

)
, A =

(
1 0
0 1.9

)
, B =

(
−0.6 0.8
0.4 −0.4

)
, P =

(
0.1 0.4
0.4 −0.6

)
, Q =

(
0.4 0.3
0.5 0.4

)
,

and τ = 1.8, k(s) = e−s, f (s) = 0.1 tanh(s). The initial condition is given by

z1(t, x) =

{ cos( xπ
2 ), t ∈ [−5, 0],

0, t ∈ (−∞,−5),
z2(t, x) =

{ sin(xπ), t ∈ [−5, 0],
0, t ∈ (−∞,−5),

where x ∈ O, and the boundary condition is the homogeneous Dirichlet boundary condition. Then we
have the following result from Theorem 1 and Corollary 2.
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Corollary 4. The DRDNNs (2.5) with the above parameters are input-to-state stable with the following
multiple impulsive disturbance (III) or destabilising impulsive disturbance (IV):
(III): ln 3

ή
− ln 2

ὴ
< 1.2423, σ3k−2 = 3

2 , σ3k−1 = 2, σ3k = 1
2 , k ∈ N;

(IV): ή > 0.9791, σk = 3
2 , k ∈ N.

Figure 2 illustrates the state norms of the DRDNNs with the impulsive disturbance (III) and (IV)
under the external input by u1(t, x) = cos(tπ/10) sin(xπ) and u2(t, x) = (sin(tπ/10) + 1) cos(tπ/2) in the
continuous dynamics, where the ISS property is also observed.
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Figure 2. The state norms of the DRDNNs with the multiple impulsive disturbance (III) and
destabilising impulsive disturbance (IV) in Example 2.

Remark 5. Because of the multiple impulses and the infinite distributed delays, the existing results
in [27, 28, 43] are invalid for these two numerical examples.

5. Conclusions

This work addresses the ISS issues of DRDNNs with multiple impulses after reformulating the
neural-network model in term of an abstract impulsive functional differential equation. The ISS
property is studied by the direct estimate of mild solution and an integral inequality with infinite
distributed delay. The obtained results show that the ISS property can be ensured if the intervals
between the multiple impulses are bounded. Note that the impulsive sequences considered here have a
fixed dwell-time. A more general class of impulsive sequences satisfying the average dwell-time
condition is considered in ISS literature [8, 9]. Thus, the further work will focus on ISS analysis of
impulsive DRDNNs under the average dwell-time condition.
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