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1. Introduction

In recent years, the calculus of variations and optimal control problems on time scales have
attracted much attention. For example, the calculus of variations on time scales was discussed
in [1–4], some maximum principles on time scales were studied in [5–9], while the existence of
optimal solutions or the necessary conditions of optimality for some optimal control problems on time
scales were investigated in [10–15]. In particular, Peng et al. [11] presented the necessary conditions
of optimality for the Lagrange problem of systems governed by linear dynamic equations on time
scales with quadratic cost functional. It is necessary to point out that the controlled state variable
in [11] satisfies the initial value condition.

Throughout this paper, we always assume that T is a time scale, that is, T is an arbitrary nonempty
closed subset of the real numbers [16], T > 0 is fixed, 0, T ∈ T and σ(T ) = T . For each interval I
of R, we denote by IT = I ∩ T. The notation σ, which is standard in the study of time scales will be
recalled in section 2 as well as the related tools required to follow the paper.

Let Uad be the admissible control set. For any given control policy u ∈ Uad, it is assumed that the
change in the controlled state variable x(t) can be described by the following dynamic equation

x∆(t) + p(t)x(σ(t)) = f (t) + q(t)u(t), t ∈ [0,T ]T. (1.1)
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At the same time, we assume that x(t) satisfies the following loop condition

x(0) = x(T ). (1.2)

Suppose that xu is the solution of the controlled system (1.1)–(1.2) corresponding to the control policy
u and xd is the desired value. In this paper, we will study optimality necessary conditions for the
optimal control problem (P): Find a u0 ∈ Uad such that

J(u) ≥ J(u0) for all u ∈ Uad,

where

J(u) =

∫ T

0
[xu(σ(t)) − xd(t)]2∆t +

∫ T

0
u2(t)∆t, u ∈ Uad

is the quadratic cost functional. By using the integration by parts on time scales, we obtain some
optimality necessary conditions for the problem (P).

2. Preliminaries

The theory of time scales, which has recently received a lot of attention, was introduced by Hilger
in his PhD thesis [17] in 1988 in order to unify continuous and discrete analysis. For more details, one
can see [16, 18, 19]. In this section, we will recall some foundational definitions and results from the
calculus on time scales which will be used in the paper.

Definition 2.1. The forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t} f or all t ∈ T,

while the backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t} f or all t ∈ T.

In this definition we put inf ∅ = supT and sup ∅ = inf T, where ∅ denotes the empty set. If σ(t) > t,
then t is called right-scattered, while if ρ(t) < t, then t is called left-scattered. Also, if t < supT and
σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then t is called left-dense. If T has
a left-scattered maximum m, then we define Tk = T − {m}, otherwise Tk = T. Finally, the graininess
function µ : T→ [0,+∞) is defined by

µ(t) := σ(t) − t f or all t ∈ T.

Definition 2.2. Assume f : T → R is a function and let t ∈ Tk. Then f ∆(t) is defined to be the
number (provided it exists) with the property that given any ε > 0, there is a neighborhood U of t
(i.e.,U = (t − δ, t + δ)T f or some δ > 0) such that∣∣∣ f (σ(t)) − f (s) − f ∆(t) (σ(t) − s)

∣∣∣ ≤ ε |σ(t) − s| f or all s ∈ U.

In this case, f ∆(t) is called the delta derivative of f at t.
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Moreover, f is called delta differentiable on Tk provided f ∆(t) exists for all t ∈ Tk. The function
f ∆ : Tk → R is called the delta derivative of f on Tk. A function F : T→ R is called an antiderivative
of f : T→ R provided

F∆(t) = f (t) holds f or all t ∈ Tk.

If F : T→ R is an antiderivative of f : T→ R, then the Cauchy integral is defined by∫ b

a
f (t)∆t = F(b) − F(a) f or all a, b ∈ T.

Definition 2.3. A function f : T → R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T.

In the following we will provide some important properties of the exponential function which is
specific to time scales. Their proofs can be found in [16].

Definition 2.4. A function p : T→ R is called regressive provided

1 + µ(t)p(t) , 0 for all t ∈ Tk

holds. The set of all regressive and rd-continuous functions will be denoted by R. The set of positively
regressive functions R+ is defined as the set consisting of those p ∈ R satisfying

1 + µ(t)p(t) > 0 for all t ∈ T.

Lemma 2.1. [16] Let p ∈ R, t0, s ∈ T and ep(·, t0) be the exponential function on T. Then
(i) ep(t, t) ≡ 1 f or all t ∈ T;
(ii) e∆

p(t, t0) = p(t)ep(t, t0) f or all t ∈ Tk;
(iii) ep(t, t0) = 1

ep(t0,t)
f or all t ∈ T;

(iv) ep(t, s)ep(s, t0) = ep(t, t0) f or all t ∈ T;

(v)
(

1
ep(t,t0)

)∆
= −

p(t)
ep(σ(t),t0) f or all t ∈ Tk.

Moreover, if p ∈ R+, then
ep(t, t0) > 0 f or all t ∈ T.

Lemma 2.2. [16] Assume f , g : T → R are differentiable at t ∈ Tk. Then the product f g : T → R is
differentiable at t with

( f g)∆(t) = f ∆(t)g(t) + f (σ(t))g∆(t) = f (t)g∆(t) + f ∆(t)g(σ(t)), t ∈ Tk.

Lemma 2.3. [16] If a, b ∈ T and f , g : T→ R are rd-continuous functions, then∫ b

a
f (σ(t))g∆(t)∆t = ( f g)(b) − ( f g)(a) −

∫ b

a
f ∆(t)g(t)∆t.

In the remainder of this paper, we always assume that Banach space

Crd([0,T ]T,R) := {x | x : [0,T ]T → R is rd-continuous}

is equipped with the norm ‖x‖ = max
t∈[0,T ]T

|x (t)|, p : [0,T ]T → (0,+∞) is rd-continuous and denote

L =
ep(T, 0)

1 − ep(T, 0)
and M =

1
ep(T, 0) − 1

.
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Lemma 2.4. For any g ∈ Crd([0,T ]T,R), the following first-order linear periodic boundary value
problem (PBVP for short)  y∆(t) = p(t)y(t) + g(t), t ∈ [0,T ]T,

y(0) = y(T )
(2.1)

has a unique solution

y (t) = ep(t, 0)
[∫ t

0
ep(0, σ(s))g (s) ∆s + L

∫ T

0
ep(0, σ(s))g (s) ∆s

]
, t ∈ [0,T ]T . (2.2)

Proof. Since g and ep are rd-continuous, we know that the right side of (2.2) is well defined. By the
equation in (2.1), Lemma 2.1 and Lemma 2.2, we get

[y(t)ep(0, t)]∆ = ep(0, σ(t))g(t), t ∈ [0,T ]T.

So,

y(t) = ep(t, 0)
[
y(0) +

∫ t

0
ep(0, σ(s))g(s)∆s

]
, t ∈ [0,T ]T. (2.3)

It follows from (2.3) and the boundary condition in (2.1) that

y(0) = L
∫ T

0
ep(0, σ(s))g(s)∆s.

And so,

y (t) = ep(t, 0)
[∫ t

0
ep(0, σ(s))g (s) ∆s + L

∫ T

0
ep(0, σ(s))g (s) ∆s

]
, t ∈ [0,T ]T .

�

Lemma 2.5. [20] For any h ∈ Crd([0,T ]T,R), the following first-order linear PBVP x∆(t) + p(t)x(σ(t)) = h(t), t ∈ [0,T ]T,
x(0) = x(T )

has a unique solution

x (t) =
1

ep(t, 0)

[∫ t

0
ep(s, 0)h (s) ∆s + M

∫ T

0
ep(s, 0)h (s) ∆s

]
, t ∈ [0,T ]T .

3. Main results

From now on, we always suppose that the control space is Crd([0,T ]T,R) and the admissible control
set Uad is a nonempty convex subset of Crd([0,T ]T,R).
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Theorem 3.1. Assume that f , q ∈ Crd([0,T ]T,R). Let (xu0 , u0) ∈ Crd([0,T ]T,R) × Uad be an optimal
pair of the problem (P). Then x∆

u0
(t) + p(t)xu0(σ(t)) = f (t) + q(t)u0(t), t ∈ [0,T ]T,

xu0(0) = xu0(T )
(3.1)

and there exists a function ϕ ∈ Crd([0,T ]T,R) such that∫ T

0
[u(t) − u0(t)][ϕ(t)q(t) + u0(t)]∆t ≥ 0 for any u ∈ Uad.

Proof. Since (xu0 , u0) ∈ Crd([0,T ]T,R)×Uad is an optimal pair of the problem (P), it must satisfy (3.1).
According to Lemma 2.4, we know that the following PBVPϕ∆(t) = p(t)ϕ(t) + xd(t) − xu0(σ(t)), t ∈ [0,T ]T,

ϕ(0) = ϕ(T )
(3.2)

has a unique solution ϕ.
In what follows, we shall show that∫ T

0
[u(t) − u0(t)][ϕ(t)q(t) + u0(t)]∆t ≥ 0 for any u ∈ Uad. (3.3)

For any fixed u ∈ Uad, we first consider the following PBVP z∆(t) + p(t)z(σ(t)) = q(t)[u(t) − u0(t)], t ∈ [0,T ]T,
z(0) = z(T ).

(3.4)

By Lemma 2.5, we know that the PBVP (3.4) has a unique solution z.
Next, for ε ∈ [0, 1], we denote

uε = u0 + ε(u − u0). (3.5)

Then, the hypothesis that Uad is a nonempty convex set yields uε ∈ Uad for ε ∈ [0, 1] and moreover
from Lemma 2.5 we obtain

xuε − xu0 = εz, ε ∈ [0, 1]. (3.6)

In view of (3.2), (3.4) and Lemma 2.3, we have∫ T

0
z(σ(t))[xu0(σ(t)) − xd(t)]∆t =

∫ T

0
z(σ(t))[−ϕ∆(t) + p(t)ϕ(t)]∆t

=

∫ T

0
ϕ(t)[z∆(t) + p(t)z(σ(t))]∆t

=

∫ T

0
ϕ(t)q(t)[u(t) − u0(t)]∆t,

which together with (3.5) and (3.6) indicates that for any ε ∈ [0, 1],

J(uε) − J(u0)
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=

∫ T

0
{[xuε (σ(t)) − xd(t)]2 − [xu0(σ(t)) − xd(t)]2}∆t +

∫ T

0
[u2

ε (t) − u2
0(t)]∆t

=

∫ T

0
[xuε (σ(t)) − xu0(σ(t))][xuε (σ(t)) + xu0(σ(t)) − 2xd(t)]∆t

+

∫ T

0
[uε(t) + u0(t)][uε(t) − u0(t)]∆t

= ε

∫ T

0
z(σ(t))[xuε (σ(t)) + xu0(σ(t)) − 2xd(t)]∆t

+ε

∫ T

0
[u(t) − u0(t)]{2u0(t) + ε[u(t) − u0(t)]}∆t

= ε

∫ T

0
z(σ(t)){[xuε (σ(t)) − xu0(σ(t))] + 2[xu0(σ(t)) − xd(t)]}∆t

+ε2
∫ T

0
[u(t) − u0(t)]2∆t + 2ε

∫ T

0
u0(t)[u(t) − u0(t)]∆t

= ε2
∫ T

0
z2(σ(t))∆t + 2ε

∫ T

0
ϕ(t)q(t)[u(t) − u0(t)]∆t

+ε2
∫ T

0
[u(t) − u0(t)]2∆t + 2ε

∫ T

0
u0(t)[u(t) − u0(t)]∆t

= ε2
∫ T

0
{z2(σ(t)) + [u(t) − u0(t)]2}∆t + 2ε

∫ T

0
[u(t) − u0(t)][ϕ(t)q(t) + u0(t)]∆t.

Since u0 is an optimal solution of the problem (P), for any ε ∈ [0, 1], we get

ε

(
ε

∫ T

0
{z2(σ(t)) + [u(t) − u0(t)]2}∆t + 2

∫ T

0
[u(t) − u0(t)][ϕ(t)q(t) + u0(t)]∆t

)
≥ 0,

which implies that for any u ∈ Uad,∫ T

0
[u(t) − u0(t)][ϕ(t)q(t) + u0(t)]∆t ≥ 0.

�

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no.
11661049).

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

AIMS Mathematics Volume 6, Issue 6, 5639–5646.



5645

References

1. Z. Bartosiewicz, N. Martins, D. F. M. Torres, The second Euler-Lagrange equation of variational
calculus on time scales, Eur. J. Control, 17 (2011), 9–18.

2. R. A. C. Ferreira, A. B. Malinowska, D. F. M. Torres, Optimality conditions for the calculus of
variations with higher-order delta derivatives, Appl. Math. Lett., 24 (2011), 87–92.

3. R. Hilscher, V. Zeidan, First order conditions for generalized variational problems over time scales,
Comput. Math. Appl., 62 (2011), 3490–3503.

4. A. B. Malinowska, N. Martins, D. F. M. Torres, Transversality conditions for infinite horizon
variational problems on time scales, Optim. Lett., 5 (2011), 41–53.

5. P. Stehlik, B. Thompson, Maximum principles for second order dynamic equations on time scales,
J. Math. Anal. Appl., 331 (2007), 913–926.

6. R. Hilscher, V. Zeidan, Weak maximum principle and accessory problem for control problems on
time scales, Nonlinear Anal., 70 (2009), 3209–3226.
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